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Abstract

Chloroplasts play a crucial role in sustaining life on

earth. The availability of over 800 sequenced chloroplast

genomes from a variety of land plants has enhanced

our understanding of chloroplast biology, intracellular

gene transfer, conservation, diversity, and the genetic

basis by which chloroplast transgenes can be

engineered to enhance plant agronomic traits or to

produce high-value agricultural or biomedical products.

In this review, we discuss the impact of chloroplast

genome sequences on understanding the origins of

economically important cultivated species and changes

that have taken place during domestication. We also

discuss the potential biotechnological applications of

chloroplast genomes.

Introduction
Chloroplasts are active metabolic centers that sustain life

on earth by converting solar energy to carbohydrates

through the process of photosynthesis and oxygen re-

lease. Although photosynthesis is often recognized as

the key function of plastids, they also play vital roles in

other aspects of plant physiology and development, in-

cluding the synthesis of amino acids, nucleotides, fatty

acids, phytohormones, vitamins and a plethora of metab-

olites, and the assimilation of sulfur and nitrogen.

Metabolites that are synthesized in chloroplasts are im-

portant for plant interactions with their environment

(responses to heat, drought, salt, light, and so on) and

their defense against invading pathogens. So, chloro-

plasts serve as metabolic centers in cellular reactions to

signals and respond via retrograde signaling [1, 2]. The

chloroplast genome encodes many key proteins that

are involved in photosynthesis and other metabolic

processes.
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The advent of high-throughput sequencing technolo-

gies has facilitated rapid progress in the field of chloro-

plast genetics and genomics. Since the first chloroplast

genome, from tobacco (Nicotiana tabacum), was se-

quenced in 1986 [3], over 800 complete chloroplast gen-

ome sequences have been made available in the National

Center for Biotechnology Information (NCBI) organelle

genome database, including 300 from crop and tree ge-

nomes. Insights gained from complete chloroplast gen-

ome sequences have enhanced our understanding of

plant biology and diversity; chloroplast genomes have

made significant contributions to phylogenetic studies of

several plant families and to resolving evolutionary rela-

tionships within phylogenetic clades. In addition, chloro-

plast genome sequences have revealed considerable

variation within and between plant species in terms of

both sequence and structural variation. This information

has been especially valuable for our understanding of the

climatic adaptation of economically important crops, fa-

cilitating the breeding of closely related species and the

identification and conservation of valuable traits [4, 5].

Improved understanding of variation among chloroplast

genomes has also allowed the identification of specific

examples of chloroplast gene transfer to plant nuclear or

mitochondrial genomes, which has shed new light on

the relationship between these three genomes in plants.

In addition to improving our understanding of plant

biology and evolution, chloroplast genomics research

has important translational applications, such as confer-

ring protection against biotic or abiotic stress and the

development of vaccines and biopharmaceuticals in ed-

ible crop plants. Indeed, the first commercial-scale pro-

duction of a human blood protein in a Current Good

Manufacturing Processes (cGMP) facility was published

recently [6]. The lack of conservation of intergenic spa-

cer regions, even among chloroplast genomes of closely

related plant species, and the species specificity of regu-

latory sequences have facilitated the development of

highly efficient transformation vectors for the integration

and expression of foreign genes in chloroplasts. Because
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the published literature is rarely cross-referenced, this

review highlights the impact of chloroplast genomes on

various biotechnology applications. In addition to our

enhanced understanding of chloroplast biology, we dis-

cuss in depth the roles of chloroplast genome sequences

in improving our understanding of intracellular gene

transfer, conservation, diversity, and the genetic basis by

which chloroplast transgenes are engineered to enhance

plant agronomic traits or to produce high-value agricul-

tural or biomedical products. In addition, we discuss the

impact of chloroplast genome sequences on increasing

our understanding of the origins of economically im-

portant cultivated species and changes that occurred

during domestication.

Advances in chloroplast genome sequencing
technology
One of the important factors in the rapid advancement

of the chloroplast genomics field is improvement in se-

quencing technologies. In studies conducted before the

availability of high-throughput methods, isolated chloro-

plasts were used for the amplification of the entire chloro-

plast genome by rolling circle amplification [7–12]. An

alternative strategy is to screen bacterial artificial chromo-

some (BAC) or fosmid libraries using chloroplast genome

sequences as probes [13–20]; however, these methods are

subject to many challenges, including difficulty in con-

structing good-quality BAC or fosmid libraries, large

numbers of PCR reactions, and the possibility of contam-

ination from other organellar DNA [21–32]. The PCR ap-

proach is also difficult to apply to species that have no

relatives whose chloroplast genomes have been sequenced

or those with highly rearranged chloroplast genomes.

The development of next-generation sequencing (NGS)

methods provided scientists with faster and cheaper

methods to sequence chloroplast genomes. Moore and

colleagues [33] first reported using NGS to determine

chloroplast genome sequences, in Nandina and Platanus.

Although multiple NGS platforms are available for chloro-

plast genome sequencing [34], Illumina is currently the

major NGS platform used for chloroplast genomes

[21, 32, 35, 36] because it allows the use of rolling

circle amplification products [35, 37]. Investigators

can then use bioinformatics platforms to perform de

novo assembly without the need for reference genome

sequences; from these assemblies it is possible to

identify consensus chloroplast genome sequences [32].

A third-generation sequencer, the PacBio system which

uses single molecule real-time (SMRT) sequencing, is now

widely used in chloroplast genome sequencing [38–43].

Its advantage is long read lengths [44], which facilitate de

novo genome assembly, particularly in the four chloro-

plast junctions between the inverted repeat (IR) and

single-copy regions.

The low accuracy (~85 % of the raw data) of the long

reads produced by the PacBio platform [45] can be cor-

rected by combining the latest chemistry with a hier-

archical genome assembly process algorithm; accuracy

rates as high as 99.999 % can be achieved after such

post-error corrections [46]. Accuracy can also be in-

creased using Illumina short reads [42]. In a study of

Potentilla micrantha, sequencing with the Illumina plat-

form produced seven contigs covering only 90.59 % of

the chloroplast genome; by contrast, using the PacBio

platform with error correction, the entire genome was

successfully assembled in a single contig [39].

Chloroplast genome structure
The chloroplast genomes of land plants have highly con-

served structures and organization of content; they com-

prise a single circular molecule with a quadripartite

structure that includes two copies of an IR region that

separate large and small single-copy (LSC and SSC) re-

gions (Fig. 1a, b). The chloroplast genome includes 120–

130 genes, primarily participating in photosynthesis,

transcription, and translation. Recent studies have iden-

tified considerable diversity within non-coding intergenic

spacer regions, which often include important regulatory

sequences [13]. Despite the overall conservation in

structure, chloroplast genome size varies between spe-

cies, ranging from 107 kb (Cathaya argyrophylla) to

218 kb (Pelargonium), and is independent of nuclear

genome size (Table 1). Certain lineages of land-plant

chloroplast genomes also show significant structural re-

arrangements, with evidence of the loss of IR regions or

entire gene families. Furthermore, there is also evidence

for the existence of linear chloroplast genomes, as illus-

trated in Fig. 1b. The percentage of each form within the

cell varies in different reports [47, 48].

Like the genes, the introns in land-plant chloroplast

genomes are generally conserved, but the loss of introns

within protein-coding genes has been reported in several

plant species [49], including barley (Hordeum vulgare) [8],

bamboo (Bambusa sp.) [28], cassava (Manihot esculenta)

[20], and chickpea (Cicer arietinum) [7]. The proteins

encoded by genes in which intron loss is known to occur

have diverse functions; they include an ATP synthase

(atpF), a Clp protease (clpP), an RNA polymerase (rpoC2),

and ribosomal proteins (rpl2, rps12, and rps16) [49]. The

majority of reported intron losses have been observed in

specific plant groups or species, although some examples

of intron loss (such as that in clpP) occur in diverse

plant species, including monocots (Poaceae), eudicots

(Onagraceae and Oleaceae) and gymnosperms (Pinus) [49].

Diversity of chloroplast genome sequences
At higher taxonomic levels (family level), protein-coding

regions and conserved sequences of the chloroplast
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1 atpE psbD 13 psbK 19 psbF 25 rps18 31 rpoA 37 rps19 43 ndhE

2 ndhC 8 petN 14 psal 20 psbE 26 psbT 32 rps11 38 rpl23 44 psaC
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5 rps14 11 atpH 17 psbJ 23 psaJ 29 petB 35 rpl14 41 ndhI 47 ycf1

6 psbZ 12 psbl 18 psbL 24 rpl33 30 petD 36 rps3 42 ndhG 48 rpl23
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Fig. 1 Map of the soybean (Glycine max) chloroplast genome. This genome was used to engineer biotic stress tolerance against insects and

herbicides. The quadripartite structure includes two copies of an IR region (IRA and IRB) that separate large single-copy (LSC) and small single-

copy (SSC) regions [18]. a Circular form. The GC content graph (gray circle inside) marks the 50 % threshold of GC content. b Linear form. Different

colors indicate genes in different functional groups. IR inverted repeat, LSU large subunit, SSU small subunit
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Table 1 Alphabetical list of crop and tree species that have complete annotated chloroplast genome sequences

Species Common name Accession Genome size (bp) Uses Reference(s)

Crops

Acorus gramineus Sweet flag NC_026299 152849 Ornamental [169]

Agrostis stolonifera Creeping bent grass NC_008591 136584 Forage [8]

Allium cepa Onion NC_024813 153538 Vegetable [170]

Ananas comosus Pineapple NC_026220 159636 Fruit [171]

Anthriscus cerefolium Chervil NC_015113 154719 Medicinal [172]

Artemisia frigida Fringed sagewort NC_020607 151076 Medicinal [173]

Atropa belladonna Belladonna NC_004561 156687 Medicinal [174]

Brassica napus (2)* Canola NC_016734 152860 Oil [175]

Calanthe triplicata Black orchid NC_024544 158759 Flower [176]

Cannabis sativa (2) Marijuana NC_027223 153854 Fiber [177]

Capsicum annuum (2) Pepper NC_018552 156781 Vegetable [178]

Carica papaya Papaya NC_010323 160100 Fruit [179]

Catharanthus roseus Madagascar periwinkle NC_021423 154950 Flower [180]

Cenchrus americanus Pearl millet NC_024171 140718 Cereals [181]

Cicer arietinum Chickpea NC_011163 125319 Vegetable [7]

Coix lacryma-jobi Job's tears NC_013273 140745 Cereals [29]

Colocasia esculenta Taro NC_016753 162424 Vegetable [182]

Cucumis sativus (3) Cucumber NC_007144 155293 Vegetable [183]

Curcuma roscoeana Jewel of Burma NC_022928 159512 Medicinal [184]

Cymbidium tortisepalum (5) Cymbidium orchid NC_021431 155627 Flower [55]

Cypripedium formosanum (3) Formosa's lady's slipper NC_026772 178131 Flower [32]

Daucus carota Carrot NC_008325 155911 Vegetable [9]

Dendrobium catenatum Dendrobium orchid NC_024019 152221 Flower [56]

Dieffenbachia seguine Dumbcane NC_027272 163699 Ornamental [185]

Digitaria exilis White fonio NC_024176 140908 Cereals [181]

Echinochloa oryzicola Late barnyard grass NC_024643 139891 Cereals [186]

Ephedra equisetina Ma Huang NC_011954 109518 Medicinal [187]

Erycina pusilla Mini orchid NC_018114 143164 Flower [36]

Fagopyrum esculentum (2) Common buckwheat NC_010776 159599 Cereals [188]

Festuca arundinacea (4) Kentucky fescue NC_011713 136048 Forage [189]

Fragaria vesca (6) Wild strawberry NC_015206 155691 Fruit [190]

Glycine max (9) Soybean NC_007942 152218 Oil [18]

Glycyrrhiza glabra Common liquorice NC_024038 127943 Medicinal [74]

Gossypium barbadense (22) Sea island cotton NC_008641 160317 Fiber [69]

Guizotia abyssinica Ramtilla NC_010601 151762 Bird seed [191]

Helianthus annuus (9) Common sunflower NC_007977 151104 Oil [192]

Heliconia collinsiana Platanillo NC_020362 161907 Ornamental [193]

Hordeum vulgare Barley NC_008590 136462 Cereals [8]

Hyoscyamus niger Henbane NC_024261 155720 Medicinal [194]

Ipomoea batatas Sweet potato NC_026703 161303 Vegetable [195]

Ipomoea purpurea Common morning glory NC_009808 162046 Ornamental [196]

Lactuca sativa Lettuce NC_007578 152765 Vegetable [197]

Lilium superbum Turk's-cap lily NC_026787 152069 Flower [198]
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Table 1 Alphabetical list of crop and tree species that have complete annotated chloroplast genome sequences (Continued)

Lolium multiflorum (2) Ryegrass NC_019651 135175 Lawn [199]

Lotus japonicus Birdsfoot trefoil NC_002694 150519 Forage [200]

Manihot esculenta Cassava EU117376 161453 Starch crop [20]

Masdevallia picturata (2) Masdevallia orchid NC_026777 157423 Flower [32]

Musa textilis Banana NC_022926 161347 Fruit [184]

Nicotiana tabacum (4) Tobacco Z00044 155943 Tobacco [3]

Nuphar advena Spatterdock NC_008788 160866 Medicinal [201]

Nymphaea alba (2) White water-lily NC_006050 159930 Flower [24]

Oncidium hybrid Oncidium NC_014056 146484 Flower [54]

Oryza sativa (6) Rice X15901 134525 Cereals [202]

Panax ginseng (2) Ginseng NC_006290 156318 Medicinal [203]

Panicum virgatum Switchgrass NC_015990 139619 Biofuel [204]

Paphiopedilum armeniacum (2) Slipper orchid NC_026779 162682 Flower [32]

Parthenium argentatum Guayule NC_013553 152803 Biofuel [205]

Pelargonium (2) Geranium NC_008454 217942 Flower [206]

Phalaenopsis hybrid (3) Phalaenopsis orchid NC_007499 148964 Flower [51]

Phaseolus vulgaris Kidney bean NC_009259 150285 Bean [78]

Pisum sativum Pea NC_014057 122169 Vegetable [76]

Raphanus sativus Radish NC_024469 153368 Vegetable [207]

Ravenala madagascariensis Traveller's tree NC_022927 166170 Ornamental [184]

Ricinus communis Castor bean NC_016736 163161 Oil [208]

Saccharum hybrid (2) Sugarcane NC_005878 141182 Sugar [209]

Salvia miltiorrhiza Redroot sage NC_020431 151328 Medicinal [210]

Secale cereale Rye NC_021761 114843 Cereals [64]

Sesamum indicum Sesame NC_016433 153324 Oil [211]

Solanum lycopersicum (11) Tomato NC_007898 155461 Vegetable [13]

Solanum tuberosum Potato DQ231562 155312 Starch crop [212]

Sorghum bicolor (2) Sorghum NC_008602 140754 Cereals [8]

Spinacia oleracea Spinach NC_002202 150725 Vegetable [213]

Trifolium grandiflorum (8) Large-flower hop clover NC_024034 125628 Forage [74]

Triticum aestivum (6) Bread wheat NC_002762 134545 Cereals [63]

Vanilla planifolia Vanilla NC_026778 148011 Fruit [32]

Vigna radiata (3) Mung bean NC_013843 151271 Bean [79]

Zea mays Maize NC_001666 140384 Cereals [62]

Zingiber spectabile True ginger NC_020363 155890 Ornamental [193]

Trees and perennial plants

Abies koreana Fir NC_026892 121373 Wood [214]

Actinidia chinensis (2) Kiwifriut NC_026690 156346 Fruit [215]

Amentotaxus formosana Taiwan catkin yew NC_024945 136430 Timber [216]

Araucaria heterophylla Norfolk island araucaria NC_026450 146723 Timber [217]

Bambusa multiplex (4) Golden goddess bamboo NC_024668 139394 Ornamental [91]

Bambusa oldhamii Green bamboo NC_012927 139350 Vegetable [28]

Berberis bealei Beale's mahonia NC_022457 164792 Ornamental [218]

Bismarckia nobilis Bismarck palm NC_020366 158210 Ornamental [193]

Buxus microphylla Japanese box NC_009599 159010 Ornamental [219]
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Table 1 Alphabetical list of crop and tree species that have complete annotated chloroplast genome sequences (Continued)

Calocedrus formosana Taiwan incense-cedar NC_023121 127311 Timber [220]

Calycanthus floridus Carolina-allspice NC_004993 153337 Medicinal [23]

Camellia oleifera (13) Tea oil plant NC_023084 156971 Oil [221]

Camellia reticulata To-tsubaki NC_024663 156971 Flower [222]

Carludovica palmata Toquilla palm NC_026786 158545 Fiber [198]

Castanea mollissima Chestnut NC_014674 160799 Fruit [14]

Cathaya argyrophylla Cathaya NC_014589 107122 Timber [223]

Cedrus deodara Cedar NC_014575 119299 Timber [223]

Cephalotaxus wilsoniana (2) Wilson plum yew NC_016063 136196 Timber [224]

Chrysobalanus icaco Coco plum NC_024061 162775 Fruit [225]

Citrus sinensis (2) Orange NC_008334 160129 Fruit [12]

Cocos nucifera Coconut NC_022417 154731 Oil [226]

Coffea arabica Coffee NC_008535 155189 Beverage [10]

Corymbia gummifera (4) Red bloodwood NC_022407 160713 Timber [227]

Corynocarpus laevigata Karaka nut NC_014807 159202 Fruit [37]

Cryptomeria japonica Sugi NC_010548 131810 Timber [228]

Dendrocalamus latiflorus Sweet giant bamboo NC_013088 139394 Vegetable [28]

Elaeis guineensis African oil palm NC_017602 156973 Oil [229]

Eucalyptus globulus (32) Eucalyptus NC_008115 160286 Timber [230]

Hevea brasiliensis Rubber tree NC_015308 161191 Rubber [231]

Jasminum nudiflorum Winter jasmine NC_008407 165121 Ornamental [232]

Jatropha curcas Barbados nut NC_012224 163856 Biofuel [233]

Juniperus bermudiana (4) Bermuda juniper NC_024021 127659 Timber [234]

Larix decidua European larch NC_016058 122474 Timber [224]

Licania sprucei (3) Licania NC_024065 162228 Ornamental [225]

Liquidambar formosana Chinese sweetgum NC_023092 160410 Timber [30]

Liriodendron tulipifera Tulip tree NC_008326 159886 Timber [235]

Metasequoia glyptostroboides Dawn redwood NC_027423 131887 Timber [236]

Millettia pinnata Indian beech NC_016708 152968 Ornamental [81]

Morus indica (3) White mulberry NC_008359 158484 White mulberry [237]

Nageia nagi Asian bayberry NC_023120 133722 Timber [220]

Nandina domestica Heavenly bamboo NC_008336 156599 Ornamental [33]

Nerium oleander Oleander NC_025656 154903 Ornamental [238]

Olea europaea (5) Olive NC_015604 155862 Oil [239]

Phoenix dactylifera Date palm NC_013991 158462 Fruit [240]

Phyllostachys edulis (4) Moso bamboo NC_015817 139679 Timber [89]

Picea sitchensis (3) Sitka spruce NC_011152 120176 Timber [35]

Pinus taiwanensis (12) Taiwan red pine NC_027415 119741 Timber [241]

Platanus occidentalis American sycamore NC_008335 161791 Ornamental [33]

Podocarpus lambertii (3) Podocarpus NC_023805 133734 Ornamental [242]

Populus alba White poplar NC_008235 156505 Timber [243]

Prinsepia utilis Himalayan cherry NC_021455 156328 Ornamental [244]

Prunus persica (6) Peach NC_014697 157790 Fruit [14]

Pseudophoenix vinifera Florida cherry palm NC_020364 157829 Ornamental [193]

Pseudotsuga sinensis Chinese douglas NC_016064 122513 Timber [224]
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genome can be used for phylogenetic analysis and do-

mestication studies [49]. Earlier phylogenetic analyses

utilized partial chloroplast DNA sequences. The use of

variable regions or multiple DNA fragments dramatically

enhanced the utility of these analyses but there is insuffi-

cient information in these sequences to provide the

high-resolution necessary to differentiate closely related

taxa, particularly some within-species taxa whose taxo-

nomic relationships are unclear. Complete chloroplast

genome sequences are valuable for deciphering phylo-

genetic relationships between closely related taxa and

for improving our understanding of the evolution of

plant species.

In this section, we discuss several examples of compar-

isons of chloroplast genomes, within and between crop

species, that have provided unique insight into evolu-

tionary relationships among taxa. We also discuss the

origin and geographic distribution of economically im-

portant species, as well as their adaptations to different

climatic conditions and the use of genome information

in their breeding and conservation.

A key application of the chloroplast genome in agri-

culture is the identification of commercial cultivars and

the determination of their purity. DNA barcodes derived

from the chloroplast genome can be used to identify var-

ieties and in the conservation of breeding resources.

Success in breeding is determined by genetic compatibil-

ity and chloroplast genomes serve as a valuable tool for

identifying plants that are likely to be closely related

and, therefore, genetically compatible. Understanding

the genetic relationships between cultivated crops and

their wild relatives informs efforts to introduce specific

advantageous traits into cultivated crops. In the section

below, we discuss how chloroplast genomes have been

used to elucidate the evolutionary relationships and do-

mestication history of a few major crops and how this

informs breeding programs.

Breeding

The Orchidaceae is a large family that encompasses

about 6–11 % of all angiosperms [50] and is important

in floriculture. Many commercially important orchid

species belong to the subfamily Epidendroideae and

chloroplast genomes of several species from this subfam-

ily have been sequenced [51–58]. Because it is easy to

perform inter-generic crossing in orchids and because

the record of breeding is sometimes incomplete, it is

often difficult to validate the parental origin of commer-

cially important varieties [54]. Corrected parental informa-

tion is important for breeding and variety identification.

In an investigation of the Oncidiinae, a subtribe within the

Epidendroideae, PCR products derived from eight con-

served regions in 15 commercial varieties resolved their

phylogenetic relationship at the species level [54] and

helped to resolve putative errors in parental origin. Paren-

tal records had indicated that Odontoglossum ‘Violetta

von Holm’, Odontoglossum ‘Margarete Holm’ and Odonto-

cidium ‘Golden Gate’ are derived from the same female

parent (Odontoglossum bictoniense) but phylogenetic ana-

lyses of ‘Violetta von Holm’ did not correlate with those

of ‘Golden Gate’ or ‘Margarete Holm’ [54]. A possible rea-

son for inconsistencies between the chloroplast DNA-

based phylogenetic tree and the parental record is chloro-

plast capture. Chloroplast capture is the introgression of

chloroplasts from one species into another after intragene-

ric and intergeneric hybridization [59]. Although chloro-

plast genomes provide useful information for phylogenetic

analyses involving closely related taxa, chloroplast capture

by hybridization may distort phylogenetic relationships if

captured chloroplast genomes or genes included therein

are used [60]. The use of both nuclear and chloroplast ge-

nomes can provide more complete phylogenies [4, 61].

Phylogenetic studies

There are several published chloroplast genomes from

cereals, including those from sorghum (Sorghum bicolor),

barley [8], maize (Zea mays) [62], wheat (Triticum

aestivum) [63], rye (Secale cereale) [64], and rice (Oryza

sativa) [65]. Rice is one of the world's most important

crops and is the primary carbohydrate source for the glo-

bal human population (http://www.ers.usda.gov/topics/

crops/rice.aspx). The Oryza species are classified into ten

Table 1 Alphabetical list of crop and tree species that have complete annotated chloroplast genome sequences (Continued)

Pyrus pyrifolia (2) Chinese pear NC_015996 159922 Fruit [245]

Quercus rubra (4) Oak NC_020152 161304 Timber [246]

Sapindus mukorossi Soapberries NC_025554 160481 Medicinal [247]

Taiwania cryptomerioides (2) Taiwania NC_016065 132588 Timber [224]

Theobroma cacao Cacao tree HQ336404 160604 Beverage [14]

Vaccinium macrocarpon Large cranberry NC_019616 176045 Fruit [248]

Vitis vinifera Wine grape NC_007957 160928 Fruit [19]

Wollemia nobilis Wollemia NC_027235 145630 Timber [249]

*The number of species in the same genus as the listed species that have sequenced and annotated chloroplast genomes is shown in parentheses
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genome types, including six diploids (AA, BB, CC, EE, FF,

and GG) and four allotetraploids (BBCC, CCDD, HHJJ,

and HHKK). Attempts to clarify the evolutionary relation-

ships between cultivated rice and its wild relatives remain

contentious and inconclusive [4]. For example, there are

two wild species that have an AA genome in Australia,

Oryza meridionalis (annual) and Oryza rufipogon

(perennial). Oryza sativa was domesticated from Asian

O. rufipogon 10,000 years ago [65]. Nevertheless, analysis

of complete Australian and Asian wild rice chloroplast ge-

nomes indicated that Australian O. rufipogon chloroplast

genomes are more similar to those of Australian O. meri-

dionalis than to those of Asian O. rufipogon [65–67].

Using 19 chloroplast genomes of Oryza AA genome

species, a robust phylogenetic tree was established,

which will aid in improving rice crops and in conser-

vation strategies [4, 5].

Cotton is the most important textile fiber crop and the

first cotton (Gossypium hirsutum) chloroplast genome

was published in 2006 [11]. The diploid Gossypium spe-

cies comprise eight genome groups (A to G and K

genomes). Gossypium hirsutum (upland cotton), the

most widely planted cotton species in the world, is an al-

lotetraploid of the ancestral A and D genome species

[68]. Chloroplast genome sequences are available for 22

Gossypium species and these can be used to glean in-

formation about the evolution and domestication of

this crop [11, 68, 69] (Table 1). Simple sequence re-

peat primers were used to investigate 41 species of

Gossypium, including all eight genome groups and al-

lotetraploid species [70]. The results indicated that

two modern A-genome species, Gossypium herbaceum

and Gossypium arboretum, were not cytoplasmic donors

of tetraploid (AD) species; instead, the AD genome species

originated from an extinct ancestor species of the modern

A genome [68, 70].

Domestication

Information on chloroplast genomes is useful for under-

standing the domestication of several crops, particularly

legumes [71]. The chloroplast genome structure of le-

gumes is very interesting; it contains multiple rearrange-

ments, including large inverted segments and loss of

inverted repeats [72]. An example is a 51-kb inversion

that was first identified in the soybean (Glycine max)

chloroplast genome sequence [18] before being re-

ported in most members of the subfamily Papilionoideae

[7, 73–77]. A 78-kb reversion was subsequently confirmed

in Phaseolus and Vigna chloroplast genomes [78, 79].

More recently, 36-kb [80] and 5.6-kb [81] inversions in-

side the 51-kb inversion were identified. There are many

important genes within these inverted regions but no gene

is disturbed and plant survival and performance are not

affected. These unique characteristics are not only very

useful in phylogenetic studies [82] but also provide im-

portant information for chloroplast transformation in le-

gumes. Chloroplast structure is also important for the

design of primers needed in the amplification of sequences

for further domestication and phylogenetic analysis.

Citrus is one of the most commercially important fruit

genera. In 2006, the first Citrus chloroplast genome, that

of sweet orange (Citrus × sinensis), was published [12]

and this served as a reference genome for subsequent

publications [83, 84]. Phylogenetic analysis of 34 chloro-

plast genomes of Citrus (28) and Citrus-related genera

(6) indicated that citrus fruits have the same common

ancestor [84, 85]. In four genes (matK, ndhF, ycf1, and

ccsA), single-nucleotide variations and insertion/deletion

frequencies were clearly higher than average and showed

that these genes have been positively selected. The matK

gene encodes a maturase that is involved in splicing type

II introns and the matK sequence is often used in phylo-

genetic and evolutionary studies [84]. Positive selection

of matK is observed not only in citrus but is common in

several other plant species. In fact, more than 30 plant

groups have been shown to undergo positive selection of

matK genes, indicating that the gene is subject to a

number of different ecological selective pressures [86].

The ndhF gene encodes a subunit of the chloroplast

NAD(P)H dehydrogenase (NDH) complex. Chloroplast

NDH monomers are sensitive to high light stress, sug-

gesting that the ndh genes may also be involved in stress

acclimation [87]. These studies indicated that matK and

ndhF show positive selection in Australian species, po-

tentially contributing to their adaptation to a hot, dry

climate [84, 85].

Bamboo is an economically and ecologically important

forest plant in Asia [88]. Bamboo grows quickly and new

culms are regenerated from the rhizome after harvesting,

making it a sustainable and ecologically and environ-

mentally friendly crop. The first two bamboo chloroplast

genomes have been published [28] and many more bam-

boo chloroplast genomes are now available [88–93].

Bamboo has a long juvenility and it is difficult to obtain

flowers for taxonomic studies; consequently the taxo-

nomic relationships of bamboo have proven challenging

to unravel on the basis of traditional reproductive organ

morphology. Furthermore, the extremely low rate of se-

quence divergence meant that the taxonomic and phylo-

genetic relationships of temperate woody bamboos at

lower taxonomic levels proved difficult to resolve [88].

These relationships were eventually resolved with high-

resolution phylogenetic trees using 25 bamboo chloro-

plast genomes [93]. In addition to woody bamboos,

chloroplast genomes have also been published for herb-

aceous bamboo [88, 92]. An interesting phenomenon

identified in herbaceous bamboo chloroplast genomes is

that of gene transfer from the mitochondrial genome to
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the chloroplast genome. This was an unusual observa-

tion, as the chloroplast genome is thought to be nearly

immune to the transfer of DNA from nuclear and mito-

chondrial genomes [88, 92, 94]. A possible reason for

this recalcitrance to DNA transfer is the lack of an effi-

cient DNA uptake system [94]. Prior to its observation

in herbaceous bamboo, this phenomenon was only ob-

served in two eudicot chloroplast genomes [94] and in

monocots [88, 92].

Transfer of chloroplast genes to nuclear or
mitochondrial genomes
There are three distinct genomes in plant cells: nuclear,

mitochondrial, and plastid. Mitochondria are believed to

have evolved from a single endosymbiotic event by the

uptake of a proteobacterium, whereas chloroplasts

evolved from endosymbiosis of a cyanobacterium, after

which there was a massive transfer of genes from the

chloroplast to the nucleus [95]. There are distinct trans-

lation systems in these organelles: nuclear-encoded

genes are translated in the cytosol and the protein prod-

ucts are then transported to the locations in which they

function, including chloroplasts [96], whereas chloroplast-

encoded proteins are directly synthesized within the

chloroplast. Multi-subunit functional protein complexes

that are involved in photosynthesis or protein synthesis

are also assembled within chloroplasts.

Gene content, number, and structure are conserved in

the chloroplast genome sequences of most autotrophic

land plants [97, 98] but some protein-encoding genes

are absent in specific species [49]. The loss of genes such

as infA, rpl22, and ndh from the chloroplast genome

and their intracellular transfer to the nuclear or mito-

chondrial genomes provide valuable information for

phylogenetic analyses and evolutionary studies. It is very

easy to identify the chloroplast origin of genes in plant

mitochondrial or nuclear genomes [99, 100] by intra-

cellular gene transfer [32], but this could also lead to

erroneous phylogenic relationships when short se-

quences are used instead of complete chloroplast gen-

ome sequences.

The chloroplast translation initiation factor 1 (infA) is

a homolog of the essential gene infA in Escherichia coli

[101, 102]. This gene initiates translation in collabor-

ation with two nuclear-encoded initiation factors to

mediate interactions between mRNA, ribosomes, and

initiator tRNA-Met [102]. Many parallel losses of

chloroplast-encoded infA have occurred during angio-

sperm evolution [102] (Fig. 2). Nuclear-encoded infA

genes have been identified in Arabidopsis thaliana, soy-

bean, tomato (Solanum lycopersicum), and ice plant

(Mesembryanthemum crystallinum) [102]. Protein se-

quences of nuclear-encoded infA in these four species

contain chloroplast transit peptides. Studies using soybean

and A. thaliana infA-GFP proteins have shown that

nuclear-encoded infA genes are translated in the cytosol

and transported into chloroplasts [102]. Many more

chloroplast-encoded infA deletions have been identified

recently (Fig. 2).

There are 57 chloroplast genomes in 26 genera in

which the essential gene rpl22 is reported to have

been deleted from the chloroplast and transferred to

the nuclear genome (Fig. 2) [14, 103]. Nuclear-

encoded rpl22 contains a transit peptide that is pre-

dicted to deliver this protein from the cytosol to

chloroplasts. These peptides are diverse, suggesting

that there were two independent rpl22 transfers in

the Fabaceae and the Fagaceae [14]. Similar transfer

to the nucleus has also been observed for rpl32 dele-

tion from chloroplast genomes [104–106].

Eleven chloroplast genes encode ndh subunits, which

are involved in photosynthesis. The ndh proteins assem-

ble into the photosystem I complex to mediate cyclic

electron transport in chloroplasts [107, 108] and facili-

tate chlororespiration [109]. Some autotrophic plants

lack functional ndh genes in their chloroplast genomes

[36, 51, 54, 55, 110–115] (Fig. 2). Unlike the single gene

losses described previously, the entire family of ndh

genes has been deleted in these plants. Seven orchid

chloroplast genomes indicated at least three inde-

pendent ndh deletions [32]. Some orchid ndh DNA

fragments were identified in the mitochondrial gen-

ome but the complete ndh genes required to translate

putative functional protein complexes are absent [32].

In the nuclear genome of Norway spruce, only non-

functional plastid ndh gene fragments are present

[116]. Normal photosynthesis is observed in these

ndh-deleted species [32, 117]. Furthermore, ndh-de-

leted transformants are autotrophic and produce car-

bohydrates through photosynthesis [107, 118–121].

Many more chloroplast-gene deletions have been ob-

served, including deletions of accD, ycf1, ycf2, ycf4, psaI,

rpoA, rpl20, rpl23, rpl33, and rps16; many unique gene

deletions have been identified in only one or a few spe-

cies (psbJ, rps2, rps14, and rps19) (Fig. 2). The functions

of these genes, phenotypes of their knock-out mutants,

and evidence for their transfer are summarized in

Additional file 1. Most essential genes that have been

lost from chloroplast genomes have been transferred to

the nucleus to maintain the plant's photosynthetic cap-

acity, with the exception of ycf1 and ycf2.

In summary, chloroplast genome sequences are

most valuable for understanding plant evolution and

phylogeny. Databases of not only plant genomes but

also plant transcriptomes will be useful in investigat-

ing deletion events or the transfer of chloroplast

genes to other organellar genomes to complement

such deletions.
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Advances in chloroplast genome engineering
In the past century, desirable agronomic traits, including

yield enhancement and resistance to pathogens or abi-

otic stress, were achieved by breeding cultivated crops

with their wild relatives. As explained above, chloroplast

genome sequences are very useful in the identification of

closely related, breeding-compatible plant species. With

the advent of modern biotechnology, desirable traits

from unrelated species can now be readily introduced

into commercial cultivars. Such genetically modified crops

have revolutionized agriculture in the past two decades,

dramatically reducing the use of chemical pesticides and

herbicides while enhancing yield. For most commercial

cultivars, herbicide- or insect-resistance genes are intro-

duced into the nuclear genome. There are, however, a few

limitations for nuclear transgenic plants, including low

levels of expression (<1 % total soluble protein (TSP)) and

potential escape of transgenes via pollen.
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Engineering the introduction of foreign genes into

the chloroplast genome addresses both of these con-

cerns. Just two copies of transgenes are typically in-

troduced into the nuclear genome, whereas up to

10,000 transgene copies have been engineered into

the chloroplast genome of each plant cell, resulting in

extremely high levels of foreign gene expression

(>70 % TSP) [122]. Most importantly, chloroplast ge-

nomes are maternally inherited in most cultivated

crops, minimizing or eliminating transgene escape via

pollen [123].

The basic process of chloroplast engineering is ex-

plained in Fig. 3a, b. Chloroplast genome engineering is

accomplished by integrating foreign genes into inter-

genic spacer regions without disrupting the native

chloroplast genes (Fig. 3a). Two chloroplast genes are

used as flanking sequences to facilitate integration of

transgene cassettes. Transgene cassettes include a select-

able marker gene and gene(s) of interest, both regulated

by chloroplast gene promoters and untranslated regions

(UTRs; Fig. 3a). Chloroplast genome sequences are es-

sential to build transgene cassettes because they provide
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Daniell et al. Genome Biology  (2016) 17:134 Page 11 of 29



both flanking and regulatory sequences. Transgene cas-

settes that are inserted into bacterial plasmids are called

chloroplast vectors and they are bombarded into plant

cells using gold particles and a gene gun (Fig. 3b). Be-

cause of the presence of chloroplast DNA in the nuclear

or mitochondrial genome, transgene cassettes may inte-

grate via homologous or non-homologous recombin-

ation events; but any transgenes that are integrated

within the nuclear or mitochondrial genome will not be

expressed because chloroplast regulatory sequences are

not functional in other genomes. If such integration oc-

curs, the transgenes could be easily identified by evalu-

ation of their integration site and eliminated [124].

One of the challenges of creating chloroplast trans-

genic (transplastomic) plants is the elimination of all

untransformed copies (>10,000 per cell) of the native

chloroplast genome and replacing them with transformed

genomes that contain integrated transgene cassettes. The

absence of the native chloroplast genome and the pres-

ence of only the modified genomes is referred to as the

homoplasmic state, which is typically achieved after two

or three rounds of selection (Fig. 3b). The most effective

selectable marker used is the aadA gene, which confers

resistance to streptomycin and spectinomycin. These anti-

biotics bind specifically to chloroplast ribosomes and dis-

rupt protein synthesis without interfering with any other

cellular process. Efforts to transform the chloroplast gen-

ome of cereal crops have been mostly unsuccessful. This

could be due to the instability of chloroplast DNA in the

mature leaves of cereals [47] or to a requirement for better

selectable markers [125].

Table 2 provides the first global, comprehensive sum-

mary of the power of chloroplast genetic engineering,

utilizing valuable information generated by the sequen-

cing of chloroplast genomes described in previous sec-

tions. This table includes the most complete list of

chloroplast genomes that have been engineered for en-

hanced agronomic traits or the production of different

bio-products, including biopolymers, industrial enzymes,

biopharmaceuticals, and vaccines. Within Table 2, trans-

genes are grouped according to their functions and are

organized according to their site of integration. The effi-

ciency of transgene expression is also included in Table 2,

providing important information about the regulatory

sequences used to express the transgenes.

Impact of sequence diversity in the chloroplast
genome on transgene integration
Figure 3a shows examples of transplastomic genomes

that have been transformed with either an endogenous

or a heterologous flanking sequence. Every single nu-

cleotide change in the heterologous sequence was subse-

quently edited out and corrected to achieve 100 %

homology to the native sequence within the intergenic

spacer region (Fig. 3a). The repetitive editing process

significantly reduces the efficiency of transgene integra-

tion when using heterologous flanking sequences. This

challenge is made even more difficult by inadequate con-

servation of intergenic spacer regions, even within the

same family. Figure 3c shows comparisons of 21 of the

most variable intergenic spacer regions; only four of

the >150 spacer regions, including the trnl/trnA spa-

cer region, are conserved among members of the

Solanaceae. Among grass chloroplast genomes, not a

single intergenic spacer region is conserved [8]. This

necessitates construction of species-specific chloroplast

vectors using endogenous flanking sequences and under-

scores the need to sequence the chloroplast genomes of

economically important crop species.

Ideal sites in the chloroplast genome for
transgene integration
The selection of a suitable intergenic spacer region from

among more than 100 sites found in each chloroplast

genome is a major concern. Statements on the lack of

positional effects in the transplastomic literature are

common and are used to contrast chloroplast genetic

engineering with nuclear transgene integration, which is

often associated with profound differences in the expres-

sion of transgenes dependent on their site of integration.

Evidence shows, however, that there are also positional

effects within the chloroplast genome (Table 2). IR re-

gions are found in duplicate in most chloroplast ge-

nomes; therefore, transgenes should be inserted within

the IR region instead of the SSC or LSC regions because

this should double the copy number of transgenes. Inte-

gration of a transgene cassette into one copy of the IR

facilitates integration into the other copy, thereby enhan-

cing selection pressure to achieve homoplasmy through

this copy correction mechanism, a characteristic feature

of the chloroplast genome [126–128]. Therefore, the site

of integration plays a crucial role in transgene expression

level and in enhancing homoplasmy under selection by

antibiotics. Most importantly, in all sequenced chloro-

plast genomes within a single plant species, the DNA se-

quence in one copy of the IR is identical to that in the

other copy, without any exception (Table 1).

An early controversy in the chloroplast genetic engin-

eering field was the suitability of transcriptionally silent

spacer regions, where native genes (for example, rbcL/

accD) are located on opposite strands of the chloroplast

genome, or transcriptionally active spacer regions, where

native genes (for example, trnA/trnI) are located within

operons on the same strand. After a herbicide resistance

gene was introduced into the transcriptionally active spa-

cer region for the first time [129], most subsequent studies

preferentially used this site of integration (Table 2). The

integration of transgenes into the transcriptionally active
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Table 2 Engineering the chloroplast genome for biotechnology applications

Site of integration Transgenes Regulatory
sequences

Efficiency of expression Engineered traits or products Reference(s)

Insect or pathogen tolerance

trnI/trnA Bgl-1 5′psbA/3′psbA >160-fold enzyme Resistance against whitefly and aphid [141]

trnI/trnA Pta 5′psbA/3′psbA 7.1–9.2 % TSP Broad-spectrum resistance against
aphid, whitefly, Lepidopteran insects,
bacterial and viral pathogens

[142]

trnI/trnA PelB1, PelD2 5′psbA/3′psbA ~2.42 units mg−1 FW Resistance against Erwinia soft rot [150]

trnI/trnA RC1011, PG12 5′psbA/3′ 17–38 % TSP Resistance to Erwinia soft rot and
tobacco mosaic virus

[140]

trnI/trnA cpo Prrn/psbA/psbA NR Resistance to fungal pathogens
in vitro (Aspergillus flavus, Fusarium
verticillioides, and Verticillium dahliae)
and in planta (Alternaria alternata)

[251]

trnI/trnA Bt cry2Aa2 operon Prrn/ggagg/psbA 45.3 % TSP 100 % mortality of cotton bollworm,
beet armyworm; cuboidal Bt crystals
formation

[137]

trnI/trnA Bt cry9Aa2 Prrn/ggagg/rbcL ~10 % of TSP Resistance to Phthorimaea operculella [252]

trnI/trnA msi-99 Prrn/ggagg/psbA 21–43 % TSP Resistance to in planta challenge of
Pseudomonas syringae, Aspergillus
flavus, Fusarium moniliforme,
Verticillium dahlia, and Colletotrichum
destructivum

[253]

trnI/trnA sporamin1, CeCPI2,
and chitinase2

Prrn/TpsbA 0.85–1 % TSP Resistance against Spodoptera litura
and Spodoptera exigua leaf spot,
as well as soft rot diseases

[254]

trnI/trnA MSI-99 Prrn/Trps16 89.75 μg g−1 FW Resistance against rice blast fungus [255]

trnV/rps12/7 cry1A(c) Prrn/rbcL/rps16 3–5 % of TSP Resistance to larvae of Heliothis
virescens, Helicoverpa zea, and
Spodoptera exigua

[256]

trnV/rps12/7 cry1Ab Prrn/T7gene10/rbcL NR Resistance to caterpillar of Anticarsia
gemmatalis

[145]

rbcL/accD cry2Aa2 Prrn/ggagg/psbA 2–3 % of TSP Resistance to Heliothis virescens,
Helicoverpa zea, and Spodoptera
exigua

[257]

Abiotic stress tolerance

trnI/trnA tps1 Prrn/ggagg/psbA >169-fold transcript Drought tolerance: growth in 6 %
polyethylene glycol and rehydration
after 24 days of drought

[258]

trnI/trnA merA/merB Prrn/ggagg/psbA NR Phytoremediation: high level
tolerance to the organomercurial
compounds, up to 400 μM
phenylmercuric acetate

[259]

trnI/trnA badh Prrn/T7 g10/rps16 93–101 μM g−1 FW Salt tolerance: carrot plants survived
up to 400 mM NaCl

[135]

trnI/trnA γ-TMT Prrn/T7g 10/TpsbA >7.7 % TSP Increased salt and heavy metal
tolerance, enhanced accumulation
of ɑ-tocopherol in seeds

[153]

trnI/trnA mt1 Prrn/T7 g10/Trps16 NR Phytoremediation: resistant to
mercury, up to 20 μm

[260]

trnV/rps12/7 b-bar1 Prrn/TrbcL >7 % TSP Resistance to the herbicide
phosphinothricin

[261]

trnV/rps7/12 EPSPS Prrn/Trps16 >10 % TSP Resistance to the herbicide
glyphosate

[262]

rbcL/accD EPSPS/aroA Prrn/ggagg/psbA NR Resistance to glyphosate (>5 mM) [129]
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Table 2 Engineering the chloroplast genome for biotechnology applications (Continued)

rbcL/accD mALS PpsbA/TpsbA NR Tolerant to pyrimidinylcarboxylate,
imidazolinon, and sulfonylurea/
pyrimidinylcarboxylate herbicides

[263]

rbcL/accD Bar Prrn/rbcL/psbA NR Herbicide resistance: up to 25 μg ml−1

glufosinate
[264]

rbcL/rbcL Hppd psbA/psbA/3′rbcL 5 % TSP Resistance to herbicide [265]

rbcL/accD panD Prrn/rbcL 3′ >4-fold β-alanine Tolerance to high-temperature stress [266]

trnfM/trnG lycopene β-cyclase atpI/rps16 0.28 mg g−1 DW Herbicide resistance and triggers
conversion of lycopene

[133]

prs14/trnG HTP, TCY, TMT Prrn/T7 g10/TrbcL NR Increase in vitamin E in fruit;
cold-stress tolerance

[267]

Other agronomic traits

trnI/trnA phaA Prrn/psbA/psbA 14.71β-ketothiolase mg−1 FW Engineered cytoplasmic male sterility [268]

trnI/trnA RbcS T7g10 or psbA >150-fold RbcS transcript Restoration of RuBisCO activity in
rbcS mutants

[136]

rbcL/accD TC, γ -TMT PpsbA/Trsp16 3 nmol h−1 mg−1 FW Vitamin E accumulation in tobacco
and lettuce

[269]

rbcL/accD CrtZ, CrtW Prrn/Trps16 NR Accumulation of astaxanthin fatty
acid esters in lettuce

[270]

trnV/orf708 BicA psbA/psbA/psbA ~0.1 % TSP CO2 capture within leaf chloroplasts [271]

trnV/3′rps12 Trx f, Trx m prrn T7G10/rps12 NR Starch synthesis/chloroplast redox
regulation

[272]

trnfM/trnG CV-N Prrn/T7g10/TatpA ~0.3 % TSP Increased mRNA stability and protein
stability with the expression of CV-N
in chloroplasts

[273]

trnI/trnA Bgl-1 5′psbA/3′psbA 44.4 units Bgl1 g−1 FW β-Glucosidase increased enzyme
cocktail efficiently to release sugar
from paper, citrus peel, and wood

[141]

trnI/trnA ubiC 5′psbA/3′psbA 25 % DW 250-fold higher pHBA polymer
accumulation than nuclear
transgenic lines

[149]

trnI/trnA man 1 5′psbA/3′psbA 25 units g−1 FW Mannanase increased enzyme
cocktail released sugar from paper,
citrus peel, and wood

[274]

trnI/trnA cutinase or swoIlenin 5′PsbA/3′PsbA 47.7 % reduction of MGDG
and DGDG in cutinase and
68.5 % in swollenin

Swollenin enlarged and irreversibly
unwound cotton fiber; cutinase
showed esterase and lipase activity;
used in enzyme cocktails

[275]

trnI/trnA bgl1 5′psbA/3′psbA 14 units mg−1 FW Enzyme cocktails produced glucose
from filter paper, pine wood,
or citrus peel

[150]

swo1 NR

xyn2 421 units mg−1 FW

Acetyl sylan esterase NR

celD 493 units mg−1 FW

celO 442 units mg−1 FW

Lipase NR

Cutinase 15 units mg−1 FW

trnI/trnA PMK, MVK, MDD, AACT,
HMGS, HMGRt; IPP, FPP,
ADS, CYP71AV1, AACPR

Prrn/PpsbA 0.1 mg g−1 FW Artemisinic acid for several isoprenoid
products

[276]

trnI/trnA Cel6A,Cel6B Prrn/rbcL/rbcL 2–4 % TSP Hydrolyzed crystalline cellulose [277]

trnfM/trnG bgl1C, cel6B, cel9A,
xeg74

Prrn/T7g10/TrbcL 5– 40 % TSP Cell wall-degrading enzyme activity [278]
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Table 2 Engineering the chloroplast genome for biotechnology applications (Continued)

rbcL/accD phbC, phbA, phbB Prrn/rbcL 3′ 0.16 % DW Polyhydroxybutyrate (PHB)
accumulation in leaves

[279]

rbcL/accD crtZ, crtW Prrn/Trps16 >0.5 % DW Astaxanthin accumulation [280]

trnV/rps7 EGPh psbA/psbA/Trps16 25 % TSP Chloroplast-derived β-1,4-endoglucanase
(EGPh) was recovered from dry leaves
and digested carboxymethyl cellulose
(CMC) substrate

[281]

trnI/trn A EX4 PpsbA/TpsbA 14.3 % TSP CTB–EX4 showed increased insulin
secretion similar to the commercial
injectable EX4 in pancreatic β-cells
and in mice fed with cells expressing
EX4 in chloroplasts

[160]

trnI/trn A MBP PpsbA/TpsbA 2 % TSP Amyloid loads were reduced in ex vivo
studies in human Alzheimer’s brain and
in vivo in Alzheimer’s mice fed with
bio-encapsulated CTB–MBP. Abeta was
also reduced in retinae and loss of
retinal ganglion cells was prevented

[162]

trnI/trn A FVIII PpsbA/TpsbA 370 mg g−1 FW Feeding of the HC/C2 antigen mixture
substantially suppressed T-helper cell
responses and inhibitor formation
against FVIII in hemophilia A mice

[282]

trnI/trn A HSA PpsbA/TpsbA 26 % TSP In vitro chaperone activity of Trx m
and Trx f

[283]

trnI/trn A EDA PpsbA/TpsbA 2.0 % TSP The vaccine adjuvant EDA from
fibronectin retains its proinflammatory
properties when expressed in tobacco
chloroplasts

[284]

trnI/trn A Proinsulin PpsbA/TpsbA 47 % TSP in tobacco,
53 % TLP in lettuce

Oral delivery of proinsulin in plant cells
lowered glucose levels comparably to
injectable commercial insulin

[285]

trnI/trn A HSA psbA/psbA/psbA ~11 % TSP First report of human blood protein in
chloroplasts; function not evaluated

[286]

trnI/trn A IGF psbA/psbA/psbA 32.7 % TSP Promoted growth of cultured HU-3
cells in a dose-dependent manner

[287]

trnI/trnA FIX PpsbA/TpsbA 1 mg g−1 DW (0.56 % TLP) Oral delivery of CTB-FIX lettuce cells
suppressed inhibitor formation against
FIX in hemophilia B mice

[6]

trnI/trnA FIX Ppsba/TpsbA 3.8 % TSP; 0.4 mg g−1 FW Tolerance induction via complex
immune regulation, involving
tolerogenic dendritic and T-cell subsets

[288]

trnI/trnA GAA Ppsba/TpsbA 5.7 mg g−1 DW Reduced toxic antibody responses in
enzyme replacement therapy in
Pompe mice

[289]

trnI/trnA ACE2
Ang-(1–7)

PpsbA/TpsbA CTB–ACE2: 2.14 % TLP
CTB-Ang1–7: 8.7 % TLP

Oral delivery of ACE2 and Ang (1–7)
significantly improved cardiopulmonary
structure and functions, decreased the
elevated right ventricular systolic blood
pressure and improved pulmonary
blood flow in animals with induced
pulmonary hypertension

[161]

trnI/trn A BACE Prrn/TpsbA 2.0 % TSP Immunogenic response against the
BACE antigen in mice

[290]

trnI/trn A IFNα2b Prrn/TpsbA 3 mg g−1 FW Protected cells against VSV CPE and
HIV; increased MHC I antibody on
splenocytes and total number of
natural killer cells and protected mice
from a highly metastatic lung tumor

[291]
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Table 2 Engineering the chloroplast genome for biotechnology applications (Continued)

trnI/trn A CTB-pins Prrn/T7g10/TpsbA
and rps16

16 % TSP in tobacco,
72 % TLP in lettuce

CTB-proinsulin-fed non-obese diabetic
mice significantly decreased
inflammation (insulitis); insulin-producing
β cells in pancreatic islets were highly
protected, increased in insulin
production with lower blood or urine
glucose levels; increased expression of
immunosuppressive cytokines

[128, 292]

rbcL/accD IFN-γ PpsbA/TpsbA 6 % TSP Protection of human lung carcinoma
cells against infection by
encephalomyocarditis virus

[293]

rbcL/accD hTrx PpsbA/Trps16 1 % TSP Protected mouse from hydrogen
peroxide

[294]

rbcL/accD A1AT PpsbA/TrbcL 2 % TSP Binds to porcine pancreatic elastase [295]

rbcL/accD TGFβ3 Prrn/T7g10/psbC 12 % TLP Inhibits mink lung epithelial cell
proliferation

[296]

trnV/3′rps12 hCT-1 Prrn/G10L/Trps16 5 % TSP Biologically active on human
hepatocarcinoma cell line

[297]

trnV/rps7/12 hST PpsbA or Prrn/G10L/
Trps16

0.2–7.0 % TSP Promotes growth of Nb2 cells in a
dose-dependent manner

[298]

trnfM/trnG pal, cpl-1 Prrn/T7g10/TpsbA ~30 % TSP Bacteriolytic activity and kills
Streptococcus pneumoniae,
the causative agent of pneumonia

[299]

trnI/trn A ESAT-6 5′psbA/3′psbA ~7.5 % TSP Hemolysis of red blood cells and
GM1 binding

[165]

trnI/trn A AMA1 5′psbA/3′psbA 7.3 % TSP in tobacco,
13.2 % TSP in lettuce

Long-term immunity against cholera
challenge; inhibition of malarial
parasite; protection correlated with
IgA and IgG1

[164]

trnI/trn A MSP1 5′psbA/3′psbA 10.1 % TSP in tobacco,
6.1 % TSP in lettuce

trnI/trn A 2 L21 5′psbA/3′psbA 6.0 % TSP

trnI/trn A Pag 5′psb/3′psbA ~29.6 % TSP Macrophage lysis assay, systemic
immune response, toxin neutralization
assay, mice survived (100 %) challenge
with lethal doses of anthrax toxin

[300, 301]

trnI/trn A L1 PpsbA/TpsbA 20–26 % TSP Induced systemic immune response
and produced neutralizing antibodies
in mice

[302]

trnI/trnA RA4 PpsbA/T psbA 0.2 % TLP Oral administration elicited both
mucosal and systemic Th1/Th2
responses to reduce Toxoplasma
parasite load

[303]

trnI/trnA rFaeG PpsbA/TrbcL >1 % DW Transplastomic plants expressing the
rFaeG protein could possibly be used
for delivery of an oral vaccine against
porcine F4+ ETEC infections

[304]

trnI/trn A F1-V Prrn/TpsbA 14.8 % TSP Orally immunized mice heavily
challenged with plague (Yersinia pestis)
were protected better than those
given IP injections

[305]

trnI/trn A CTB-2 L21 PpsbA/TpsbA 31.1 % TSP Immunogenic in mice following IP or
oral administration

[306]

trnI/trnA VP8* psbA/psbA/Trps16 600 μg g−1 FW Induced strong immune response and
virus neutralization

[307]

trnI/trn A CtxB Prrn/ggagg/TpsbA 4.1 % TSP Efficient GM1 ganglioside-binding [308]

trnI/trn A LTB Prrn/ggagg/TpsbA 2.5 % TSP GM1 ganglioside-binding assay [309]

trnI/trn A LecA Prrn/T7g10/TpsbA 7 % TSP Systemic immune response in mice [310]
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spacer region (trnl/trnA) has led to 25-fold higher expres-

sion of transgenes compared with the transcriptionally si-

lent spacer region (rbcl/accD) [130], possibly due to the

presence of multiple promoters (heterologous and en-

dogenous) that enhance transcription. Introns present

within trnI/trnA genes (used as flanking sequences) also

provide efficient processing of native or foreign tran-

scripts. The trnA gene intron includes a chloroplast origin

of replication and produces more copies of the template

(chloroplast vectors) for integration of the transgene cas-

sette [131]. In fact, among 114 transgenes in different

plant species in Table 2, 71 are integrated at the trnA/trnI

site of the chloroplast genome, confirming the unique

advantages of this site [127, 129, 130].

Role of chloroplast genome regulatory sequences
in transgene expression
In addition to the site of integration, regulatory se-

quences located upstream (promoter, 5′ UTR) and

downstream (3′ UTR) of transgenes play a major role in

determining their expression level. The psbA regulatory

region, first used almost 25 years ago [131], still appears

to be the best option for use in an expression cassette,

as the psbA gene encodes the most highly translated

protein in the chloroplast [132] and it can also mediate

light-induced activation of translation [128]. Indeed, al-

most all highly expressed transgenes (>70 % TSP, >25 %

dry weight) utilize the psbA regulatory region; among

114 transgenes expressed via the chloroplast genome, 84

use the psbA regulatory sequence (Table 2). Other en-

dogenous regulatory sequences that are used include

rbcL and atpA, which result in lower transgene expres-

sion levels than the psbA promoter/5′ UTR.

Using regulatory regions from photosynthetic genes

has the advantage of light regulation, making them ideal

for transgene expression in photosynthetic organs

(leaves; Fig. 3d, e). However, when the lettuce psbA regu-

latory region was used in tobacco chloroplasts or vice

Table 2 Engineering the chloroplast genome for biotechnology applications (Continued)

trnI/trn A BACE Prrn/TpsbA 2.0 % TSP Immunogenic response against the
BACE antigen in mice

[290]

rbcL/accD OspA, OspA-T PpsbA/TpsbA 1–10 % TSP Systemic immune response and
protection against Borrelia burgdorferi
(Lyme disease)

[311]

trnN/trn R LTB Prrn/T7g10/TrbcL 2.3 % TSP GM1 ganglioside-binding assay; oral
immunization partially protected mice
from cholera toxin challenge

[312]

trnN/trnR DPT Prrn/T7g10/TrbcL 0.8 % TSP Immunogenic in orally inoculated mice
with freeze-dried chloroplast-derived
multi-epitope DPT protein

[313]

trnN/trnR C4V3 Prrn/T7g10/TrbcL ~15 μg mg−1 DW Plant-derived C4V3 has elicited both
systemic and mucosal antibody
responses in mice, as well as CD4+ T
cell proliferation responses

[314]

trnN/trnR L1 Prrn/TrbcL >2 % of TSP Proper folding and display of
conformational epitopes for L1 in the
fusion protein by antigen capture ELISA

[315]

trnfM/trnG p24 Prrn/T7g10/TrbcL ~4 % TSP Induced strong CD4+ and CD8+ T-cell
responses in mice

[316]

trnGtrnfM HEV E2 Prrn/psbA/TpsbA 1.09 ng μg−1 TSP Immune response in mice against
hepatitis E virus

[317]

trnH/trnK CSFV E2 Prrn/TpsbA 1–2 % TSP Immune response in mice against
swine fever

[318]

rrn16/rps12/7 TetC Prrn/T7 g10/TrbcL
atpB/TrbcL

10–25 % TSP Mice developed systemic immune
response and survived the tetanus
toxin challenge

[319]

rrn16/trnI E7 PpsbA/Trps 3–8 % TSP Several therapeutic HPV-specific
E7-based vaccine formulations have
been tested in animal models and
some have advanced into clinical trials

[320]

Abbreviations: Ang (1–7) Angiotensin (1–7), BACE human b-site APP cleaving enzyme, Bgl β-glucosidase, CPE carbapenemase-producing Enterobacteriaceae, CTB

cholera toxin B subunit, DGDG digalactosyldiacylglycerol, DPT diphteria, pertussis, tetanus, DW dry weight, EDA extra domain A-fibronectin, ELISA enzyme-linked

immunosorbent assay, ETEC enterotoxigenic Escherichia coli, EX4 exendin-4, FVIII coagulation factor VIII, FW fresh weight, HPV human papilloma virus, IP intraperitoneal,

MBP myelin basic protein, MGDG monogalactosyldiacylglycerol, NR not recorded, RbcS small subunit of RuBisCO, RuBisCO ribulose-1,5-bisphosphate

carboxylase/oxygenase, TLP total leaf protein, TSP total soluble protein, VSV vesicular stomatitis virus
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versa, transgene expression was dramatically reduced

(Fig. 3d, e) [128]. Nucleotide differences within the psbA

5′ UTR between tobacco and lettuce (Lactuca sativa)

resulted in changes that decreased the interaction of

RNA-binding proteins and produced variation in the size

of the stem, bulge, and terminal loop of the UTR [128].

In addition, most regulatory proteins (including sigma

factors that bind to the promoter region) are nuclear

encoded and transported to chloroplasts. This under-

scores a caveat associated with using regulatory se-

quences for transgene expression: the need to make

species-specific chloroplast vectors to accommodate

highly specific regulatory region-binding proteins.

Heterologous regulatory sequences are necessary for

transgene expression that is independent of cellular con-

trol, especially in non-photosynthetic organs such as

fruits and edible roots, where chloroplast protein synthe-

sis is poor [133]. A heterologous UTR (T7 gene10) was

first evaluated for expression in leaves [127, 134] and

was subsequently tested in non-green tissues. When the

expression of BETAINE ALDEHYDE DEHYDROGENASE

(BADH) was regulated by the T7 gene10 UTR in carrot

(Daucus carota) plants, 75 % of the expression level in

leaves was observed in non-green edible roots, conferring

the highest level of salt tolerance (400 mM NaCl) found in

the published literature (Fig. 4i, j) [135]. Although T7

gene10 has been successfully used to engineer salt toler-

ance in non-green tissues, its expression level is not as

high as that of the psbA regulatory sequence in leaves

[136]. The only other heterologous UTR that expressed

transgenes at high levels is that from the Bacillus thurin-

giensis (Bt) operon [137]. Use of this operon produced the

highest level of insecticidal toxin protein (52 % TLP) ever

reported in the published literature [137]. These high

levels of toxin accumulation in chloroplasts could result

from the combination of high-level expression and protein

stability; the Bt protein formed cuboidal crystals within

chloroplasts (Fig. 4e) due to co-expression of a chaperone

(a)

(c) (d)

(b)

(e)

(h) (i) (j)

(f) (g)

(k)

Fig. 4 Engineering the chloroplast genome to confer biotic/abiotic stress tolerance or expression of high-value products. a–d Industrial production of

blood clotting factor IX (FIX) bioencapsulated in lettuce plants in a hydroponic cGMP facility. a Biomass production of FIX-expressing plants. b–d Steps

in capsule preparation. After harvesting and lyophilization of fresh leaves, freeze-dried FIX-accumulating leaves were powdered and prepared

as capsules [6]. e–g Overexpression of the Bt cry2Aa2 operon in chloroplasts leads to the formation of the Bt insecticidal crystal protein. In

bioassays with the Helicoverpa zea, f eating the transplastomic leaf kills the caterpillar, while g the control leaf is consumed by the growing

caterpillar [137]. h Ultrastructure of the chloroplast envelope membrane of transplastomic γ-tocopherol methyltransferase (γ-TMT) tobacco

plants shows the formation of multiple layers of inner envelope membranes as the result of γ-TMT overexpression [153]. i, j Expression of

BETAINE ALDEHYDE DEHYDROGENASE (BADH) in carrot plants. i Transgenic carrot plants thrived in soil irrigated with 400 mM sodium chloride,

whereas untransformed carrot plants showed retarded growth in the presence of salt. j Carrot roots from transplastomic plants [135]. k Phenotypes of

tomato fruits from transplastomic tomato plants expressing lycopene β-cyclase transgenes compared with wild-type plants. Fruits were harvested at

different ripening stages. Orange color of ripe fruits indicates efficient conversion of red lycopene into orange β-carotene (provitamin A) [154]
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that facilitates folding. When fed, transplastomic leaves,

cotton bollworm (Helicoverpa sp.) were killed with a sin-

gle bite of leaf and insects that had 40,000-fold increased

resistance to Bt were also killed (Fig. 4f, g). Nevertheless,

expression of this transgene in tomato fruit is very poor

[133, 138, 139] and further research is needed to enhance

transgene expression in fruits.

Engineering the chloroplast genomes for
biotechnology applications
Conferring stress tolerance

In the past decade, chloroplast genetic engineering has

focused primarily on the overexpression of target genes

with the potential to enhance biotic stress tolerance,

which is very important for plant protection and yield

enhancement. Yield loss due to insect pests can be very

serious in many countries. In addition to cotton boll-

worm resistance conferred by hyper-expression of Bt

protein in chloroplasts [137], there are many other strik-

ing recent examples of improved biotic stress tolerance.

Retrocyclin-101 and Protegrin-1 protect against Erwinia

soft rot and tobacco mosaic virus (TMV), which result

in yield loss in several cultivated crops [140]. Whitefly

and aphid resistance has been accomplished by express-

ing β-glucosidase [141], which releases insecticidal sugar

esters from hormone conjugates. Multiple resistances

against aphids, whiteflies, lepidopteran insects, and bac-

terial and viral pathogens were achieved by expressing

the Pinellia ternata agglutinin (PTA) gene in the chloro-

plast genome [142]. More than 40 transgenes have been

stably integrated into and expressed within the chloro-

plast genome, conferring important agronomic traits,

including insect resistance in edible crops cabbage

(Brassica oleracea) [143], soybean [144, 145], and egg-

plant (Solanum melongena) [146].

More recently, scientists have begun to explore new

strategies to downregulate specific target genes. One

such approach is to express double-stranded RNAs

(dsRNAs) within the chloroplast genome and to use

RNA interference (RNAi) to confer the desired agro-

nomic traits, mainly resistance to insects that cause

severe yield loss. This strategy has been demonstrated

by expressing long or short dsRNAs that activate

RNAi and disrupt target genes in insects, providing

efficient protection against insects without the need

for chemical pesticides. One such example is the sup-

pression of three essential proteins required for insect

survival—lepidopteran chitin synthase (Chi), cytochrome

P450 monooxygenase (P450), and V-ATPase—using

dsRNAs in the tobacco chloroplast system [147]. Each

dsRNA was expressed independently in chloroplasts and

leaves were fed to insects. The transcription level of target

genes in Helicoverpa insects decreased to almost un-

detectable levels in the midgut, resulting in a significant

reduction in the net weight of larvae and in pupation rate

[147]. Transplastomic potato plants producing β-actin-

targeting long dsRNA were lethal to Colorado potato

beetle (Leptinotarsa decemlineata) larvae, providing yet

another crop protection mechanism [148].

Synthesis of enzymes and biomaterials

In addition to improved resistance against both biotic

and abiotic stress, the chloroplast genome has been

engineered to produce useful enzymes, biomaterials, and

biofuels, or even to enhance biomass. The first report of

metabolic engineering using chloroplast genomes pro-

duced the highest level of the poly(p-hydroxybenzoic

acid (pHBA) polymer (25 % dry weight) in normal

healthy plants despite the diversion of a major metabolic

intermediate [149]. The first use of plant-derived enzyme

cocktails for the production of fermentable sugars from

lignocellulosic biomass was accomplished recently [150].

Unlike the single biofuel enzymes previously expressed

in chloroplasts, nine different genes from bacteria or

fungi were expressed in E. coli or tobacco chloroplasts

using a new technique that enabled the insertion of fun-

gal genes with several introns, eliminating the need to

prepare cDNA libraries. Industrial fermentation systems

are currently limited by high cost and low production

capacity; chloroplast-derived enzyme cocktails offer sev-

eral striking advantages, including significantly reduced

cost, improved stability of chloroplast-derived enzymes,

and no need for enzyme purification. Interestingly, ex-

pression of β-glucosidase released hormones from con-

jugates, resulting in elevated phytohormone levels and

increased biomass [141], an unexpected outcome of en-

zyme expression.

Enhancing nutrition

Seed oils, such as those from soybean, rapeseed (Brassica

napus), and maize, are the major dietary source of vitamin

E. They have very low α-tocopherol content but relatively

high levels of γ-tocopherol. Only a few seed oils, such as

sunflower (Helianthus annuus) seed oil, contain high

levels of α-tocopherol, an important precursor of vitamin

E [151]. γ-Tocopherol is the biosynthetic precursor of α-

tocopherol, suggesting that the α-tocopherol biosynthetic

pathway catalyzed by γ-tocopherol methyl transferase

(γ-TMT) is the rate-limiting step [152]. Engineering

of the γ-tmt gene into the chloroplast genome re-

sulted in the formation of multiple layers of the inner

chloroplast envelope (Fig. 4h) due to γ-TMT overex-

pression, with around tenfold higher conversion of γ-

tocopherol to α-tocopherol in seeds [153]. Likewise,

introducing lycopene β-cyclase genes into the tomato

plastid genome increased the conversion of lycopene

into provitamin A (β-carotene), with obvious pheno-

typic changes (Fig. 4k) [154].
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Biopharmaceuticals

At present, protein drugs are extremely expensive; for

example, >90 % of the global population cannot afford

insulin, a drug needed to treat the global diabetes epi-

demic. The high cost of protein drugs is due to their

production in prohibitively expensive fermentation sys-

tems (which cost more than $450–700 million to build

depending on their capacity [155, 156]), prohibitively ex-

pensive purification from host proteins, the need for re-

frigerated storage and transport, and the short shelf-life

of the final product. Protein drugs made by plant chloro-

plasts overcome most of these challenges because they

do not require expensive fermentation systems and are

produced in federal drug administration (FDA)-approved

hydroponic greenhouses (Fig. 4a) [157]. Lettuce leaves

expressing protein drugs are lyophilized and stored in-

definitely at ambient temperature without losing their

efficacy (Fig. 4b–d) [6]. The plant cell wall protects pro-

tein drugs from acids and enzymes in the stomach be-

cause human enzymes do not digest plant cell wall

glycans. Human gut microbes, however, have evolved to

break down every glycosidic bond in the plant cell wall

and therefore release the protein drug into the gut

lumen, directing its delivery to the blood or immune

system [158, 159].

Oral delivery of several human therapeutic proteins

expressed in chloroplasts is highly efficacious in the

treatment of several human diseases, including diabetes,

cardiovascular disease, pulmonary hypertension, and

Alzheimer’s disease. Most proteins were expressed in to-

bacco chloroplasts for initial evaluation and were subse-

quently expressed in lettuce chloroplasts for advancing

them to the clinic. Oral delivery of exendin-4, which

modulates the secretion of insulin in a glucose-

dependent manner, lowered glucose in diabetic animals

by stimulating the production of insulin in a manner

similar to that of the injectable drug [160]. Oral delivery

of angiotensin-converting enzyme 2 (ACE2) and angio-

tensin (Ang) (1–7) significantly improved cardiopulmo-

nary structure and function, decreased elevated right

ventricular systolic blood pressure, and improved pul-

monary blood flow in animals with induced pulmonary

hypertension [161]. Oral delivery of plant cells express-

ing ACE2 and Ang (1–7) also reduced endotoxin-

induced uveitis (EIU) and dramatically decreased cellular

infiltration and retinal vasculitis, as well as damage and

folding in experimental autoimmune uveoretinitis [158].

It is also possible to orally deliver protein drugs across

the blood–brain barrier to the Alzheimer’s brain to re-

move plaques [162].

The first industrial-scale production of human blood

clotting factor in a cGMP facility was reported recently

[6] (Fig. 4a–d). In a 1000 ft2 hydroponic cGMP facility,

it is possible to produce up to 30,000 doses for a 20-kg

pediatric patient. Clotting factor made in lettuce was

stable for up to 2 years when lyophilized cells were

stored at ambient temperature, completely eliminating

the need for the cold chain. This enables the first com-

mercial development of an oral drug and addresses the

extremely expensive purification, cold storage and trans-

portation, and short shelf-life of current protein drugs.

Oral delivery of a broad dose range was effective in the

prevention of antibody formation after injection of clot-

ting factor IX (FIX), further facilitating human clinical

studies.

Vaccines against infectious diseases

The current iteration of vaccines, using attenuated bac-

teria or viruses, offer protection against major infectious

diseases but they also present major challenges. For ex-

ample, the oral polio vaccine that is used around the

globe has caused severe polio resulting from mutations

and recombination with other viruses [163]. In addition,

all current vaccines require cold storage and transporta-

tion, making distribution in developing countries a

major challenge. Many of these challenges can be over-

come by using chloroplasts.

One successful chloroplast-derived vaccine conferred

dual immunity against cholera and malaria in animal

studies [164]. Cholera is a major disease causing high

mortality, with the only licensed vaccine being not only

expensive but also limited in its duration of protection.

No vaccine is currently available for malaria. The cholera

toxin-B subunit (CTB) of Vibrio cholerae was fused to

the malarial vaccine antigen apical membrane antigen-1

(AMA1) and merozoite surface protein-1 (MSP1) and

expressed in lettuce or tobacco chloroplasts. While no

suitable models exist to test human malaria, a cholera

toxin challenge using mice immunized with chloroplast-

expressed CTB was highly effective and provided the

longest duration of protection in the published literature

[164]. These early results show that chloroplasts are

ideal for producing low-cost booster vaccines against

several infectious diseases [165] for which the global

population has been primed previously (Table 2), but

lack of an oral priming strategy is still a major limitation

in this field.

Moving forward
It is amazing that the chloroplast genome can express

>120 foreign genes from different organisms, including

bacteria, viruses, fungi, animals, and humans. The in-

sertion of commercially useful traits, including herbi-

cide and insect resistance, into soybean resulted in

high-level expression and superior transgene contain-

ment, with no antibiotic selectable markers; but even

so, these lines were not developed commercially.

Nevertheless, recurring concerns about insect resistance
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against biopesticides have resulted in new USDA re-

quirements on planting Bt corn [122], which may

eventually require utilization of the transplastomic ap-

proach to confer agronomic traits. The nuclear trans-

genic approach is inadequate to develop products

when higher-level transgene expression is a require-

ment. Thus, chloroplast transformation has a unique

advantage in advancing the field of molecular farming

for the production of vaccines, biopharmaceuticals, or

other bio-products.

Although products with high-level expression have

now advanced to the clinic or are in commercial devel-

opment, a better understanding of chloroplast transla-

tion is required to improve several other gene products.

The availability of chloroplast genome sequences should

help in the development of codon optimization pro-

grams using highly expressed chloroplast genes, but

among the ~3000 cultivated crops, sequenced chloro-

plast genomes are available for crops from fewer than 70

genera. Major funding agencies have not supported crop

chloroplast genome sequence projects because of the

misconception that all chloroplast genomes are similar,

as evidenced by the publication of fewer than ten crop

chloroplast genome sequences between 1986 and 2004.

This review illustrates the importance of sequencing

more crop chloroplast genomes for various biotechnol-

ogy applications. Furthermore, new selectable markers

are needed to transform the chloroplast genomes of ce-

reals, which has been elusive for the past two decades.

Chloroplast genome sequences will be valuable assets

in herbal medicine. Most medicinal plants are rare spe-

cies and very little information is available to confirm

their identity. DNA barcodes derived from chloroplast

genomes will be useful for identifying varieties and re-

sources; this concept is also valuable in the identification

of the origin of cultivated crops and their close relatives

to enhance breeding or transfer of useful traits. Molecu-

lar techniques to sequence the genomes of single chloro-

plasts could help to eliminate chloroplast-like sequences

that are present in the mitochondrial or nuclear genome.

The ability to sequence chloroplast genomes using

minimal leaf materials could help us to understand

variations in different segments of a variegated leaf in

horticultural crops. Further, determining complete

chloroplast genome sequences from fossils or recently

extinct plants could shed more light on chloroplast

genome evolution; help us to understand these spe-

cies’ inadequate fitness to cope with environmental

changes; and help us to build new phylogenetic trees.

The technology for isolating DNA from fossils is

already available [166–168]. All of these goals can be

accomplished with less expensive and more accurate

genome sequences, utilizing longer read sequencing

technology and new bioinformatics tools.
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