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Chloroplast genome analyses and genomic
resource development for epilithic sister
genera Oresitrophe and Mukdenia
(Saxifragaceae), using genome
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Abstract

Background: Epilithic sister genera Oresitrophe and Mukdenia (Saxifragaceae) have an epilithic habitat (rocky slopes)

and a parapatric distribution in East Asia, which makes them an ideal model for a more comprehensive

understanding of the demographic and divergence history and the influence of climate changes in East Asia.

However, the genetic background and resources for these two genera are scarce.

Results: The complete chloroplast (cp) genomes of two Oresitrophe rupifraga and one Mukdenia rossii individuals

were reconstructed and comparative analyses were conducted to examine the evolutionary pattern of chloroplast

genomes in Saxifragaceae. The cp genomes ranged from 156,738 bp to 156,960 bp in length and had a typical

quadripartite structure with a conserved genome arrangement. Comparative analysis revealed the intron of rpl2 has

been lost in Heuchera parviflora, Tiarella polyphylla, M. rossii and O. rupifraga but presents in the reference genome

of Penthorum chinense. Seven cp hotspot regions (trnH-psbA, trnR-atpA, atpI-rps2, rps2-rpoC2, petN-psbM, rps4-trnT

and rpl33-rps18) were identified between Oresitrophe and Mukdenia, while four hotspots (trnQ-psbK, trnR-atpA,

trnS-psbZ and rpl33-rps18) were identified within Oresitrophe. In addition, 24 polymorphic cpSSR loci were found

between Oresitrophe and Mukdenia. Most importantly, we successfully developed 126 intergeneric polymorphic

gSSR markers between Oresitrophe and Mukdenia, as well as 452 intrageneric ones within Oresitrophe. Twelve

randomly selected intergeneric gSSRs have shown that these two genera exhibit a significant genetic structure.

Conclusions: In this study, we conducted genome skimming for Oresitrophe rupifraga and Mukdenia rossii. Using

these data, we were able to not only assemble their complete chloroplast genomes, but also develop abundant

genetic resources (cp hotspots, cpSSRs, polymorphic gSSRs). The genomic patterns and genetic resources presented

here will contribute to further studies on population genetics, phylogeny and conservation biology in Saxifragaceae.
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Background
Quaternary climatic oscillations accompanied by glacial

and inter-glacial cycles have affected the demographic

history of many temperate species, shaped their modern

distributions [1, 2], and also left a deep footprint on their

genetic structure [3, 4]. East Asia did not develop exten-

sive land ice sheets during the the last glacial maximum

(LGM) as Europe and eastern North America did [5].

However, the reduced temperatures (mean reduction =

7–10 °C) and increased aridity have still influenced the

distribution and evolution of many plant species in

China and neighboring areas [6, 7]. Initially, both

paleobotanical and modeling results have revealed that

temperate forests in the Northern Hemisphere would have

retreated southward (below 30 °N and reaching 25 °N) at

the LGM and subsequently recolonized the previously un-

inhabitable northern regions at the warm and wet inter-

glacial [8–10]. However, recent phylogeographic studies of

cool-temperate trees in continental East Asia suggested

that, during the LGM, cool-temperate deciduous tree spe-

cies could have persisted within their modern northern

range rather than moving to the south [11–13].

Until recently, there were few independent phylogeo-

graphic studies of temperate herbs in East Asia to test

these two hypotheses regarding how climatic oscillations

affected the range distributions. Oresitrophe Bunge and

Mukdenia Koidz, which are sister genera in Saxifraga-

ceae [14, 15], are both perennial herbs growing on cliffs

or rocks. Oresitrophe is monotypic, with the only species

O. rupifraga Bunge occurred in Central and North

China [16]; while Mukdenia has two species, M. rossii

(Oliv.) Koidz. and M. acanthifolia Nakai, which are dis-

tributed from Northeast China to Korean Peninsula [16].

These two sister genera have an epilithic habitat (rocky

slopes and ravines) and a parapatric distribution in East

Asia, and thus provide an ideal model for a more

comprehensive understanding of the demographic and

divergence history and the influence of climate changes

in East Asia. However, the current studies regarding

their genetic background and resources are scarce.

In the last decade, high-throughput sequencing, along

with bioinformatic tool development, has provided genomic

resources at reasonable prices and schedules [17], with the

increasing development of single nucleotide polymor-

phisms (SNPs) and SSRs in non-model species [18, 19]. In

Saxifragaceae, the chloroplast (cp) genome remained rela-

tively unexplored until the release of the only one cp gen-

ome of Heuchera parviflora (GenBank accession number:

KR478645), and these genomic databases were limited to

detect and develop the polymorphic markers. More plastid

genomes for Saxifragaceae will soon be published as part of

the 1KP project [20].

Chloroplast DNA (cpDNA), which is maternally inher-

ited in most angiosperm, usually have a circular structure

ranging from 115 to 165 kb in length and contain two

copies of a large inverted repeat (IR) region separated by a

large single copy (LSC) region and a small single copy

(SSC) region [21]. Chloroplast genomes are more con-

served than mitochondrial and nuclear genomes in term

of gene content, organization and structure [22], and the

nucleotide substitution rate of chloroplast genes is at an

intermediate level (higher than mitochondria but lower

than nuclear) [23]. Considering its small size, conserved

gene content and simple structure, the cp genome has

been generally applied for understanding the genome evo-

lution, underlying genome size variations, gene and intron

losses at higher taxonomic levels [24, 25]. In addition, the

non-recombinant nature of plastid genomes and their

(generally) uniparental inheritance, makes plastid data a

useful tool to trace demographic history, explore species

divergence, hybridization and identify species [26, 27].

Traditional screening of cp DNA regions have been

chosen mostly based on their efficacy in related taxa for

analysis. However, recent studies related on complete

chloroplast genome sequences have allowed a more

systematic approach to take into account the mutational

dynamics of cp genomes [28]. By this method, cp genomic

hotspots in terms of informative regions can be identified

for a specific plant genus, tribe or family [29, 30]. The

conventional technology of Sanger sequencing was time-

consuming, troublesome and difficult for reconstructing

complete cp genome [31]. In recent years, with the rapid

development of high-throughput sequencing technology,

especially like Illumina-based genome skimming, more

and more complete cp DNA sequences have been isolated

and assembled [25, 32]. Subsequently, this has been

proven to be a valid and cost-effective to acquire the

complete cp DNA and many assembled cp DNA of non-

model species have been obtained for the studies such as

differential gene expression, genetic markers development

[33] and phylogenomics analysis [34].

Simple sequence repeats (SSRs), also called microsatel-

lites containing repetitive sequences of 1–6 bp in length,

have been extensively found in both the coding and

non-coding sequences of prokaryotic and eukaryotic ge-

nomes [35, 36]. Currently, SSRs are broadly applied in

various areas of genetic studies including the evaluation

of genetic variation [37], construction of genetic linkage

maps [38], population genetics [39] and domestication

origin of fruit tree species [40, 41], due to their co-

dominant inheritance, high polymorphism, reproduci-

bility and transferability. The traditional methods for

screening of the polymorphic SSR (polySSR) markers

and their subsequent applicability to genetic researches

are extremely time-consuming and labor-intensive.

However, the recently increasing availability of genome

and transcriptome sequences with the decreasing costs

of next generation sequencing provides an excellent
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opportunity and information resources for large-scale

mining this type of molecular markers [42]. In recent

years, genomic SSR (gSSR) markers have attracted more

attention due to detect higher levels of polymorphism

relative to EST-SSRs, because intron or intergenic

sequences are more variable than extron sequences

[43, 44]. Moreover, a series of bioinformatics tools have

been developed for automated SSR discovery and marker

development, such as CandiSSR or GMATA, which

allowed users to identify putative polySSRs not only from

the transcriptome datasets but also from multiple assem-

bled genome sequences of a given species or genus along

with several comprehensive assessments [42, 45]. It would

help researchers to save significant time on marker-

screening experiments.

Here, two individuals of O. rupifraga and one individual

of M. rossii were selected for genome skimming. We spe-

cifically aimed to: (1) assemble, characterize and compare

the cp genomes among representatives of Saxifragaceae in

order to gain insights into evolutionary patterns within

the family; (2) develop and screen appropriate intergeneric

and intrageneric markers (cp hotspot regions, cpSSRs and

gSSRs) in Oresitrophe and Mukdenia.

Methods

Plant material, DNA extraction and sequencing

In order to screen polymorphic genomic resources

between Oresitrophe and Mukdenia and within Oresi-

trophe, we selected two individuals of O. rupifraga and

one individual of M. rossii with a long geographical dis-

tance, which were theoretically assumed to be more gen-

etically different. Fresh young leaves of two O. rupifraga

individuals (BJCP: LP161631–1, Muchang, Changping,

Beijing, China; HNYD: LP174479–2, Tianmenshan,

Zhangjiajie, Hunan, China; Additional file 1: Table S3)

and one M. rossii (LP174341–20, Taipinghu, Baishan,

Jilin, China; Additional file 1: Table S3) were sampled

and dried with silica gel. No specific permissions were

required for all the samples which are neither privately

owned nor protected and the field study did not involve

endangered or protected species. The total DNA was

extracted using Plant DNAzol Reagent (LifeFeng,

Shanghai) according to the manufacturer’s protocol from

approximately 2 mg of the silica-dried leaf tissue. The

high molecular weight DNA was sheared (yielding

≤800 bp fragments) and the quality of fragmentation

was checked on an Agilent Bioanalyzer 2100 (Agilent

Technologies). The short-insert (500 bp) paired-end

libraries preparation and sequencing were performed

by Beijing Genomics Institute (Shenzhen, China). The

three samples were pooled with others and run in a

single lane of an Illumina HiSeq 2500 with read

length of 150 bp.

Genome assembly and annotation

The raw data was filtered by quality with Phred score < 30

(0.001 probability error) and all remaining high quality

sequences were assembled into contigs using the CLC de

novo assembler beta 4.06 (CLC Inc., Rarhus, Denmark).

The parameters performed in CLC are as follows: deletion

and insertion costs of 3, mismatch cost of 2, minimum

contig length of 200, bubble size of 98, length fraction and

similarity fraction of 0.9. Then, all the contigs were aligned

to the reference chloroplast genome (Heuchera parviflora)

using BLAST (NCBI BLAST v2.2.31) search. The repre-

sentative chloroplast sequence contigs were ordered and

oriented according to the reference chloroplast genome,

and the draft chloroplast genome of O. rupifraga and M.

rossii were constructed by connecting overlapping

terminal sequences. Finally, clean reads were re-mapped

to the draft genome and yielded the complete chloroplast

genome sequences.

Initial gene annotation of the three chloroplast

genomes was performed through the online program

Dual Organellar Genome Annotator [46]. Putative starts,

stops, and intron positions were checked according to

comparisons with homologous genes of H. parviflora cp

genome using Geneious v9.0.5 software (Biomatters,

Auckland, New Zealand). The tRNA genes were verified

with tRNAscan-SE v1.21 [47] with default settings. The

circular gene maps were drawn by the OrganellarGen-

omeDRAW tool (OGDRAW) following by manual

modification [48].

Comparative chloroplast genomic analysis

Multiple complete chloroplast genomes of Saxifragaceae

provide an opportunity to compare the sequence

variation within the family. Therefore, we included the

publicly available chloroplast genome of Heuchera parvi-

flora, and Tiarella polyphylla (the chloroplast genome

has been sequenced by us and will be published soon

elsewhere), to compare the overall similarities among

different chloroplast genomes in Saxifragaceae, using

Penthorum chinense (Penthoraceae; JX436155) as the

reference based on the results of Dong et al. [24] and

Soltis et al. [49]. The sequence identity of the five

Saxifragaceae chloroplast genomes was plotted using the

mVISTA program with LAGAN mode [50]. The cp

DNA rearrangement analyses of five Saxifragaceae

chloroplast genomes were performed using Mauve

Alignment [51].

Repeat structure and sequence divergence analysis

We determined the four types of repeat sequences, in-

cluding direct (forward), inverted (palindromic), comple-

ment and reverse repeats in the Oresitrophe and

Mukdenia chloroplast genomes using the online REPuter

software with a minimum repeat size of 30 bp and
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sequence identity greater than 90% [52]. Chloroplast sim-

ple sequence repeats (cpSSRs) were detected using Msat-

commander v0.8.2 [53] with a threshold ten, five, five,

three, three, and three repeat units for mono-, di-, tri-,

tetra-, penta-, and hexanucleotide SSRs, respectively.

Multiple alignments of the three sequenced chloro-

plast genome sequences in this study were carried out

using MAFFT version 7.017 [54]. In order to screen vari-

able characters between Oresitrophe and Mukdenia, the

average number of nucleotide differences (K) and total

number of mutations (Eta) were determined to analyze

nucleotide diversity (Pi) using DnaSP v5.0 [55].

Polymorphic nucleotide SSR development and validation

Firstly, we removed the chloroplast and mitochondria

contigs from the assembled sequences using BLAST

(NCBI BLAST v2.2.31) search with the sequence of

chloroplast and mitochondria genome of H. parviflora

(KR478645 & KR559021) as reference. Then, we used

CandiSSR [42] to identify candidate polymorphic gSSRs

between Oresitrophe and Mukdenia, as well as within

Oresitrophe, based on multiple assembled sequences.

The parameters performed in CandiSSR are as follows:

the flanking sequence length of 100, blast evalue cutoff

of 1e-10, blast identity cutoff of 95, blast coverage cutoff

of 95. For each target SSRs, primers are automatically

designed in the pipeline based on the Primer3 package

[56, 57], and global similarities of the primer binding

regions is also provided.

Twelve developed intergeneric gSSR markers were

randomly selected to test the transferability on 32

individuals (four populations) of O. rupifraga and 15

individuals (two populations) of M. rossii. Standard

PCR amplifications were performed following the

conditions below: 94 °C for 1 min; 28 cycles of 94 °C

for 30 s, 50–59 °C for 30 s, and 72 °C for 30 s; a

final extension at 72 °C for 5 min. Amplification

products were checked on 2% agarose gel stained with

GeneGreen Nucleic Acid dye (TIANGEN, Beijing, China).

Reaction products were subsequently run on an ABI

PRISM 3730xl Genetic Analyzer (Applied Biosystems).

Genotypes were scored by using the software GeneMarker

v2.2.0 (SoftGenetics, LLC, State College, PA, USA). Gen-

etic diversity parameters, including the number of alleles,

observed and expected heterozygosity, and polymorphism

information content, were estimated using CERVUS v3.0

[58]. Deviations from Hardy-Weinberg equilibrium were

tested through GENEPOP v4.2 [59]. SSR genotypes’ as-

signment to different clusters was tested with STRUC-

TURE v2.3.3 [60], using 10 replicates of an admixture

model allowing for correlated allele frequencies with K

ranging from 1 to 10, a burn-in period of 100,000 itera-

tions and a post-burn-in period of 1,000,000 iterations,

following recommendations by Gilbert et al,. [61].

Results
Genome organization and features

We generated a total of 18,694,896, 15,247,794 and

14,404,890 paired-end (150 bp) clean reads for O. rupi-

fraga-BJCP, O. rupifraga-HNYD and M. rossii, respect-

ively. The de novo assembly generated 352,393 contigs

with an N50 length of 346 bp and a total length of 21.

69 Mb for O. rupifraga-BJCP, 382,827 contigs with an

N50 length of 460 bp and a total length of 18.46 Mb for

O. rupifraga-HNYD, and 352,181 contigs with an N50

length of 397 bp and a total length of 13.64 Mb for M.

rossii. Each draft chloroplast genome was generated

from a combined product of initial contigs (O. rupifraga-

BJCP: contigs 76, 98, 136, 412 and 1913; O. rupifraga-

HNYD: contigs 16, 70 and 131; M. rossii: contigs 4,

11 and 12), with no gaps and no Ns.

The complete chloroplast genomes of the three sam-

ples ranged narrowly from 156,738 bp in O. rupifraga-

HNYD to 156,960 bp in M. rossii (Fig. 1, Table 1). All

three chloroplast genomes shared the common feature

of comprising two copies of IR (25,507–25,519 bp) sepa-

rated by the LSC (87,496–87,604 bp) and SSC (18,222–

18,342 bp) regions. The overall GC content was 37.80%

for O. rupifraga and 37.70% for M. rossii, whereas the

GC content in the LSC, SSC and IR regions were 35.70–

35.80, 32.00–32.20 and 43.20%, respectively (Table 1).

The chloroplast genome sequences were deposited in

GenBank (accession numbers: MF774190 for O. rupi-

fraga-BJCP, MG470845 for O. rupifraga-HNYD, and

MG470844 for M. rossii).

The three chloroplast genomes encoded an identical set

of 131 genes, of which 113 were unique and 18 were du-

plicated in the IR regions (Tables 1 and 2). The 113 unique

genes contained 79 protein-coding genes, 30 tRNA genes,

and four rRNA genes. Coding regions, including protein-

coding genes, tRNA genes, and rRNA genes, account for

57.95–58.03% of the whole genome, and the remaining re-

gions were non-coding sequences, including inter-genic

spacers and introns. Among the 113 unique genes, 14

contain one intron (six tRNA genes and eight protein-

coding genes) and three (rps12, clpP, and ycf3) contain

two introns. The 5′-end exon of the rps12 gene is located

in the LSC region, and the intron and 3′-end exon of the

gene are situated in the IR region.

Genome comparison of Saxifragaceae

The five Saxifragaceae chloroplast genomes were rela-

tively conserved (Fig. 2), and no rearrangement occurred

in gene organization after verification (Fig. 3), but differ-

ences were still found in terms of genome size, intron

losses, and IR expansion and contraction. In addition,

the IR region is more conserved in these species than

the LSC and SSC regions, which is consistent with other

angiosperms [25, 62].
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Genome size

In terms of the chloroplast genome size observed among

the representative Saxifragaceae species, M. rossii and O.

rupifraga exhibited the similar genome size comparing

with the reference genome with ranging from 156,690 bp

to 156,960 bp, while H. parviflora and T. polyphylla had

the smaller chloroplast genome comparing with the others

(154,696 bp for H. parviflora and 154.850 bp for T.

polyphylla, respectively; Fig. 4).

Intron loss

The rps16 intron has been lost from the reference

genome of Penthorum chinense, although it is present in

H. parviflora, T. polyphylla, M. rossii and O. rupifraga.

a

c

b

Fig. 1 Chloroplast genome maps of Mukdenia and Oresitrophe: (a) M. rossii, (b) O. rupifraga-BJCP and (C) O. rupifraga-HNYD. Genes inside the

circle are transcribed clockwise, genes outside are transcribed counter-clockwise. The light gray inner circle corresponds to the AT content, the

dark gray to the GC content. Genes belonging to different functional groups are shown in different colors
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On the contrary, the rpl2 gene in the chloroplast

genomes of H. parviflora, T. polyphylla, M. rossii and

O. rupifraga have lost their only intron except for P.

chinense.

IR expansion and contraction

The expansion and contraction of the border regions be-

tween the two IR regions and the single-copy regions

will cause the genome size differences among plant

lineages. Therefore, we compared the exact IR border

positions and their adjacent genes between the five

Saxifragaceae chloroplast genomes and the reference

genome (Fig. 4). The genes ycf1-ndhF and rps19-rpl2-

trnH were located in the junctions of SSC/IR and LSC/

IR regions. The ycf1 gene spanned the SSC/IRA region

and the pseudogene fragment of ψycf1 varies from 1104

to 1330 bp. The ndhF gene is separated from ψycf1 by

spacers with 29 bp in O. rupifraga and 57 bp in M. rossii

respectively, but shares some nucleotides (from 4 to

30 bp) in other three species. The rps19 gene in H.

parviflora and T. polyphylla crossed the LSC/IRB region

with 62 bp located at the IRB region, and does not

extend to the IRB region in P. chinense, M. rossii and O.

rupifraga. The rpl2 gene is separated from the LSC/IRB

border by a spacer varies from 46 to 135 bp, as well as

the trnH gene is separated from the IRA/LSC border by

a spacer varies from 3 to 65 bp.

Repetitive sequences and hotspot regions in cp genomes

In the current study, the type, distribution and presence

of microsatellites were studied between the cp genomes

of O. rupifraga and M. rossii. A total of 58 perfect

microsatellites were identified in the O. rupifraga-BJCP

cp genome. Among them, 44 were located in the LSC

region, whereas 8 and 6 were found in the IR and SSC

regions, respectively. Moreover, 6 SSRs were found in

the protein-coding regions, 6 were in the introns and 46

were in intergenic spacers of the O. rupifraga-BJCP cp

genome (Fig. 5a). The distribution and type of microsa-

tellites of other two genomes (O. rupifraga-HNYD and

M. rossii) is shown in supplementary Additional file 2:

Figure S1. Among these SSRs, 43 are mononucleotides,

11 are dinucleotides, and 4 are tetranucleotides, tri-,

penta-, and hexanucleotides are not found in the cp

genomes of O. rupifraga and M. rossii (Fig. 5b).

In the chloroplast genome of O. rupifraga and M. rossii,

32 and 34 pairs of repeats (30 bp or longer) were detected

using the program REPuter (Kurtz and Schleiermacher,

1999). Among these repeat sequences, 15 and 17 are for-

ward repeats in O. rupifraga and M. rossii respectively,

and the rest of 17 are palindromic repeats in all the three

chloroplast genomes (Fig. 5c). In addition, 30–46 bp long

repeats occurred in the three chloroplast genomes, as well

as 60 bp, 61 bp, 62 and 79 bp long repeats are only

detected in O. rupifraga-HNYD, O. rupifraga-BJCP and

M. rossii respectively (Fig. 5d).

The coding genes, non-coding regions and intron

regions were comparing within Oresitrophe and between

Oresitrophe and Mukdenia divergence hotspots. We

generated 72 loci (20 coding genes, 40 inter-genic

spacers, and 12 intron regions) within Oresitrophe and

116 loci (47 coding genes, 53 inter-genic spacers, and 16

intron regions) between Oresitrophe and Mukdenia with

more than 200 bp in length and the nucleotide

Table 1 Summary of three chloroplast genomes sequenced in this study

Category O. rupifraga-BJCP O. rupifraga-HNYD Mukdenia rossii

Total cp DNA size (bp) 156,775 156,738 156,960

Length of large single copy (LSC) region (bp) 87,515 87,496 87,604

Length of inverted repeat (IR) region (bp) 25,519 25,509 25,507

Length of small single copy (SSC) region (bp) 18,222 18,224 8342

Coding size (bp) 90,954 90,954 90,954

Intron size (bp) 20,301 20,285 20,290

Spacer size (bp) 45,520 45,499 45,716

Total GC content (%) 37.80 37.80 37.70

GC content of LSC (%) 35.70 35.80 35.70

GC content of IR (%) 43.20 43.20 43.20

GC content of SSC (%) 32.20 32.20 32.00

Total number of genes 113 113 113

Number of protein encoding genes 79 79 79

Number of tRNA genes 30 30 30

Number of rRNA genes 4 4 4

Number of genes duplicated in IR 18 18 18
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variability (Pi) values calculated with the DnaSP v5.0

software. Among the values received from comparative

analysis, we found it is ranged from 0.0004 (ndhB gene)

to 0.0259 (trnR-atpA region) between Oresitrophe and

Mukdenia (Fig. 6a) and from 0.002 (ycf2 gene) to 0.0174

(rpl33-rps18 region) within Oresitrophe (Fig. 6b), and the

IR region is much more conserved than the LSC and

SSC regions. Seven of these variable loci (Pi > 0.009) in-

cluding trnH-psbA, trnR-atpA, atpI-rps2, rps2-rpoC2,

petN-psbM, rps4-trnT and rpl33-rps18, as well as four

variable loci (Pi > 0.006) including trnQ-psbK, trnR-

atpA, trnS-psbZ and rpl33-rps18, showed high levels of

intergeneric and intrageneric variation.

Polymorphic genomic SSRs development and validation

A total of 242 candidate polymorphic gSSRs were identi-

fied in both Oresitrophe and Mukdenia. After screening by

similarity < 90% (27) and no available primers designed

(89), we obtained 126 polymorphic gSSRs with the stand-

ard deviation ranged from 0.47 to 4.00 between the two

genera (Fig. 7a, Additional file 3: Table S1). Among them,

di-, tri-and tetranucleotides account for 77.0%, 22.2% and

0.79%, respectively. In addition, we also detected 691

candidate polymorphic gSSRs within Oresitrophe, after

removing the loci with the similarity < 90% (31) and no

available primers designed (208), we received 452 poly-

morphic gSSRs with the standard deviation ranged from

Table 2 Genes contained in chloroplast genomes (113 genes in total)

Category Group of gene Name of gene

Self-replication Ribosomal RNA genes rrn4.5a rrn5a rrn16a rrn23a

Transfer RNA genes trnA-UGCa*

trnF-GAA
trnH-GUG
trnL-CAAa

trnN-GUUa

trnR-UCU
trnT-GGU
trnW-CCA

trnC-GCA
trnfM-CAU
trnI-CAUa

trnL-UAA*

trnP-UGG
trnS-GCU
trnT-UGU
trnY-GUA

trnD-GUC
trnG-GCC*

trnI-GAUa*

trnL-UAG
trnQ-UUG
trnS-GGA
trnV-GACa

trnE-UUC
trnG-UCC
trnK-UUU*

trnM-CAU
trnR-ACGa

trnS-UGA
trnV-UAC*

Small subunit of ribosome rps2
rps8
rps15

rps3
rps11
rps16*

rps4
rps12a,b**

rps18

rps7a

rps14
rps19

Large subunit of ribosome rpl2a

rpl22
rpl36

rpl14
rpl23a

rpl16*

rpl32
rpl20
rpl33

RNA polymerase subunits rpoA rpoB rpoC1* rpoC2

Photosynthesis Subunits of photosystem I psaA
psaJ

psaB
ycf3**

psaC psaI

Subunits of photosystem II psbA
psbE
psbJ
psbN

psbB
psbF
psbK
psbT

psbC
psbH
psbL
psbZ

psbD
psbI
psbM

Subunits of cytochrome petA
petL

petB*

petN
petD* petG

Subunits of ATP synthase atpA
atpH

atpB
atpI

atpE atpF*

Large subunit of Rubisco rbcL

Subunits of NADH
Dehydrogenase

ndhA*

ndhE
ndhI

ndhBa*

ndhF
ndhJ

ndhC
ndhG
ndhK

ndhD
ndhH

Other gene Translational initiation factor infA

Maturase matK

Envelope membrane protein cemA

Subunit of acetyl-CoA accD

C-type cytochrome
synthesis gene

ccsA

Protease clpP**

Unknown function Conserved open reading frames ycf1a (part) ycf2a ycf4

aTwo gene copies in IRs; b gene divided into two independent transcription units; one and two asterisks indicate one- and two-intron containing genes, respectively
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0.50 to 5.50, and di-, tri-, tetra- and hexanucleotides ac-

count for 78.10%, 19.90%, 1.77% and 0.22%, respectively

(Fig. 7b, Additional file 4: Table S2).

To test the transferability of the developed markers,

we selected twelve pairs of candidate polySSRs

primers (Additional file 3: Table S1) and six populations

(Additional file 1: Table S3) including four populations for

O. rupifraga and two populations for M. rossii to detect the

effectiveness of primer amplification and to preliminarily

assess the genetic variation. Genetic diversity parameters

were calculated for two species (Table 3). The polymorph-

ism information content ranged from 0.030 to 0.778, the

number of alleles ranged from 2 to 11, and the observed

heterozygosity and expected heterozygosity varied from 0.

031 to 1.000 and 0.031 to 0.825, respectively. No significant

deviation from Hardy-Weinberg equilibrium (P < 0.001)

was observed for the selected 12 loci except OR242 and

OR41 in O. rupifraga group, which might be caused by

wahlund effect, inbreeding, null alleles and sampling effect.

In the STRUCTURE analysis, the true number of clus-

ters K in the data were difficult to determine following

Falush et al. [63], due to ln P(D) increased progressively

as K increased (Additional file 5: Figure S2). The ΔK

statistic of Evanno et al. [64], however, permitted detec-

tion of a rate change in ln P(D) corresponding to K = 2.

At K = 2, all the six populations were separated into two

clusters according to the different species (Fig. 8a).

Moreover, for K = 3, we found that four O. rupifraga

populations were further separated into two clusters,

with HBQL, TJLX and BJCP assigned into one cluster,

and HNYD into the second cluster (Fig. 8b).

Discussion
Chloroplast genome organization of Oresitrophe and

Mukdenia and genome evolution in Saxifragaceae

The availability of plastid genome sequences for most

major lineages of angiosperms has increased rapidly with

next generation sequencing (NGS) methods development

Fig. 2 Visualization of alignment of the five Saxifragaceae chloroplast genome sequences, with Penthorum chinense as the reference. The horizontal

axis indicates the coordinates within the chloroplast genome. The vertical scale indicates the percentage of identity, ranging from 50 to 100%.

Genome regions are color coded as protein coding, intron, mRNA, and conserved non-coding sequences (CNS)
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during the past decade. These data have provided many

new insights into angiosperm phylogenetic relationships

[25, 65], genomic rearrangements [66, 67], and genome-

wide patterns and rates of nucleotide substitutions

[68, 69]. In Saxifragaceae, the chloroplast genomes

remained relatively limited, with only one species

(Heuchera parviflora) was sequenced. In this study,

we assembled and annotated three complete chloro-

plast genomes including two of Oresitrophe rupifraga

and one of Mukdenia rossii. By comparing cp

genomes in Saxifragaceae, we were able to gain s

insights into evolutionary patterns of the family.

Fig. 3 MAUVE alignment of five Saxifragaceae chloroplast genomes. The Penthorum chinense genome is shown at top as the reference. Within

each of the alignment, local collinear blocks are represented by blocks of the same color connected by lines

Fig. 4 Comparison of the borders of large single-copy (LSC), small single-copy (SSC), and inverted repeat (IR) regions among the five Saxifragaceae

chloroplast genomes, with the Penthorum chinense genome is shown at top as the reference. The location of two parts of inverted repeat region

(IRA and IRB) was referred to Fig. 1
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Comparative analyses of three chloroplast genomes

sequenced in this study also showed highly conserved

structures and genes. The size of O. rupifraga-BJCP,

O. rupifraga-HNYD, and M. rossii ranged narrowly

from 156,738 bp to 156,960 bp with sharing the com-

mon feature of comprising two copies of IR separated

by the LSC and SSC regions. Most angiosperms

commonly encode 74 protein-coding genes, while an

additional five are present in only some species [70].

However, the three cp genomes contained 79 protein-

coding genes, 30 tRNA genes, and four rRNA genes,

which is similar to Heuchera parviflora and

Penthorum chinense. This might have been because

the genome shares its gene contents with the Saxifra-

gaceae family.

After comparing the cp genomes between four Saxifra-

gaceae species and the reference, we found the gene

content and genome structure were relatively conserved,

and no rearrangement occurred in gene organization,

but some differences were detected in terms of intron

losses and IR expansion and contraction. Two genes,

rpl2 and rps16, presented the intron loss phenomenon.

The rpl2 intron loss has been reported in some

Saxifragaceae genera, such as Saxifraga and Heuchera

[71]. This phenomenon was subsequently confirmed

in Heuchera sanguinea (HQ664603), but was absent

in H. micrantha (EF207446) and Saxifraga stolonifera

(EF207457). In this study, the rpl2 intron is lost in all

four representative species, suggesting that intron loss

in the rpl2 gene is not occasional in Saxifragaceae.

a b

c d

Fig. 5 The distribution, type, and presence of simple sequence repeats (SSRs) and analysis of repeated sequences in the cp genome of

Oresitrophe rupifraga and Mukdenia rossii: (a) Presence of SSRs in the different region of O. rupifraga-BJCP cp genome, (b) Presence of

polymers in the cp genome of O. rupifraga and M. rossii, (c) Frequency of repeat types, (d) Frequency of repeats by length
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The rps16 gene has lost its only intron in the chloro-

plast genome of Penthorum chinense, but present in

Oresitrophe rupifraga, Mukdenia rossii, Heuchera

parviflora and Tiarella polyphylla, which is similar to

those of the other published Saxifragales species [24].

Previously studies have reported the rps16 intron loss

is also detected in Trachelium (Campanulaceae) [67]

and Pelargonium (Geraniaceae) [72], we still deduced

this phenomenon is unusual in normal angiospermous

chloroplast genomes because the genome of Trache-

lium and Pelargonium have been extensively restruc-

tured. Moreover, the ycf15 gene, which displays a

small open reading frame (ORF) with potential func-

tion in tobacco [73], was pseudogenized in all five

representatives of Saxifragaceae. The infA gene, which

functions as a translation initiation factor [74] with

loss of it having independently experienced multiple times

during the evolution of land plants [70], appears in all of

the species in this study. Thus, we inferred that the pseu-

dogenization of ycf15 and attendant of infA are ancestral

condition in Saxifragaceae.

The border regions of LSC/IRB, IRB/SSC, SSC/IRA,

and IRA/LSC represent highly variable regions with

many nucleotide changes in cp genomes of closely re-

lated species [75]. Therefore, we compared the exact IR

border positions and their adjacent genes among the five

Saxifragaceae chloroplast genomes and the reference

genome. The result showed that T. polyphylla and H.

b

a

Fig. 6 Comparative analysis of the nucleotide variability (Pi) values between Mukdenia rossii and Oresitrophe rupifraga (a), and within O. rupifraga (b)
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parviflora have relatively similar boundary characteris-

tics with the rps19 gene locating at the junction of LSC/

IRB region of cp genome and the ndhF gene sharing

some nucleotides with the ycf1 pseudogene. Whereas M.

rossii and O. rupifraga presented similar boundary char-

acteristics with the rps19 gene does not extending to the

IRB region and the ndhF gene does not sharing any

nucleotides with the ycf1 pseudogene. The reference

genome of P. chinense showed a relatively independent

boundary feature comparing with the Saxifragaceae

species. In Saxifragaceae, we deduced that the species

with closer phylogenetic relationship will have more

similar boundary feature. However, due to limited spe-

cies were sampled, we need more chloroplast genome

sequences to test our hypothesis in the future.

Molecular markers development using genome skimming

Oresitrophe and Mukdenia provide an ideal model for a

more comprehensive understanding of the divergence

history and the influence of climate changes on

lithophytes in Northeast China and adjacent regions.

However, no genetic background and resources are avail-

able for these two genera. By analyzing genome skimming

ba

Fig. 7 The distribution of polymorphic genomic simple sequence repeats (gSSRs) between Mukdenia rossii and Oresitrophe rupifraga (a), and

within O. rupifraga (b)

Table 3 The genetic parameters (per locus) in Oresitrophe

rupifraga and Mukdenia rossii

Locus Oresitrophe rupifraga (N = 32) Mukdenia rossii (N = 15)

A HO HE PICa A HO HE PICa

OR133 8 0.594 0.800 0.754 6 0.467 0.761 0.696

OR242 2 1.000 0.508 0.375*** 2 0.867 0.517 0.375

OR9 5 0.375 0.328 0.300 7 0.733 0.818 0.763

OR103 2 0.563 0.411 0.323 3 0.933 0.549 0.421

OR107 6 0.469 0.643 0.566 8 0.800 0.807 0.749

OR127 3 0.094 0.272 0.240 5 0.733 0.634 0.553

OR148 8 0.563 0.743 0.691 7 0.800 0.825 0.772

OR179 11 0.750 0.813 0.778 7 0.933 0.752 0.691

OR212 4 0.188 0.345 0.307 3 0.467 0.559 0.466

OR224 7 0.344 0.568 0.534 4 0.600 0.522 0.458

OR41 7 0.344 0.675 0.624*** 5 0.600 0.641 0.580

OR131 2 0.031 0.031 0.030 4 0.400 0.531 0.475

Note: A = number of alleles per locus; HE= expected heterozygosity; HO = observed

heterozygosity; N= number of individuals sampled; PIC= polymorphism

information content
aSignificant deviations from Hardy-Weinberg equilibrium at *P < 0.05, **P < 0.01,
***P < 0.001, respectively
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data of Oresitrophe and Mukdenia, here we developed

abundant genetic resources, including cp hotspot regions,

cpSSRs and polymorphic gSSRs.

Mutation events in the chloroplast genome are usually

clustered in “hotspots”, and these mutational dynamics

created highly variable regions dispersed throughout the

chloroplast genomes [76, 77]. We identified seven re-

gions including trnH-psbA, trnR-atpA, atpI-rps2, rps2-

rpoC2, petN-psbM, rps4-trnT and rpl33-rps18 between

Oresitrophe and Mukdenia, as well as four highly vari-

able regions including trnQ-psbK, trnR-atpA, trnS-psbZ

and rpl33-rps18 within Oresitrophe, which enabled the

development of novel cp markers for genetic studies in

these two genera. As our results showed, all of them oc-

curred in the LSC region but not in SSC or IR regions.

Among these regions, the highly variable regions trnH-

psbA, atpI-rps2, petN-psbM and rpl33-rps18 have been

reported in seed plants before [25, 78–81]. The hotspot

regions will provide important genetic information for the

subsequent studies on phylogeography and divergence

history of Oresitrophe and Mukdenia.

Chloroplast simple sequence repeats (cpSSRs) markers,

which possess unique and important characteristics such

as non-recombination, haploidy, uniparental inheritance

and a low nucleotide substitution rate, are excellent tool

in population genetics [82]. Particularly, the chloroplast

genome holds ancient genetic patterns and can therefore

provide unique insight into evolutionary processes [83],

and cpSSR loci are generally distributed throughout non-

coding regions with higher sequence variations than cod-

ing regions [84]. Moreover, the cpSSR markers developed

based on a species are frequently universal to amplify

homologous loci across related taxa [85]. Thus, cpSSR

markers can be used to reveal population genetic variation

and phylogeographic patterns [86, 87]. In this study, the

type, distribution and presence of cpSSRs were detected

between the chloroplast genomes of O. rupifraga and

M. rossii. We received a lot of 58, 61 and 61 perfect

cpSSR loci in O. rupifraga-BJCP, O. rupifraga-HNYD

and Mukdenia rossii, respectively. After comparative

analysis, 24 polymorphic cpSSR loci were developed

between Oresitrophe and Mukdenia (Additional file 6:

Table S4), which will contribute to further researches

relating on population genetic and phylogeography of

these two genera.

With the application of the NGS technologies, gen-

omic resources have greatly increased in the last decade

[88]. Recently, the increasing of available whole-genome

or transcriptome sequences has provided considerable

resources for SSR mining and SSR marker applications

for research and genetic improvements [89]. A series of

bioinformatics tools for SSRs have also been developed,

such as MISA [90], SSR Primer [91], and SSR Locator

[92]. However, these tools have not yet integrated a com-

putational solution for systematic assessment of SSR

polymorphic status, thus the detected SSRs still require

a b

Fig. 8 The probability of membership and geographical distribution of gene pools in Mukdenia rossii and Oresitrophe rupifraga, detected by

STRUCTURE analysis: K = 2 (a) and K = 3 (b). Each vertical bar represents one individual (N = 47), with populations arranged by collection site from

Northeast to Central China
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manual screening for the polymorphy [45]. CandiSSR is

a new pipeline to detect candidate polymorphic SSRs

not only from the transcriptome datasets but also from

multiple assembled genome sequences [42].

In this study, we employed genome skimming data not

only to complete the plastid genome assembly of O.

rupifraga and M. rossii, but also to identify appropriate

intergeneric and intrageneric polymorphic gSSRs using

CandiSSR. Some of these markers may have wide utility

in Saxifragaceae, a family that with other Saxifragales

has provided a useful well-sampled model for the study

of niche evolution and ecological diversification [93].

We developed 126 and 452 intergeneric and intrageneric

polySSR markers between Oresitrophe and Mukdenia

and within Oresitrophe. Twelve pairs of candidate gSSR

primers were selected to test their transferability follow-

ing Qi et al. [94], primer transferability was detected

using 2% agarose gels, and amplification was considered

successful when one clear distinct band was visible in

the expected size range. In total, 100% of the developed

microsatellite markers we selected could be successfully

amplified in two populations of M. rossii and four popu-

lations of O. rupifraga. Genetic diversity parameters ini-

tially indicated M. rossii (HE = 0.66) and O. rupifraga

(HE = 0.51) have a pattern of moderate genetic diversity,

and the genetic diversity observed in M. rossii is very

similar to the average HE of 0.65 for outcrossing plant

species from other microsatellite studies [39, 95].

STRUCTURE analysis separated the six populations into

two clusters according to the different species at K = 2,

and O. rupifraga populations were further assigned to

two distinct clusters at K = 3, preliminarily showing that

the two close genera have relatively significant geograph-

ical structure. In the near future, we will expand our

sampling of Oresitrophe and Mukdenia to study the

population genetic structure and phylogeography of

these two genera.

Conclusions

In present study, we conducted genome skimming for

Oresitrophe and Mukdenia. Using these data, we assem-

bled their complete chloroplast genomes and developed

abundant genetic resources including cp hotspots,

cpSSRs and polymorphic gSSRs. The cp genomes had a

typical quadripartite structure with a conserved genome

arrangement, and the evolutionary pattern of cp ge-

nomes in Saxifragaceae was also examined utilizing four

representative genera. In addition, the intergeneric

gSSRs we randomly selected have shown that Oresi-

trophe and Mukdenia exhibited a significant genetic

structure. The genomic patterns and genetic resources

presented in this study will contribute to further studies

on population genetic, phylogeny and conservation

biology in Saxifragaceae.
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