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Abstract 

 

The objective of this study was to evaluate chlorophyll a fluorescence as a stress indicator in Calophyllum 
brasiliense Cambess seedlings grown with different concentrations of abscisic acid (ABA) under intermittent 
water deficit condition: daily irrigation without ABA (I); daily irrigation + 10 μM ABA (I 10); daily irrigation 
+ 100 μM ABA (I 100); suspension of daily irrigation without ABA (SI); suspension of daily irrigation + 10 
μM ABA (SI 10) and  suspension of daily irrigation + 100 μM ABA (SI 100). The intermittent water deficit 
reduces water status and impairs the photochemical apparatus functioning and seedling quality. The 
fluorescence measurements helped identify the stress condition of water deficit in the cultivation of C. 
brasiliense and the beneficial effect of the application of 10 μM of ABA in minimizing stress and facilitating the 
recovery of seedlings after re-irrigation, while maintaining the integrity and function of the photosynthetic 
apparatus. 

 

Keywords: abscisic acid; Dickson quality; leaf area; photosystem II 
Abbreviations: ABA: Abscisic acid; ChlF-a: chlorophyll a fluorescence; DQI: Dickson Quality Index; 

END: end of the experiment; Fv/Fm: potential quantum efficiency of photosystem II; Fv/F0: efficiency of the 
effective photosystem in the conversion of absorbed energy; F0/Fm: basal quantum production of non-
photochemical processes in PSII; H: height; I: irrigation; IRGA: infrared gas analyzer; P0: Photosynthesis next 
zero; PS II: photosystem II; RDM: root dry mass; REC: recovery; SD: stem base diameter; SI: suspention of 
daily irrigation; SDM: shoot dry mass; TDM: total dry mass; T0: time zero – start; WRC: water relative 
content 

 
 
Introduction 

 
Calophyllum brasiliense Cambess. (Clusiaceae), commonly known as ‘guanandi’, is a tree species native 

to Central and South America. In Brazil, it is found in several states, especially in the Amazon region and in the 
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Cerrado, occurring spontaneously in alluvial soils with poor drainage, periodically flooded humid places, sandy 
to loamy soils, and acidic soils (pH 4.5-6.0). It has ornamental, apicultural, and medicinal applications, and also 
has potential application in recovery of degraded areas, thus, facilitating the establishment of other species. Its 
wood is used in the construction of furniture, frames, and ships among other applications (Carvalho, 2003; 
Kalil Filho et al., 2007).  

Although there are some reports on the water and light requirements of this species, no information is 
available on its potential to tolerate water deficit when induced by abscisic acid (ABA).This information is 
important to extend its use economically and ecologically, especially in the recovery of degraded areas subject 
to seasonal periods of water deficit. 

Depending on climatic conditions, plants undergo physiological, anatomical, and/or structural changes 
to adapt and acclimate to abiotic stresses. Responses to water deficit might include leaf area reduction, leaf 
abscission, stomatal closure, root growth, chlorophyll reduction, photosynthesis limitation, and seedling 
quality reduction among other responses (Scalon et al., 2011; Asharaf and Harris, 2013; Rosa et al., 2017; 
Nunes et al., 2017; Vieira et al., 2017; França et al., 2017; Campelo - unpublished data). 

The water deficit can change the organelle, pigment concentration and metabolites, as well as stomatal 
regulation (Mohammadi et al., 2015). The closing of stomatal is considered a primary mechanism to regulate 
the water content when the plant is under dry conditions (Kowitcharoen et al., 2015; Zhao et al., 2015).   

Studies suggest that stomatal closure under water deficit can occur under the influence of the water 
content of the soil and/or due to the hormonal levels of the plant (Damour et al., 2010; Brodribb and McAdam, 
2013). Thus, the exogenous application of some phytohormones like the ABA, you can enable the plant to 
adapt to hydric deficit, to mediate adaptive responses, stimulating the biosynthesis of proline and the 
translocation of photo assimilation (Sarafraz et al., 2014). 

The chlorophyll a fluorescence (ChlF-a) parameters can be used to understand the processes of 
tolerance and/or physiological plasticity to different water conditions (Kalaji et al., 2018), since, as the only 
photochemical functions reflect a reduction in the efficiency of plants to capture, transfer, and convert energy 
(Nesterenko et al., 2019) and the preservation of integrity or photo inhibitory damage in the reaction centers 
of PS II due to some stress factor.  

Considering the natural habitat of this species, we hypothesized that their seedlings are sensitive to water 
deficit, which can be minimized by the application of ABA, and that ChlF-a can indicate stress condition, 
which reflects on the quality of the seedling. Therefore, the aim of the present study was to evaluate ChlF-a as 
a stress indicator in C. brasiliense seedlings grown with different concentrations of ABA and under intermittent 
water deficit condition. 

 
 

Materials and Methods 

 
Plant and cultivation material 

The experiment was carried out in a protected environment where the seedlings of C. brasiliense 
Cambess were maintained under 30% shade and protected from rainfall using plastic cover. Seven-month old 
seedlings (after emergence), of mean height 14.32 cm and with 9.33 leaves, were grown in 7L pots. All the pots 
were irrigated at 70% water retention capacity (WRC) of the substrate until the characterization of the 
seedlings at time zero, with two seedlings per pot. 

The treatments included suspension of daily irrigation without the addition of ABA (SI 0 ABA), 
suspension of daily irrigation + 10 μM ABA (SI 10 ABA), suspension of daily irrigation + ABA 100 μM (SI 
100 ABA), daily irrigation without ABA (I 0 ABA), daily irrigation + 10 μM ABA (I 10 ABA),and daily 
irrigation + 100 μM ABA (I 100 ABA). Each treatment consisted of 22 pots, in addition to the six separate 
seedlings used for evaluation at time zero. 
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For the irrigation treatments, the seedlings were divided into two groups. The first group was irrigated 
daily throughout the experimental period and the soil was maintained at 70% WRC; this group was considered 
control based on the concentration of ABA. The second group was subjected to water deficit until the 
photosynthetic rate approached zero, considered the first zero photosynthesis (1st P0). 

From the 1st P0 period, all the pots were irrigated daily, and the plants were maintained at 70% WRC 
until recovery (REC), which was considered the stage when the seedlings under water deficit presented 
photosynthesis rates similar to those of irrigated seedlings (data not shown). After REC, another cycle of 
irrigation suspension was performed, and the seedlings were evaluated until the photosynthetic rate approached 
zero again, considered the second photosynthesis zero (2nd P0).To determine the 1st P0 and 2nd P0, 
photosynthesis was monitored every two days using portable LCIPro-SD (IRGA - Ifra Red Gas Analyzer) 
(ADC BioScientific Ltd model), considering favorable climatic conditions. Subsequently, the pots were 
irrigated again until REC, according to the previously established standard and final evaluation that occurred 
165 days after the start of the experiment (END). 

On day 17, based on the photosynthetic rate of approximately 2 μmolm-2s-1, according to pre-tests, ABA 
was applied at the predetermined concentrations. The results were evaluated at five periods: T0, time zero 
(beginning of experiment); 1st P0, first photosynthesis zero (day 23); 2nd P0, second photosynthesis zero (day 
82); REC, recovery (day 120); and END, final evaluation (day 165). The following parameters were evaluated: 

 
Evaluations 
Chlorophyll a fluorescence: Using a portable fluorometer (OS-30p;Opti-Sciences Chlorophyll 

Fluorometer, Hudson, NY, USA), we determined the potential quantum efficiency of photosystem II (PS II) 
(Fv/Fm), efficiency of the effective photosystem in the conversion of absorbed energy (Fv/F0), and basal 
quantum production of non-photochemical processes in PSII (F0/Fm). Fluorescence was determined between 
8:00 and 11:00 AM was the second pair of fully expanded leaves. To determine their fluorescence, the leaves 
were subjected to a 30 min period of dark adaptation using adaptive clips, to ensure that all the reaction centers 
in this leaf region were open, that is, complete oxidation of the photosynthetic system of electron transport. 

Relative water content (RWC): The relative water content in the leaves was determined using four 
leaves of each treatment, using the formula: RWC = 100 × (fresh mass-dry mass/saturated mass - dry mass). 
The leaves were collected between 7:00 and 10:00 AM and cut into discs of known area. After weighing the 
fresh mass, they were placed in Petri dishes with distilled water for 24 h for saturation. After weighing the 
saturated discs, they were dried for determine the dry mass. 

Chlorophyll index and leaf area: The chlorophyll index was determined using achlorophyll meter 
(SPAD 502; MINOLTA) (8:00 and 11:00 AM), and leaf area was determined using a leaf area integrator (Li 
3100, Area Meter). 

Dickson Quality Index (DQI): was calculated using the following equation DQI = TDM/ [(H/SD) + 
(SDM/RDM)], where TDM = total dry mass (g); SDM= shoot dry mass (g); RDM=root dry mass (g), H = 
height (cm) and SD = stem base diameter (mm) (Dickson 1960). 

 
Experimental design and statistical analysis 
The data were evaluated in a completely randomized design with subdivided plots, where the plots 

represented the form of irrigation (daily irrigation - I and irrigation suspension - SI); each subplot included the 
three concentrations of ABA (0, 10, and 100 μM ABA); and the sub-sub-plot included the five evaluation 
periods (T0, 1stP0, 2ndP0, REC, and END). The results were subjected to the analysis of variance (ANOVA), 
and when significant effect was observed according to the F test, the means of the plots were subjected to the t-
test of Bonferroni (p≤0.05) and the averages of subplots and sub-subplots were subjected to Tukey test 
(p≤0.05), using the SISVAR statistical program (Ferreira, 2014). 

Results  
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The Fv/Fm was lower in the seedlings under water deficit at the 1st P0 period in relation to that of the 
irrigated seedlings (Figure 1A). The non-irrigated seedlings treated with 10 μM ABA presented a higher Fv/Fm 
(0.797) than that of the seedlings subjected to other treatments, including SI 0 ABA (0.768) and SI 100 μM 
ABA (0.738), and was close to that of the control I 10 μM ABA treatment (0.801) (Figure 1B). The seedlings 
subjected to the SI 100 μM ABA treatments presented the lowest Fv/Fm values, especially at the 1st P0 period, 
with an average of < 0.75. 

 

 
Figure 1. Quantum efficiency of photosynthetic II (Fv/Fm) (A, B, and C) seedlings of Calophyllum 

brasiliense subjected to different water regimes (irrigated-I and suspension of irrigation-SI), ABA 
concentrations (0, 10 and 100 µM) and evaluation periods (time zero-T0, first and second photosynthesis 
near zero - 1stP0 and 2ndP0, recovery-REC and final evaluation END).Lowercase letters compare different 
periods of evaluation (A) and doses of ABA (B) in the same water regime (A, B) and different periods of 
evaluation in the sameABA concentration (C). Capital letters compare the same evaluation periods (A) 
and concentration of ABA (B) in different water regimes (A, B) and the same evaluation periods in 
different concentration of ABA (C) 
 
In the END evaluation, this ratio tended to increase in the seedlings of all ABA treatments, with 0.785, 

0.845, and 0.781, and reached a maximum of 0.896, 0.845 and 0.830, respectively. Furthermore, the Fv/Fm 
values of seedlings without ABA application varied significantly only at the END evaluation period (Figure 
1C). Stressed seedlings recovered to the values close to those of the control plants when treated with 10 μM 
ABA. The Fv/F0 was higher at T0 (4.47) that at the 1st and 2ndP0 (3.76 and 4.02, respectively) (Figure 2A). The 
Fv/F0 value of seedlings subjected to the SI 0 ABA treatment was lower (3.75) than that of the seedlings 
subjected tothe I 0 ABA control (4.65) (Figure 2B). Stressed seedlings recovered only after re-irrigation at the 
end of evaluation and when treated with ABA. 
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Figure 2. Efficiency of the effective photosystem in the conversion of absorbed energy (Fv/F0) (A, B) and 
basal quantum production of non-photochemical processes in PSII (F0/Fm) (C, D) seedlings of 
Calophyllum brasiliense subjected to different water regimes (irrigated-I and suspension of irrigation-SI), 
ABA concentrations (0, 10 and 100 µM) and evaluation times (time zero-T0, first and second 
photosynthesis near zero - 1st P0 and 2nd P0, recovery-REC and final evaluation END).Capital letters 
comparing the same dose of ABA in different water regimes (B, D). Lowercase letters compared different 
doses of the same ABA water regime (B, D). 
 
The F0/Fm was higher at the 1stP0 period, but not significantly different from that at the 2ndP0, REC, 

and END periods (Figure 2C). The seedlings subjected to the SI 0 ABA treatment presented the F0/Fm value 
(0.016) higher than that of the seedlings subjected to the SI10 ABA treatments (0.195), which reached values 
close to that of the seedlings subjected the I 0 ABA control treatment (0.192 higher) (Figure 2D). We also 
observed that the F0/Fm values of the seedlings subjected to the SI 0 ABA treatment was 0.031-times higher 
than those of the seedlings subjected to the I 0 ABA treatment. Stressed plants recovered to values close to that 
of control seedling after re-irrigation when treated with ABA. 

The RWC of the leaves decreased in the seedlings under water deficit with the lowest values in the 
seedlings subjected to the SI without ABA and SI 100 μM ABA treatments; however, the seedlings subjected 
to the 10μM ABA treatment presented values similar to those of the control (Figure 3A). There was a 
significant reduction in RWC at both 1st and 2nd P0 periods in the seedlings grown under water deficit with 
elevation after re-irrigation, although it did not reach the values close to those of control seedlings (Figure 3B).  

The leaf area of seedlings subjected to the 10 μM ABA treatment and those subjected to irrigation 
treatments increased and was maintained relatively high throughout the experiment (Figures 3C, D). The 
highest leaf area was observed in the END evaluation, and the irrigated seedlings (I) presented 105.35 cm² more 
area than that of the stressed seedlings (SI). Stressed seedlings did not recover the leaf area after re-irrigation, 
presenting significantly lower values than that of the control plants.  

The non-irrigated seedlings without ABA application presented relatively low chlorophyll index, which 
was low even at the 1st P0, 2nd P0, and REC periods, although the index increased, it did not reach the values to 
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that of the control seedlings. The application of ABA favored the maintenance of relatively high chlorophyll 
index when cultivated under water stress (Figures 4A, B, C). 

The lowest chlorophyll index was observed at the 1st P0 evaluation period in all the treatments with or 
without ABA application, especially in the stressed seedlings, which was 44.51% lower than that in the irrigated 
seedlings (Figures 4B, C). 

Dickson Quality Index (DQI) increased during the experiment under both irrigation conditions. In the 
irrigated treatments, the values were higher than the stressed seedlings with significant differences at 2ndP0, 
REC, and END evaluation periods. However, stressed seedlings even after rehydration did not attain values 
close to those of the control seedlings (Figure 4D), suggesting that the period might not have been enough for 
the seedlings to recover. 
 

 
Figure 3. Relative water content (RWC) (A-B) and leaf area (C-D) of Calophyllum brasiliense subjected 
to different water regimes (irrigated-I and suspension of irrigation-SI), ABA concentrations (0, 10 and 100 
µM) and evaluation times (time zero-T0, first and second photosynthesis near zero - 1st P0 and 2nd P0, 
recovery-REC and final evaluation END).Capital letters compare different water regimes in the same 
concentration of ABA (A) and evaluation period (B-D). Lowercase letters compare different 
concentrations of ABA (A) and evaluation periods (B-D) in the same water regimes. 
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Figure 4. Chlorophyll index (SPAD)(A-B-C) and Dickson quality index (DQI) (D) seedlings of C. 
brasiliense subjected to different water regimes (irrigated-I and suspension of irrigation-SI), ABA 
concentrations (0, 10 and 100 µM) and evaluation periods (time zero-T0, first and second photosynthesis 
near zero - 1st P0 and 2nd P0, recovery-REC and final evaluation END).Capital letters compare different 
water regimes (A) and evaluation periods (B, D) in the same concentration of ABA and the same evaluation 
periods and the same evaluation times in different concentration of ABA (C). Lowercase letters compare 
different concentrations of ABA (A) and evaluation periods (B, D) in the same water regimes and the same 
concentration of ABA in different evaluation periods (C) 
 

 
Discussion 

 
The intermittent water deficit reduces the water status of C. brasiliense, which impairs the functioning 

of the photochemical apparatus and the quality of the seedlings. After the reirrigation of the seedlings and until 
the end of the evaluations, most of the characteristics evaluated reached values close to that of the control 
seedlings, showing that the damage was not irreversible. However, for the quality of the seedlings and the leaf 
area, the period evaluated may not have been sufficient for the metabolic adjustment, which may have occurred 
after the second reirrigation, to reflect the growth and consequently the quality of the seedlings. 

In plants, water deficit affects water potential, nutritional status, leaf gas exchange, the efficiency of 
capture, transfer and conversion of energy by photosystems, mechanisms and physiological processes related to 
growth (Rohácek, 2002; Zanandrea et al., 2006; Campelo et al., 2015; Rosa et al., 2017; Nunes et al., 2017; 
França et al., 2017). 

Studies have provided reference values related to chlorophyll a fluorescence, which has been used to 
predict stress condition. The reference values for the Fv/Fm range between 0.750 and 0.850 (Baker and 
Rosenqvst, 2004). However, these values are subject to a range of variation that depends, on the species, its 
physiological mechanisms and growth (Li et al., 2004; Zanandrea et al., 2006). For the Fv/F0, the values that 
reflect the maintenance of good state of functionality of the PS II reaction centers are between 4 and 6; values 
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below this range indicate stress. This characteristic can be used as an indicator of the maximum efficiency of 
the photochemical process in PSII and/or potential photosynthetic activity. Similarly, the reference for the 
F0/Fm is between 0.14 and 0.20, suggesting that the increase in this ratio is indicative of stress (Rohácek, 2002). 

Thus, we can use these fluorescence characteristics as reliable parameters to evaluate the cultivation 
condition of C. brasiliense seedlings, which indicated the stress condition in the present study due to water 
deficit.This was reinforced by the changes in other characteristics evaluated, such as leaf area, chlorophyll index, 
and seedling quality. 

Under water deficit condition, C. brasiliense seedlings presented a reduction in the Fv/Fm, which is 
similar to the findings ofother studies with different species under water stress, such as Hancornia speciosa 

(Scalon et al., 2015), Swietenia macrophylla King, C. brasiliense and Handroanthus albus (Cham.) Mattos 
(Campelo et al., 2015), Hymeneae coubaril L. (Freitas et al., 2018). 

The higher Fv/Fm reduction observed at the 1stP0 period reinforces the stress condition of the non-
irrigated C. brasiliense seedlings. However, after re-irrigation, the Fv/Fm ratio was restored, and the ABA 
concentration in the END evaluation period was higher than 0.75, indicating that there were no permanent 
damages to the photosynthetic apparatus. 

The Fv/F0 ratio was also lower at the 1st P0 evaluation period. However, at the REC and END evaluation 
periods, the seedlings presented values close to those of the control, indicating the efficiency of C. brasiliense 
seedlings in tolerating stress. The F0/Fm ratio increased significantly in the 1st P0 period, and after re-irrigation, 
the tendency of reduction was observed. However, the values were maintained above the reference values and 
those of the control, except in the seedling treated with 10 µM ABA. 

Calophyllum brasiliense, S. macrophylla and H. albus showed higher sensitivity to water deficit than that 
of other species. This was reflected by higher reductions in gas exchange and the photochemical efficiency of 
PS II (Campelo et al., 2015). Freitas et al. (2018) working on H. coubaril with different concentrations of ABA, 
verified water stress attenuation, thus, a reduction in the functions of PS II. 

The seedlings of C. brasiliense under water deficit condition presented reduced leaf area in relation to 
the plants irrigated from the 1st P0; although the leaf area increased at the end of the experiment, the seedlings 
under stress did not reach values close to those of the control plants (I).  

Abscisic acid increased leaf area and did not cause leaf abscission in C. brasiliense seedlings. The ABA 
alters the growth and development of plants and regulates the adaptive responses under conditions of low water 
availability, such as opening and closure of the stomata, leaf abscission, and root growth (Zhu, 2002; Tardieu 
et al., 2010; Vieira et al., 2017). The leaf area of C. brasiliense seedlings treated with 10 μm ABA was higher 
than that of the seedlings not treated with ABA.  

Furthermore, Tardieu et al. (2010) suggest that the positive effect of ABA on leaf expansion is attributed 
to the increase in the hydraulic conductivity of the root system at the same time as it leads to the stomatal 
closure and consequently to the maintenance of leaf turgescence.  

In the present study, the plants under water deficit condition exhibited reduced leaf area at the 2nd P0 
period. Although the leaf area of seedlings under stress increased, which can be attributed to the natural growth 
of the plant, it did not attain the control values. The reduction in the leaf area of woody plants as a response to 
low soil water availability has been proven in several species. Similar results were observed for Guazuma 

ulmifolia (Scalon et al., 2011) and Vatairea macrocarpa (Benth.) Ducke (Vieira et al., 2017). 
The chlorophyll index varied according to the treatments, however, stressed seedlings treated with 10 

μM ABA maintained higher SPAD index in relation to that of the seedlings subjected to other treatments 
under stress, observing also hormonal action between the evaluation periods. The 1st P0 was the time that 
presented the lowest chlorophyll index in all the treatments with or without ABA application. At the dose of 
10 μM ABA, the values were higher than that of the treatment without ABA at the 2nd P0 and REC periods. 
At the other periods of evaluation, there was an increase in the SPAD index; however, they did not attain the 
control values. 



Reis LC et al. (2020). Not Bot Horti Agrobo 48(1):210-220. 

218 

Generally, plants under water stress present reduced photosynthetic pigment content due to oxidative 
damages, thus affecting photosynthesis (Asharaf and Harris, 2013) and consequently the production of dry 
mass and leaf area expansion, which reflected the reduction of DQI, to C. brasiliense seedlings. 

Seedlings ofHymenaea coubaril treated with 10 μM ABA both in the photosynthesis close to zero and 
in the recovery period, presented SPAD index close to that of the control seedlings. However, chlorophyll index 
values showed reduced for plants treated with 100 μM ABA, independent of water availability and the DQI 
did not differ significantly among the different treatments throughout the experimental period (Freitas et al., 
2018). 

Under water deficit condition, Schinus terebinthifolius showed reduced chlorophyll index (SPAD) when 
the seedlings reached almost zero photosynthesis (1st P0) and did not recover after irrigation (Nunes et al., 
2017). Furthermore, Copaifera langsdorffii seedlings showed the lowest SPAD index at 25% and 100% FC 
(Rosa et al., 2017). Other species such as Khaya ivorensis, Calophyllum brasiliense, Astronium fraxinifolium, 
Handroanthus albus, and Simarouba amara also presented a reduction in chlorophyll content due to water 
deficit (Campelo - unpublished data). 

Dickson quality index of C. brasiliense seedlings under water deficit condition at T0 and 1st P0 periods 
did not change significantly from that of the seedlings subjected to irrigation treatments. At the other 
evaluation periods, the seedlings under stress presented lower DQI, which might be due to lower biomass 
production for growth and target metabolism for defense mechanisms, such as increased enzyme activity (data 
not shown). Dickson Quality Index indicates robustness of seedlings; the higher the value, the better the quality 
(Moraes et al., 2012; Gordin et al., 2016). 

Schinus terebinthifolius at different irrigation depths (8, 10, 12, and 14 mm) also showed lower DQI 
when they received the lowest amount of water (Moraes et al., 2012). Similar results were observed in 
Hancornia speciosa seedlings when grown at 25%, 50%, 75% and 100% substrate water retention capacity, they 
presented lower DQI at 25% and 50% RWC (Gordin et al., 2016). As stressed seedlings, even after rehydration, 
did not attain quality indexes similar to those of control seedlings, we believe that the period might not have 
been sufficient for them to recover. 

In natural habitat, C. brasiliense is found in phytophysiognomy that present hyper seasonality, that is, 
dry and rainy seasons throughout the year, causing oscillations in the soil water status (Souza et al., 2018), 
causing the species to grow plants subjected to the water deficit condition at certain periods. Under reduced 
soil water availability (dry season - 1st P0 and 2nd P0), C. brasiliense seedlings reduced the efficiency of activities 
in PSII, indicating stress conditions for maintenance of metabolic processes, as well as physiological plasticity 
by reversing photochemical damage, at the end of evaluation period.  

The application of ABA in adequate amounts is a practice that substantially contributed to the 
mitigation of photochemical damage, maintaining the integrity of photosynthetic apparatus until the rainy 
season, characterized by re-irrigation, ensuring the development of seedlings and restoration of ecosystem 
services. Thus, study of plant photochemical responses to environmental variants contributes understanding 
of processes resulting from PSII under adverse conditions, aiming at the in situ and ex situ conservation. 

 
 

Conclusions 

 
The fluorescence measurements helped identify the stress condition of water deficit in the cultivation 

of C. brasiliense and the beneficial effect of the application of 10 μM ABA in minimizing stress and in 
facilitating the recovery of seedlings after re-irrigation, while, maintaining the integrity and function of the 
photosynthetic apparatus.  
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