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Abstract Plants living under natural conditions are

exposed to many adverse factors that interfere with the

photosynthetic process, leading to declines in growth,

development, and yield. The recent development of

Chlorophyll a fluorescence (ChlF) represents a potentially

valuable new approach to study the photochemical effi-

ciency of leaves. Specifically, the analysis of fluorescence

signals provides detailed information on the status and

function of Photosystem II (PSII) reaction centers, light-

harvesting antenna complexes, and both the donor and

acceptor sides of PSII. Here, we review the results of fast

ChlF analyses of photosynthetic responses to

environmental stresses, and discuss the potential scientific

and practical applications of this innovative methodology.

The recent availability of portable devices has significantly

expanded the potential utilization of ChlF techniques,

especially for the purposes of crop phenotyping and

monitoring.
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ChlF Chlorophyll fluorescence

CS Cross section of the sample

Cyt b6f Cytochrome b6f

DF Delayed (chlorophyll) fluorescence

DFI Drought factor index

LHC (II) Light-harvesting complex (of PSII)

OEC Oxygen-evolving complex

P680* Excited PSII reaction center

P700 PSI reaction center

PAR Photosynthetically active radiation

PC Plastocyanin

PCA Principal component analysis

PF Prompt (chlorophyll) fluorescence

Pheo Pheophytin

PQ Plastoquinone

PSI, PSII Photosystem I, II

QA Primary plastoquinone electron acceptor of

PSII

QB Secondary plastoquinone electron acceptor

RC Reaction center

ROS Reactive oxygen species

Introduction

Over the course of the 21st century, global agriculture must

produce more food to sustain a growing human population

(Beddington et al. 2012). However, this goal is threatened

by anthropogenic climate change which has the potential to

dramatically reduce yields in affected regions (Lobell et al.

2008). Recent studies indicate that Chlorophyll fluores-

cence (ChlF) measurements may provide unique bench-

marks to improve global agricultural productivity models,

improving the reliability of crop yield projections under

climate change scenarios (Guanter et al. 2014; Malaspina

et al. 2014). More generally, ChlF is emerging as a very

powerful tool in agricultural, environmental, and ecologi-

cal studies (Gottardini et al. 2014). One of its main

advantages is that ChlF is a non-invasive tool, allowing

scientists to get information on the photosynthetic process

without destroying the tested sample.

Under natural conditions, plants are exposed to many

adverse environmental stress factors. These can disrupt the

photosynthetic apparatus, causing a decrease of plant pro-

ductivity and overall yield. Photosynthesis is particularly

sensitive to environmental constraints (see Kalaji et al.

2012), making photosynthetic measurements an important

component of plant stress studies. However, traditional

methods, even technically advanced ones such as the

measurements of photosynthetic rates through gas

exchange (CO2, H2O, and O2), are time-consuming and

provide incomplete information on overall photosynthetic

function. In contrast, ChlF measurements represent a sim-

ple, non-destructive, inexpensive and rapid tool for ana-

lyzing light-dependent photosynthetic reactions and for

indirectly estimating chlorophyll content within the same

sample tissue (See reviews by Govindjee 1995; Papa-

georgiou and Govindjee 2011; and by Stirbet and Govin-

djee 2011, 2012). These technical advantages of ChlF

approaches have made it a popular technique among plant

breeders (e.g., for crop phenotyping and monitoring),

biotechnologists, plant physiologists, farmers, gardeners,

foresters, ecophysiologists, and environmentalists.

Critically, from the perspective of plant stress studies,

ChlF measurements also provide indirect information

about the physiological condition of plants. Analysis of

chlorophyll fluorescence (ChlF) induction curves allows

the evaluation of the physiological condition of photosys-

tem II (PSII) and photosynthetic electron transport chain

components. It also provides information on the coopera-

tion of light-dependent photochemical reactions and light-

independent biochemical reactions. More generally, ChlF

measurements relate, directly or indirectly, to all stages of

light-dependent photosynthetic reactions, including pho-

tolysis of water, electron transport, pH gradient formation

across the thylakoid membrane, and ATP synthesis and

thus general bioenergetic condition of the photosynthetic

machinery (Bernát et al. 2012).

Numerous ChlF techniques and applications have now

been developed, each one contributing to knowledge of

photosynthesis. In this review, we focus on results from

fast fluorescence analysis induced by continuous illumi-

nation. These studies were made possible by the develop-

ment of a reliable mathematical model known as the JIP-

test (Strasser et al. 2004) that allowed the analysis of flu-

orescence changes that occur in less than 1 s. Such anal-

yses provide detailed information on the status and

function of PSII reaction centers, antenna, as well as on

donor and acceptor sides of PSII. The main focus of the

review is to outline the effects of stress factors on the

photochemical processes as reflected in changes in fast

ChlF kinetics and related biophysical parameters.

Analysis of polyphasic chlorophyll fluorescence

kinetics

Illumination of a dark-adapted photosynthetic sample

allows a polyphasic chlorophyll fluorescence induction

curve to be obtained (O–J–I–P-transient) (Fig. 1). The

curve’s trajectory provides considerable information about

the structure and function of the photosynthetic apparatus

(Kautsky and Hirsch 1931; Schreiber et al. 1994). The JIP-

test is based on the rise in polyphasic fast chlorophyll a,
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and is used for investigating the correlation between light-

dependent reactions and ChlF. It is based on the theory of

‘‘energy flow’’ across thylakoid membranes (Strasser et al.

2000). This theory can be operationalized in simple alge-

braic equations, representing the balance between total

energy inflows and outflows for each of the examined light-

harvesting complexes and providing information on the

probable distribution of absorbed energy. With these

equations, it is possible to describe the energetic commu-

nication (also known as the ‘‘grouping’’ or ‘‘connectivity’’

and ‘‘overall grouping probability’’) between the PSII

complexes (Stirbet 2013).

The name of the JIP-test (OJIP) originates from the

specific points on the induction curve formed by the

recorded ChlF signal (Fig. 1): these correspond to the

gradual reduction of QA and the primary electron acceptor

of PSII. The shape of the curve depends from PSII

grouping (L-band) (Tsimilli-Michael and Strasser 2013)

and the balance between electron donation from

OEC ? P680? and electron accept from QA
- (K-band)

(Strasser et al. 2005). The O–J part of the fluorescence rise

relates to the closure of some of the PSII reaction centers in

response to the reduction of QA to a level determined by

the ratio between the trapping rate and QA reoxidation rate

by QB and the rest of the electron transfer chain. The J–I

part of the curve corresponds to the reduction of the sec-

ondary electron acceptor QB, plastoquinone (PQ),

cytochrome (Cyt b6f), and PC. The increase in ChlF in the

I–P part of the induction curve is typically attributed to the

reduction of electron transporters (ferredoxin, intermediary

acceptors, and NADP) of the PSI acceptor side. Stress

conditions such as high temperature, excessive PAR,

nitrogen deficiency, or drought inhibit the oxygen-evolving

complex (OEC) and block the electron transport between

the OEC and tyrosine (Guha et al. 2013). Under stressful

conditions, a peak occurs (the K-band) within the

200–300 ls range of the ChlF induction curve, indicating a

disruption of the OEC.

The JIP-test parameters characterizing the PAR energy

absorption and electron transport can be categorized into

four main groups: (1) basic measured and calculated values

[fluorescence (Ft) and variable fluorescence (Vt) values,

initial slope, etc.]; (2) quantum yields and probabilities; (3)

energy fluxes; and (4) vitality indices. The biophysical

parameters representing the energy fluxes are divided into

specific and phenomenological. The specific parameters are

calculated per reaction center (RC), while the phe-

nomenological parameters are calculated per sample cross

section (CS).

The vitality indices represent the products of several

independent parameters combining structural and func-

tional criteria. These criteria include the density of reaction

centers, the quantum efficiency of primary photochemistry,

and conversion of excitation energy in electron transport

(Strasser et al. 2000, 2004, 2010; Zushi et al. 2012). The

vitality indices were created as non-specific parameters to

be used mostly in practical applications, such as screening

for enhanced stress tolerance underfield conditions (Sri-

vastava et al. 1999; Strasser et al. 2004; Brestic and Zivcak

2013).

Chlorophyll fluorescence kinetics can also be used to

reveal PSII heterogeneity of photosynthetic apparatus. PSII

is naturally heterogeneous in terms of antenna and reducing

side. Antenna heterogeneity includes variations in antenna

size and in connectivity (grouping) of antenna molecules.

Based on antenna size, PSII centers have been classified as

alpha (a), beta (b), and gamma (c) (Melis and Homann

1976). These differ from each other in life span and

number of associated chlorophylls. Reducing side hetero-

geneity is related to the ability to transfer an electron from

QA. Centers which are capable of transferring electrons

from QA to QB are termed QB reducing centers, while those

which are unable to do so are termed QB non-reducing

centers. Specific characteristics of PSII heterogeneity have

been reviewed in Jajoo (2013). Recent studies have shown

changes in PSII heterogeneity under high temperature

(Mathur et al. 2011b), high salt (Mehta et al. 2010a), and

some pollutants like polycyclic aromatic hydrocarbons

(PAH) (Tomar and Jajoo 2013, 2014). Changes may relate

to the number of active/inactive reaction centers,

Fig. 1 A typical Chlorophyll a polyphasic fluorescence curve,

exhibited by plants (main plot). The transient is plotted on a

logarithmic time scale from 10 ls to 600 s. The same curve plotted in

regular time scale is shown in upper insertion (left). Initial part of

OJIP transient (0–30 ms) plotted on regular time scale is shown in

second insertion (bottom). The marks refer to the selected time points

used by the JIP-test for the calculation of structural and functional

parameters. The signals are the fluorescence intensity Fo (at 30 ls);

the fluorescence intensity FK (at 300 ls); the fluorescence intensities

FJ (at 2 ms) and FI (at 30 ms); the maximal fluorescence intensity,

FP = FM (at time denoted as tFM). Usually, for analysis of fluores-

cence transient, the record is limited to 1 s, creating typical OJIP-

polyphasic fluorescence rise
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interconversion of active alpha centers into inactive beta

and gamma centers, and increases in the number of QB

non-reducing centers under various stress conditions.

Chlorophyll fluorescence kinetic parameters

in response to various abiotic stresses

In the following sections, we review the evidence that ChlF

kinetics may serve as an useful indicator of the negative

impacts of climate change and human activities, such as

high and low temperature, drought, salinity, nutrient defi-

ciencies, and heavy metals.

Temperature effects

Climate change is likely to increase heat stress in plants,

limiting productivity and biomass production. Photosyn-

thesis is the most sensitive of plant cell processes to high

temperatures (Sharkey and Schrader 2006), which cause

changes in the reduction–oxidation properties of PSII

acceptors and reduce the efficiency of photosynthetic

electron transport in both photosystems (Mathur et al.

2014).

Heat stress affects the values of ChlF parameters

(Fig. 2a). For example, in response to high temperature

stress apples Malus x domestica Borkh reduced both the

ratio of reduced acceptors (plastoquinone) QA
- to RC and

the ratio of reduced acceptors (plastoquinone) QB
- to QA

-.

There was also a decrease in the maximum quantum yield

of PSII and an increase in the minimal fluorescence value

(Chen et al. 2009; Brestic et al. 2013). High temperature

stress also influences the shape of the O–J–I–P curve,

decreasing FM and increasing Fo. The increase in Fo may

be due to the release of LHC II from the PSII complex,

inactivation of PSII photochemical reaction or an inhibition

of electron flow due to the reduced transfer of QA to QB

(Mathur et al. 2011a). For example, the increase of Fo
observed in spinach and rice has been attributed to the

irreversible dissociation of LHC II from the PSII complex

and partly reversible inactivation of PSII (Yamane et al.

1997). The decrease in the fluorescence FM level may be

related to denaturation of chlorophyll-proteins (Yamane

et al. 1997).

The K peak (at 300 ls) is a well-documented symptom

of heat stress, and is thought to indicate the separation of

the OEC complex and electron transport between pheo-

phytin and primary electron acceptor QA (Strasser et al.

2000; Lazár 2006). In wheat, a treatment at 35 �C had no

affect on photosynthetic efficiency, while exposure to

45 �C caused irreversible damage to the OEC (Schreiber

et al. 2012). The direct cause of the ChlF curve peak (K) is

the outflow of electrons from P680 to PSII acceptors,

which over-compensates the inflow of electrons from the

donor side of PSII to P680. The K peak is also affected by

changes in the energetic relationships between photosys-

tems II. An increase in the FK/FJ ratio (Srivastava and

Strasser 1995) indicates that the heat stress is inhibiting the

donation of electrons by the OEC.

The fast ChlF technique also represents a useful tool to

monitor PSII thermostability. The most efficient approach

is to estimate the critical temperature, i.e., the threshold

level above which there is a sharp increase/decrease of the

observed parameter (Brestic and Zivcak 2013). Some

genotypes can serve as donors of enhanced heat tolerance

in crop breeding programs. For example, the response of

heat-treated common bean (Phaseolus vulgaris L.) lines

and their recovery were monitored by changes in ChlF

induction and analyzed by means of the JIP-test (Stefanov

et al. 2011). PSII thermostability of 30 genotypes of Winter

wheat plants (Triticum aestivum L.) with different geo-

graphic origins were identified using the fast ChlF kinetics

(Brestic et al. 2012). ChlF has also been shown to be a

more effective than conventional methods (e.g., harvest

index, grain filling, etc.) for screening genotypes of durum

wheat (Gautum et al. 2014).

In certain latitudes, low temperatures are a major factor

limiting crop yields (Yang et al. 2009). In the northern

hemisphere, low temperatures during the winter and early

spring are usually followed by intense PAR. These condi-

tions can cause degradation of the thylakoid structure and

distortion in light-dependent photosynthetic reactions

(Suzuki et al. 2011). Cold stress also affects ChlF param-

eters (Fig. 2b). For example, a decrease was observed in

chlorophyll content, OEC efficiency on the donor side of

PSII, photochemical quenching, and efficiency of open

PSII reaction centers for bitter melon plants (Momordica

charantia L.) exposed to cold stress (Yang et al. 2009).

Some plant species are known for their tolerance to low

temperatures, showing less photoinhibition of PSII. For

example, under cold stress pea plants show only small

modifications in ChlF parameters (Strauss et al. 2006; Streb

et al. 2008).

Drought stress

Drought stress effects on photosynthetic apparatus are well

known. They typically start with mostly stomatal effects at

moderate drought intensity, and culminate in metabolic and

structural changes caused by severe or long-lasting drought

stress (Jedmowski et al. 2013). This final changes are also

associated with enhancement of photoprotective and

antioxidant functions and pathways (Chaves et al. 2009).

PSII has high resistance to water deficit (compared to PSI)

and negative impacts therefore only occur under conditions

of extreme drought (Lauriano et al. 2006).
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ChlF measurements indicate enhanced protection of PSII

and PSI photochemistry under drought conditions by

adjusting the energy distribution between photosystems and

by activating alternative electron sinks (Zivcak et al. 2013).

Drought stress may enhance the resistance of PSII to heat

stress as shown by the disappearance of the K-band from the

OJIP transient (see Fig. 2c and Oukarroum et al. 2012).

The ChlF method is potentially useful for screening

genotypes for drought tolerance (Guha et al. 2013). The

fluorescence rise during the first 2–3 ms is related to pri-

mary photochemistry and it has been suggested that stim-

ulated L- and K-bands can be used as tools for evaluating

potential to cope with (and recover from) drought stress

(Oukarroum et al. 2007). The L-band is influenced by the

excitation energy transfer between PSII units, commonly

denoted as connectivity or grouping (Strasser and Stirbet

1998).This can be influenced composition of PSII antennae

that have been changed due to mutations (Brestic et al.

2014) or environmental conditions (Zivcak et al. 2014a).

The K-band has been associated with a dissociation of the

oxygen-evolving complex (OEC) (Guissé et al. 1995). The

measurement of OLKJIP fluorescence transients and their

analysis using the JIP-test might therefore be used as

indicators for drought stress tolerance and physiological

disturbances before the appearance of visible signs of

drought stress.

The most widely used parameter from the ChlF OJIP

transient is the performance index (PI), which provides

Fig. 2 The O(K)JIP-transients of chlorophyll fluorescence in wheat

(Triticum sp. L.) plant samples exposed to different stress conditions

compared to non-stressed plants. The insertions show the changes of

amplitude of relative variable fluorescence in O–J phase (DVOJ), J–I

phase (DVJI), I–P phase (DVIP) and of the ratio of variable

fluorescence in time 0.3 ms (VK/VJ) to variable fluorescence in time

2 ms (VJ) as an indicator of the PSII donor side limitation (K-band).

Individual graphs present comparisons of records in non-stressed

plants (control, C) of a exposed to heat stress (8 h exposed to high

temperature in moderate actinic light, the leaf temperature

was *40 �C); b exposed to long-lasting suboptimal low temperature

(10 days at 10/6 �C day/night); c exposed to severe drought stress

(12th day after withholding of irrigation, leaf relative water con-

tent *60 %); d exposed to salt (NaCl) stress; e plants cultivated at

low soil nitrogen content (low nitrogen, LN); and f exposed to lead

(Pb). Data were provided by the authors of this review
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quantitative information about the general state of plants

and their vitality. PI is the product of three independent

characteristics: the concentration of reaction centers per

chlorophyll, a parameter related to primary photochemistry

and a parameter related to electron transport (Strasser et al.

2004). PI is therefore sensitive to changes in either antenna

properties, trapping efficiency or electron transport beyond

QA. For example, the PI of winter wheat decreased during

prolonged post-anthesis drought stress. Moreover, the

drought tolerance of wheat genotypes estimated from PI

values recorded in drought stress also correlated well with

the drought tolerance assessed by grain yield (Zivcak et al.

2008). PI is closely related to the drought factor index

(DFI), which represents the relative drought-induced

reduction of PI during a freely defined time of drought

stress. A DFI approach was used by Strauss et al. (2006) to

detect dark chilling tolerance in soybean genotypes. DFI

has also been used to rank drought stress tolerance in 10

barley varieties (Oukarroum et al. 2007) and 21 mutant

germplasms of sesame (Boureima et al. 2012). The most

tolerant and the most sensitive races of barley and Sorghum

bicolor from Egypt were identified using the PI parameter

and the ChlF fast induction curve (Jedmowski et al. 2013).

These studies demonstrate that drought-tolerant and

drought-sensitive cultivars can be differentiated at the level

of PSII. An increase of ABS/RC ratio under drought stress

has also been observed (Van Heerden et al. 2007; Gomes

et al. 2012), possibly due to inactivation of some PSII RCs

or an increase in antenna size.

Drought stress can also affect the relative amplitude of

the I–P phase from OJIP curve. The I–P phase has been

recorded as the slowest phase of the fluorescence rise

(approximately 30–200 ms) and was parallel the re-re-

duction of plastocyanin PC? and P700
? in PSI (Schreiber

et al. 1989; Schansker et al. 2003). The I–P phase seems to

be related to the content of PSI reaction centers (Ceppi

et al. 2012) or availability of linear electron transport as

determined by 820-nm transmission measurements (Zivcak

et al. 2014a). For example, the extent of the I–P loss in

barley varieties depends on their drought tolerance

(Oukarroum et al. 2009; Ceppi et al. 2012). ChlF is emitted

following a dark-to-light transition of a photosynthetic

sample, while delayed fluorescence emission (DF) occurs

during light-to-dark transitions (Goltsev et al. 2009;

Strasser et al. 2010; Kalaji et al. 2012). DF is thought to

reflect the recombination (in the dark) between the reduced

primary electron acceptor QA
- and the oxidized donor

(P680?) of PSII that are formed after light-induced charge

separation. The shape of the DF induction curve depends

on the sample type and its physiological state. Simultane-

ous measurements of Chl a fluorescence and DF have

recently been developed to obtain rate constants for dif-

ferent photosynthetic reactions (Strasser et al. 2010). Using

this technique, Goltsev et al. (2012) observed that reoxi-

dation of QA
- was inhibited during drought stress and that

quantum yields of photoinduced electron transport in PSII

reaction center to QA were suppressed and that the fast

phase of photoinduced kinetics of the modulated reflection

signal was reduced.

Salinity stress

Plant responses to salinity stress are determined by many

aspects, such as the expression of specific genes, plant

development stage, and glycine betaine accumulation

which protects the photosynthetic apparatus by stabilizing

the external proteins of the PSII complex (Murata et al.

1992). Salinity stress disrupts the electron transport from

the RCs to the plastoquinone pool (Strasser et al. 2000; and

Fig. 2d). Schreiber et al. (1994) identified the OEC as one

of the most sensitive components in the photosynthetic

electron transport chain. Its reduced performance is usually

caused by an electron transport disorder. Modifications can

also be observed in ChlF parameters and PSII functioning.

Under high salinity conditions, electron trapping in PSII

reaction center becomes less efficient due to the dissocia-

tion of LHCII and PSII (Havaux 1993). A decrease in

maximum quantum yield of PSII and an increase in non-

photochemical quenching have been recorded in a number

of species, including barley (Kalaji and Rutkowska 2004),

cultivated tobacco Nicotiana tobacum L. (Yang et al.

2008), and even among certain halophytes, such as Sar-

cocornia fruticosa L. Moreover, in tomatoes and cucumber

Cucumis sativus L. seedlings the following parameters

were reduced during salinity stress: PSII efficiency in light,

electron transport chain efficiency, and the efficiency of

PSII open reaction centers in light (He et al. 2009; Zhang

and Sharkey 2009). The damage caused by salinity stress in

wheat was more prominent at the donor side rather than the

acceptor side of PSII, and this damage was fully reversible

(*100 %) at the acceptor side of PSII, while recovery of

the donor side was less than 85 % (Mehta et al. 2010b).

The osmotic and ionic effects of salinity stress have also

been differentiated using ChlF measurements (Singh-To-

mar et al. 2012).

Nutrient deficiency stress

Deficiency in specific nutrients (N, P, K, Ca, Mg, S, or Fe)

disrupts the functioning of the photosynthetic apparatus,

decreasing PSII photochemical efficiency and modifying

the values of ChlF parameters (Smethurst et al. 2005).

Nitrogen (N) accessibility is the key factor limiting the

growth of plants, being a component of all proteins and

nucleic acids and other organic compounds. N deficiency

modifies thylakoid membranes and disrupts their
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functioning (Fig. 2e), leading to acceleration of chloroplast

aging and plastoglobule formation (Wu et al. 2006).

Nitrogen is also an important element in RuBisCO photo-

synthetic complexes, the Calvin–Benson cycle enzymes,

chlorophyll, and carotenoids (Correia et al. 2005). Nitrogen

deficiency contributes to reductions in transpiration,

stomatal conductance, the chlorophyll and carotenoids

content, and the concentration of soluble sugars (Huang

et al. 2004). Insufficient nitrogen uptake also reduces the

electron acceptor pool in PSII and decreases RuBisCO and

phosphoenolpyruvate carboxylase (PEPCase) activity

(Correia et al. 2005).

JIP-test analyses have been applied several times in

studies dealing with nitrogen deficiency and the effects of

poor nitrogen supply on PSII has been well described

(Redillas et al. 2011, Li et al. 2012). Specifically, N defi-

ciency led to a significant decrease of the density of reac-

tion centers (Dudeja and Chaudhary 2005). Conversely, the

positive effects of higher nitrogen treatments on PI values

have been documented in soybean (van Heerden et al.

2004), maize (Li et al. 2012), and wheat (Zivcak et al.

2014b).

Phosphorus (P) is also essential for plant growth and

development. Major deficits cause modifications in grain

and thylakoid structure and in light-harvesting complexes

absorbing PAR, thereby reducing PSII activity (Foyer and

Spencer 1986). P deficiency also has a negative impact on

NADPH regeneration, reduces the quantum yield and car-

boxylic efficiency of photosynthesis and the electron

transport efficiency (Wu et al. 2006). The JIP-test has been

successfully used to estimate the activity/efficiency of PSII

in plants exposed to phosphorus deficiency stress (Kruger

et al. 1997; Tsimilli-Michael and Strasser 2008). Indeed,

various studies have demonstrated a correlation between

JIP-test parameters and gas exchange orplant growth

parameters (Strasser et al. 2000).

Potassium (K) plays a key role in cellular osmoregula-

tion: its ions are necessary to retain the pH gradient across

the thylakoid membrane (Rampino et al. 2006). P defi-

ciency increases stomatal conductance resistance, limiting

carbon dioxide diffusion through the stomata. In photo-

synthesis, potassium’s role in the activation of numerous

enzymes and in ATP synthesis is probably much more

significant than its role in controlling stomatal functioning.

However, little is known about the impact of P deficiency

on photosynthetic apparatus efficiency and PSII function-

ing. Nevertheless, a decrease in values of some photosyn-

thetic parameters, such as electron transport efficiency and

maximum quantum yield of PSII, has been observed under

P deficiency (Schweiger et al. 1996).

There are numerous studies that have used prompt ChlF

parameters to analyze the effects on photochemical func-

tions of other mineral deficiencies, such as calcium (Liu

et al. 2009; Lauriano et al. 2006), magnesium (Smethurst

et al. 2005), and iron (Molassiotis et al. 2006). As many

nutrients have specific effects on PSII photochemistry, the

question here is whether it is possible to identify nutrient

deficiencies using chlorophyll fluorescence kinetics.

Although this issue remains open, Kalaji et al. (2014a, b)

were able to recognize deficiencies of the main nutrients in

tomato using principal component analysis of data derived

from prompt ChlF analysis.

Heavy metal stress

High levels of heavy metals disrupt the photosynthesis

process, but the impact of particular heavy metal ions may

be species specific (Antosiewicz 2005; Mishra and Dubey

2005). Photosystem I (PSI) is considered more tolerant of

heavy metal impact than PSII (Romanowska et al. 2006;

Tuba et al. 2010).

Cadmium (Cd) is one of the most toxic heavy metals

and can accumulate in living organisms. Sources of Cd in

the environment include phosphate fertilizers and industrial

waste products (Romanowska et al. 2006; Kalaji and

Łoboda 2007). However, Cd does not appear to affect the

amount of photosynthetic pigments: research on oilseed

rape Brassica napus L. seedlings grown in the presence of

Cd for 2 weeks revealed no significant changes to the

content of chlorophyll a, chlorophyll b, and carotenoids

(Janeczko et al. 2005). Nevertheless, Cd does have a neg-

ative impact on the photochemical efficiency of the pho-

tosynthetic process. PSII is more sensitive to its impact

than the PSI, indicating that Cd disrupts the PSII functions

with greater intensity (Mallick and Mohn 2003). Cd affects

both the donor and acceptor sides of PSII. On the donor

side, it inhibits the OEC, while on the acceptor site it

inhibits electron transport between QA
- and QB

- (Sig-

fridsson et al. 2004). Disruption of the electron transport

chain is due to degradation of the LHCII oligomer. The

presence of Cd ions also increases the heat dissipation of

excitation energy—defined as non-photochemical quench-

ing (Janeczko et al. 2005). A detailed analysis of ChlF

records from oilseed rape revealed that Cd caused a

decrease in specific energy flow per sample cross sec-

tion. Specifically, decreases in RC/CS, ETO/CS, and in the

activity of OEC were observed (Janeczko et al. 2005). FV/

FM appears to be the least sensitive Cd impact parameter,

indicating the maximum quantum yield of PSII. Plant

resistance to Cd is associated with the ability of ‘‘sweep-

ing’’ ROS, launching protective mechanisms such as acti-

vation of antioxidant enzymes, in particular peroxidase

(Ekmekçi et al. 2008), and the synthesis of antioxidant-

active compounds, e.g., glutathione (Streb et al. 2008).

Lead (Pb) also has harmful effects on plants. The main

sources of Pb in soil and plants are gas emissions from
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coal-fueled power plants, fuel gases, and industrial tech-

nology (Mishra and Dubey 2005). Pb causes modification

of respiration and increases ATP and the ATP/ADP ratio, a

result of mitochondrial production of this high-energy

compound (Romanowska et al. 2002). The decrease in the

efficiency of photosynthesis in plants under Pb stress is a

result of disruption of chloroplast ultrastructure and thy-

lakoid membrane lipid composition, and a reduction of

synthesis of chlorophyll and carotenoids (Sharma and

Dubey 2005). Pb interrupts the uptake of nutrients (such as

magnesium and iron) which, in turn, are essential for

photosynthesis. Moreover, it causes the dissociation of the

polypeptides OEC and the removal of Ca, Cl, and Mn

compounds from this complex (Sharma and Dubey 2005;

Romanowska et al. 2006). The intensities of fluorescence at

I and P steps in the O–J–I–P induction curve of plants

exposed to Pb stress decreased in relation to the control

(Fig. 2f), and a peak (K) occurred (Kalaji and Łoboda

2007). The appearance of this point on the ChlF induction

curve may be associated with electron transport inhibition

between the OEC and the PSII reaction center (Strasser

et al. 2004; Wu et al. 2008). Models of Pb stress suggest

that energy absorption and dissipation within the PSII are

high, while electron trapping and transport are reduced

(Lazár and Jablonský 2009).

Limitations of prompt ChlF methods

Mathematical models for analysis of prompt ChlF kinetics,

such as JIP-test, were developed exclusively as a bio-

physical tool for assessment of the cascade of chloroplast

redox reactions at microsecond or millisecond scales.

Nevertheless, even early studies generated interesting

empirical knowledge on the relationship between the

physiological status of the sample and the shape of fluo-

rescence transient (Strasser et al. 2000). There have sub-

sequently been many articles documenting the direct

relationship between the physiological status of leaves and

prompt ChlF transient. This reflects the fact (often

neglected) that the measured signal is the mixture of many

signals (see paragraph on PSII heterogeneity above) related

to processes associated with adjusting of structure and

function of photosynthetic apparatus to current metabolic

needs or environmental conditions. Thus, several factors

need to be carefully monitored to avoid erroneous and

over-simplified interpretations (Evans 2009).

The simplicity and rapidity of the method together with

misunderstanding of the basic principles has also led to

incorrect applications. The use of integrative parameters

such as performance index (PI) can be more useful than

complex of specific biophysical parameters, which require

a deeper understanding of photochemical processes to

interpret the data correctly. Pros and Cons of the analysis

of the OJIP transient by the so-called JIP-test are well

discussed by Stirbet and Govindjee (2011). To avoid the

mistakes in ChlF applications, all users are strongly

encouraged to be familiar with practical aspects of mea-

surements (reviewed in Kalaji et al. 2014a).

Concluding remarks

This review paper brings up-to-date information on the vast

opportunities of the application of chlorophyll fluorescence

technique in plant science, agricultural and ecological

research. Measured signals of chlorophyll fluorescence and

its statistical analysis (e.g., by JIP-test) can be used to

predict, monitor, and identify stress in plants. Conse-

quently, it could be applied in almost any ecological study

of plants as a bioindicator. The versatility of ChlF mea-

surements means they can be applied at the level of a single

plant to grassland, cropland, and even marine ecosystems.

However, this potential versatility emphasizes the need for

more practical and conceptual studies that would allow

scientists to draw reliable information about plant growth

and health. Such an approach would not only lead to

improvements in our understanding of the physiological

basis of photosynthesis but could also contribute to efforts

to understand and remediate the impacts of climate change

on crop yields and food security.
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