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Abstract
The anti-malarial drugs chloroquine (CQ) and hydroxychloroquine (HCQ) have been suggested as promising agents against the
new coronavirus SARS-CoV-2 that induces COVID-19 and as a possible therapy for shortening the duration of the viral disease.
The antiviral effects of CQ and HCQ have been demonstrated in vitro due to their ability to block viruses like coronavirus SARS
in cell culture. CQ and HCQ have been proposed to reduce immune reactions to infectious agents, inhibit pneumonia exacer-
bation, and improve lung imaging investigations. CQ analogs have also revealed the anti-inflammatory and immunomodulatory
effects in treating viral infections and related ailments. There was, moreover, convincing evidence from early trials in China about
the efficacy of CQ and HCQ in the anti-COVID-19 procedure. Since then, research and studies have been massive to ascertain
these drugs’ efficacy and safety in treating the viral disease. In the present review, we construct a synopsis of the main properties
and current data concerning the metabolism of CQ/HCQ, which were the basis of assessing their potential therapeutic roles
against the new coronavirus infection. The effective role of QC and HCQ in the prophylaxis and therapy of COVID-19 infection
is discussed in light of the latest international medical-scientific research results.

Key points
• Data concerning metabolism and properties of CQ/HCQ are discussed.
• The efficacy of CQ/HCQ against COVID-19 has been the subject of contradictory results.
• CQ/HCQ has little or no effect in reducing mortality in SARS-CoV-2-affected patients.
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Introduction

There is currently no general consensus on prophylactic or pre-
ventive therapy options for SARS-CoV-2, and a vaccine is
expected to be produced and distributed to the population no

earlier than 12–18 months from the pandemic outbreak.
However, many clinical trials are underway to test the efficacy
of old drugs reused against the novel coronavirus. Despite the
time-consuming complexity of designing, researching, and pro-
ducing new drugs, the repurposing of proven pharmaceutical
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remedies provides a proactive solution in responding rapidly
and effectively to the SARS-CoV-2 disease (COVID-19)
(Harrison 2020; Kearney 2020). Among such drugs, there are
anti-malarial chloroquine (CQ) and hydroxychloroquine
(HCQ) that have been indicated as a possible therapy for short-
ening the duration of COVID-19 (Fig. 1) (Colson et al. 2020).
Compared with QC, the derivative HQC has fewer side effects,
drug-drug interactions, and toxicity. Clinical data for CQ and
HCQ are well known, and there is nowadays ample expertise
on their optimum usage, metabolism, the dose required, and
routes of administration, transport, and excretion. First reports
on CQ/HCQ have shown their potential role in reducing im-
mune reactions to infection in inhibiting pneumonia exacerba-
tion, reducing the fever duration, and improving lung health, in
addition to its antiviral properties (Devaux et al. 2020; Wang
et al. 2020). Immediately after the outbreak began, Chinese and
worldwide pharmaceutical industries intensified the production
and import of chloroquine phosphate, and the pharmaceutical
company Bayer accelerated the production and shipment of
Resochin (chloroquine phosphate) to the provincial govern-
ment of Guangdong. On 3 March 2020, the National Health
Committee of the People’s Republic of China (NHC) released
the “Diagnosis and Treatment of New Coronavirus
Pneumonia” (Trial Edition 7) in which CQ was included in
the antiviral therapy protocol. The established CQ doses were
chloroquine phosphate (500 mg twice a day for 7 days for
adults aged 18–65 with body weight over 50 kg; 500 mg twice
a day for days 1 and 2 and 500 mg daily for days 3–7 for adults
with body weight below 50 kg) (National Health Commission
2020).

Afterward, to test CQ’s efficacy and safety and its deriva-
tives to treat SARS-CoV-2, a range of clinical trials started,
and several are currently ongoing. On 5 November 2020, 90
trials have been registered (ClinicalTrials.gov 2020).
Although some evidence with positive results early appeared,
most of these studies are now considered of insufficient qual-
ity, limited, and mostly affected by high risks of bias (Gautret
et al. 2020; Hernandez et al. 2020; Huang et al. 2020;
Rosendaal 2020; Wang et al. 2020). Nowadays, there are in-
creasing data reporting evidence of the ineffectiveness of CQ
and HCQ in improving the prognosis or shorten the clinical

course of COVID-19 (Gao et al. 2020a; Horby et al. 2020;
Kashour et al. 2020; Lammers et al. 2020). Also, some reports
highlight the severe risks, including death, when CQ is used in
high dose and the potentially detrimental consequences of
rapid dissemination of over-interpreted data of its efficacy
(Das et al. 2020; Ektorp 2020; Kim et al. 2020; Touret and
de Lamballerie 2020). In a recent report, Junqueira and Rowe
highlighted the heterogeneous and insufficient approaches of
early randomized control trials (RCTs) of the COVID-19 pan-
demic to measure CQ or HQ’s effectiveness and safety rele-
vant to patients and clinical practice and the urgent need for
well-designed high-quality RCTs (Junqueira and Rowe
2020). The present review analyzes QC and HCQ properties
and activities, some of which were based on their assumed
potential therapeutic role against the new coronavirus infec-
tion. It summarizes the results achieved so far about their real
efficacy in the prophylaxis and therapy of COVID-19
infection.

Chloroquine metabolism

CQ is an amino acid tropic version of quinine, synthesized by
Bayer inGermany in 1934, and originated as an adequate replace-
ment for natural quinine approximately 70 years ago (Parhizgar
and Tahghighi 2017; Winzeler 2008). Quinine is a compound
present in the Peruvian-born bark of Cinchona trees and was the
earlier drug of choice for malaria (Spiro 1986). CQ has been a
front-line medicine for malaria prevention and prophylaxis for
decades, and it is one of the most commonly used medicines in
the world (White 1996). The properties and activities carried out
by CQ and HCQ are discussed in the next sections.

Chloroquine as an antiviral agent

Since the late 1960s, the in vitro antiviral role of chloroquine
has been established, and it has been shown that the develop-
ment of many different viruses, like coronavirus SARS, can
be blocked in cell culture by both CQ and HCQ (Keyaerts
et al. 2004; Shimizu et al. 1972). CQ has also been used
ex vivo for mice with ebolavirus, Nipah, and the infectious
influenza virus (Dowall et al. 2015; Falzarano et al. 2015;
Vigerust and McCullers 2007). Additionally, the antiviral ac-
tivity of QC has also been shown in vivo, in mouse models,
against other types of viruses, including human coronavirus
OC43, enterovirus EV-A71, Zika virus, and influenza A
H5N1 (Keyaerts et al. 2009; Li et al. 2017; Tan et al. 2018;
Yan et al. 2013). Conversely, in a randomized, double-blind
placebo-controlled clinical trial, CQ was not able to prevent
influenza A (H1N1, H3N2) and B infection, and in another
RCT, involving 307 dengue virus (DENV) infected patients,
the drug has been shown to have only a little effect onFig. 1 The structure of chloroquine and hydroxychloroquine
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reducing the duration of viremia (Paton et al. 2011; Tricou
et al. 2010). The case of the chikungunya virus (CHIKV) is
of particular interest. Essentially, CQ has demonstrated posi-
tive antiviral efficacy in vitro, conversely in vivo, with differ-
ent animal models. CQ has been shown to improve alphavirus
replication, most likely due to its immune modulation and
anti-inflammatory properties (Coombs et al. 1981; Delogu
and de Lamballerie 2011; Katz and Russell 2011; Roques
et al. 2018).

Conversely, CQ therapy has been shown to worsen acute
fever in a nonhuman primate model of CHIKV infection and
prolongs the cellular immune response, leading to an inade-
quate viral clearance (Roques et al. 2018). A clinical trial,
performed in Réunion Island during the 2006 chikungunya
outbreak, concluded that oral CQ therapy did not change the
progression of the acute disease and that chronic arthralgia
was more common in diagnosed patients on day 300 post-
illness than in the control group (Lamballerie et al. 2008;
Roques et al. 2018). Overall, the review of recent studies
shows that no acute virus infection in humans has been suc-
cessfully treated with CQ to date. The drug has also been
studied in chronic infections. Its use in the care of HIV-
infected patients was found inconclusive, and the drug was
not included in the group approved for HIV diagnosis
(Chauhan and Tikoo 2015). The only significant effect of
CQ in human virus infection treatment was found for chronic
hepatitis C (HCV). CQ showed, in fact, an improvement in the
early virological and biochemical responses in combination
with pegylated interferon plus ribavirin (Helal et al. 2016).
A temporary viral load reduction was observed in a small
sample size pilot study in non-responder HCV patients
(Peymani et al. 2016). However, this was not enough to pro-
vide CQ for patients with HCV in the unified treatment pro-
tocol procedures.

Anti-inflammatory and immunomodulatory
activities

CQ and HCQ have shown anti-inflammatory and immuno-
modulatory activities in treating viral infections and related
pathologies in many ways (Al-Bari 2015; Giri et al. 2020).
Numerous studies showed that simultaneous organ failure and
hypovolemic shock found in fatal situations are most likely
correlated not only with direct viral infections and the death of
vulnerable cells (e.g., endothelial cells) but also with the ac-
tivity of proinflammatory cytokines, chemokines, and other
mediators generated by damaged and activated cells such as
monocytes and macrophages (Baize et al. 1999; Marzi et al.
2012). One of the cytokines strongly involved in filoviral pa-
thologies is tumor necrosis factor-α (TNF-α), which induces
macrophages to release mediators, including reactive oxygen
species (ROS) and nitric oxide (NO). These cytokines allow

endothelial cells to become more permeable and prone to be
infected (Tracey and Cerami 1994). Therapeutic agents such
as QC and analogs, which can prevent macrophage activation
and inhibit TNF-α secretion by specific cells at the clinically
appropriate concentration, are believed to offer some benefits
in treating viral infections. CQ/HCQ has also been shown to
decrease cytokine interferon-γ (IFN-γ) production (van den
Borne et al. 1997). IFN-γ has been implicated in the patholo-
gies of Ebola virus disease (EVD) and other infections (Al-
Bari 2015; Villinger et al. 1999; Al-Bari 2017). IFN-γ has
been reported to increase cell susceptibility to apoptosis by
up-regulating the apoptosis antigen 1 (Fas) and Fas ligand
expression in the severe instance of EVD (Schroder et al.
2004). IFN-γ also participates in severe apoptosis by activat-
ing through monocytes/macrophages, the neopterin produc-
tion, and its corresponding derivative 7-8-dihydroneopterin,
a biomarker of proinflammatory immune status (Murr et al.
2002). Therefore, CQ/HCQ, able to inhibit cytokines’ produc-
tion and prevent macrophages’ activation, has attracted great
attention as possible useful tools in treating patients affected
by the new SARS-CoV-2.

Oxidative and nitrosative stress activity

The role of ROS in the pathogenesis of viral infections and the
vulnerability of the immune system are factors that are usually
underestimated (Paiva and Bozza 2014). Both viral infections
and activation of the renin-angiotensin system (RAS) generate
ROS in a propagative manner, which results in oxidative dam-
age. Increased ROS amounts have detrimental effects on cel-
lular macromolecules such as lipids, proteins, and nucleic
acids. Both endogenous (intracellular) and in particular exog-
enous (environmental) are sources of free radicals leading to
DNA impairment and oxidative stress (Bjorklund et al. 2020;
Zoroddu et al. 2014). Previous experiments in vivo and
in vitro have shown that anti-malarial drugs CQ and
primaquine can inhibit the hepatic microsomal mixed-
function oxidases (Emerole and Thabrew 1983; Riviere and
Back 1986; Thabrew and Ioannides 1984) and cause oxidative
stress, mainly in erythrocytes, acting as a hemolytic agent in
rats (Bolchoz et al. 2002). Chronic treatment with CQ has
been found to have different effects on antioxidant enzymes
in the liver than in rats’ kidneys. Prolonged intake of QC has
been associated with a lowering of the liver’s antioxidant sys-
tem and an increase in malondialdehyde production (MDA) in
the kidneys. In both cases, the organs became more suscepti-
ble and subject to oxidative stress (Magwere et al. 1997).
Historically, the effectiveness of QC for Plasmodium
falciparum (NCBI:txid5833) has been attributed to the inhibi-
tion of heme polymerase leading to the accumulation of free
heme, which is toxic to the malarial parasite (Slater and
Cerami 1992). Free heme excess is connected to oxidative
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and inflammatory injury also in higher organisms. Several
experimental data demonstrated that elevated free heme levels
cause significant toxic effects on the liver, kidney, central
nervous system, and heart tissue and that free heme catalyzes
oxidation, protein aggregation, coagulation, covalent cross-
linking, and degradation to small peptides.

Additionally, the heme-CQ complex results in a greater
potential harmful species able to attack and disrupt intracellu-
lar targets such as DNA, lipid bilayer, cytoskeleton, and inter-
mediate metabolic enzymes (Giovanella et al. 2015; Klouda
and Stone 2020; Wagener et al. 2003). Heme alone can also
cause lipid peroxidation, but this process is markedly ampli-
fied by the heme-CQ complex formation (Klouda and Stone
2020). It appears that CQ- and HCQ-induced systemic oxida-
tive stress could contribute to the pathology of acute respira-
tory distress syndrome (ARDS) and hypoxia status, which are
often the cause of death in COVID-19 patients. Also, CQ
induces increased NADPH-induced lipid peroxidation and
glutathione content in rat retina (Bhattacharyya et al. 1983).
Consequently, the retina may be particularly susceptible to
oxidative stress damage during prolonged clinical CQ treat-
ment (Michaelides et al. 2011). CQ and other 4-
aminoquinolines have also been found to have an adverse
effect on lysosomal activity. In human glioma cell lines, CQ
induced loss of mitochondrial membrane potential (MMP),
autophagic vacuoles accumulation, and cell viability loss.
However, the CQ-induced glioma cell death has been mainly
associated withMMP loss and not to oxidative stress (Vessoni
et al. 2016). CQ stimulates inducible nitric oxide synthase
(iNOS) expression and NO synthesis in C6 glioma cells
(Chen et al. 2005). This ability has been early demonstrated
in vitro study in mouse, pig, and human endothelial cells
(Ghigo et al. 1998). In conclusion, evidence indicates that
prolonged QC/HQC treatment can induce oxidative stress
and thus worsen the condition of COVID-19 patients.

Genotoxic and mutagenic activity

CQ has been reported at a certain concentration, increasing
chromosome aberrations (Sahu and Kashyap 2012). For in-
stance, Roy et al. measured the genotoxic ability of CQ in
Swiss albino mice using chromosome aberration, micronucle-
us, and in vivo sperm abnormality test. They found that in the
bone marrow cells, CQ causes chromosome aberration, as
well as micronucleus. CQ’s genotoxicity was also tested by
an abnormality test of the sperm head, for which a significant
large rise in incidence was found following CQ treatment
(Roy et al. 2008). In vivo tests revealed a very weak mutagen-
ic effect of CQ, primaquine, and amodiaquine in mice’s bone
marrow cells but confirmed their ability to induce chromo-
somal aberrations (Chatterjee et al. 1998). However, several
other studies linked CQ with mutagenic processes in several

bacterial strains (Giri et al. 2020). Shalumashvili and Sigidin
researched the cytogenetic effects of CQ in the population of
human lymphocytes. They reported that the application of CQ
to a colony of human lymphocytes at stage G1 revealed that
the compound inhibits cell mitotic function at 60 and 100
μg/ml concentrations (Shalumashvili and Sigidin Ia 1976).
Farombi et al. studied CQ genotoxicity in rats using the alka-
line comet assay. They reported greatly increase DNA strand
breaks of rat liver cells in a CQ dose-dependent manner in a
process in which ROS are probably the leading factors
(Farombi 2006).

Despite its extensive human use, the genotoxic effects of
anti-malarial drugs should be taken into account. In vitro stud-
ies on mammalian systems and reports on rheumatoid or
aplastic anemia patients treated with CQ, together with multi-
ple test systems investigations (i.e., Wistars rats, mouse bone
marrow cells, and African common toad), showed the muta-
genic, genotoxic, carcinogenic, and co-carcinogenic effect of
CQ, in terms of chromosomal aberrations, sister-chromatid
exchange, sex-linked recessive lethal, DNA damage, inhibi-
tion of DNA repair, micronuclei formation, and genesis of
tumors (lymphosarcomas, myeloblastic leukemia) (Giri et al.
2020).

Long-term clinical studies and careful post-marketing
monitoring are needed in the coming decades to see if any
of the anti-malarial drugs can cause cancer in humans.

Inhibition of electron transport chain (TCA)

CQ and others and other anti-malarial drugs (primaquine,
quinacrine, and naphthoquinone) inhibit the respiration pro-
cess in the mitochondria of malaria protozoan parasites
P. falciparum. It has been reported that the CQ/HCQ inhibi-
tion of the respiration process in the Plasmodium cells mito-
chondria can be removed through the introduction of
CoenzymeQ10 (CoQ10), suggesting that these drugs interfere
with the respiration process probably also through interaction
with CoQ10. This inhibition could be directly linked to their
anti-malarial activity of CQ/HCQ. Nonetheless, the anti-
malarial action is not strictly related to interaction with the
biosynthesis or the work of CoQ10 but can include binding
to enzymes closely associated with it (Skelton et al. 1968).

In the parasite cells, mitochondria morphologically and
physiologically adapt to the hosts’ environmental conditions
(Torrentino-Madamet et al. 2010). P. falciparum has minimal
mitochondrial genomes, including three encoded proteins, and
ribosomal RNAs extremely fragmented (Sahu and Kashyap
2012). P. falciparummitochondria do not show complete glu-
cose oxidation to support the synthesis of mitochondrial ATP.
The energy metabolism of P. falciparum is different from that
of the other mammalian hosts since it has a simple metabolism
and many biosynthetic pathways are absent (Vaidya and
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Mather 2009). For example, the metabolic pathways of purine
and pyrimidine are distinct from mammalian hosts. So
targeting these pathways with newly designed drugs could
overcome the problem of parasite resistance to currently avail-
able drugs (Cassera et al. 2011). Mitochondria, through sev-
eral signaling mechanisms, play a critical role in the apoptotic
cycle. A study performed on primary rat cortical neurons to
check CQ’s effect (and bafilomycin A1) highlighted both
drugs’ propensity to inhibit autophagy, disrupt mitochondrial
activity, and cause mtDNA damage. CQ inhibits autophagy
by interfering with lysosomal function preventing the fusion
of lysosomes with autophagosomes. Furthermore, significant
alterations of TCA cycle intermediates have been detected, in
particular, linked to citrate synthase and glutaminolysis.
Finally, CQ affects cellular bioenergy and metabolism, alter-
ing mitochondrial activity and damaging the TCA cycle
(Redmann et al. 2017). In this context, there is some other
evidence showing that high doses of CQ and HCQ affect
human mitochondrial functions with significant alteration of
the mitochondrial antioxidant buffering capacity and accentu-
ating oxidative stress (Chaanine et al. 2015). Consequently, in
pathological hypertrophy or heart failure patients, these drugs’
administration should be done with great caution since their
high dose is metabolically cardiotoxic (Chaanine et al. 2015;
Meyerowitz et al. 2020).

Zinc ionophores

Zinc modulates antiviral and antibacterial immunity and reg-
ulates the inflammatory response. Zinc ions are essential in
various cellular processes and crucial to the proper folding and
activity of various cellular enzymes and transcription factors
(Chasapis et al. 2020; Zoroddu et al. 2019). Zn2+ is probably
also an essential cofactor for several viral proteins.
Nonetheless, metallothioneins retain the intracellular concen-
tration of free Zn2+ at a relatively low level, possibly because
zinc ions can act as an intracellular second messenger and
induce apoptosis or decrease protein synthesis at high concen-
trations (Lazarczyk and Favre 2008). In eukaryotic cells, CQ
exerts a pleiotropic influence involving an increase of vacuo-
lar pH when embedded in acid organelles, such as lysosomes.
This rise in pH interferes with lysosomal acidification that
impairs autophagosome fusion and autophagic degradation
(Mizushima et al. 2010). CQ has been shown to function
synergistically with a protein kinase B (Akt) inhibitor to cause
tumor cell death at the molecular level (Lamoureux et al.
2013). However, knowledge of the function of CQs in cancer
cells at the cell and molecular levels is minimal. In previous
studies, it is stated that zinc ions have an anticancer function
by increasing the permeability of the lysosome membrane and
by controlling gene expression (Yu et al. 2009; Zheng et al.
2012). Zinc compounds are considered a new group of

potential anticancer agents, particularly zinc ionophores
(Xue et al. 2014). These drugs are considered to have a pos-
sible role in anticancer therapy and anti-COVID-19 therapy as
they have been shown to possess antiviral properties against
previous SARS-CoV and the ability to regulate the inflamma-
tory response. It has been shown that disulfiram, a molecule
able to targeting Zn ions in the structure of essential corona-
virus enzymes (papain-like proteases, PLpro) of MERS and
SARS, results in their destabilization (Lin et al. 2018). A strat-
egy targeting SCoV2-PLpro to suppress viral infection and
promote antiviral immunity has been recently proposed as a
therapeutic option against COVID-19 (Shin et al. 2020). It has
been reported that Zn2+ is an in vitro inhibitor of coronavirus
and arterivirus RNA polymerase activity and that zinc iono-
phores block the replication of these viruses in cell culture (te
Velthuis et al. 2010).

Consequently, CQ and HCQ, as Zn2+ ionophores, can me-
diate the antiviral effect of Zn2+ against SARS-CoV-2. CQ
and HCQ can be able to block virus replication by a direct
mechanism resulting from the increase in pH in the intracel-
lular vesicles, which inhibits the pH-dependent steps of the
SARS-CoV-2 replication, and an indirect mechanism due to
the targeting of extracellular Zn2+ to intracellular lysosomes,
where zinc ions act as RNA-dependent RNA polymerase in-
hibitors (Derwand and Scholz 2020). Consequently, zinc sup-
plementation appears an ally in the fight against COVID-19,
especially for people with proven Zn deficiency (Gasmi et al.
2020; Wessels et al. 2020). Several clinical trials investigating
the role of zinc supplementation in enhancing the clinical ef-
ficacy of CQ and HCQ in the treatment of COVID-19 are
currently running.

Iron antagonist

The research has long been on the topic of how CQ kills
Plasmodium parasites. Dysregulation of intracellular heme
levels is not tolerated and corresponds with the death of the
parasite. Piling the molecules into an inactive nontoxic crystal
called hemozoin, P. falciparum, prevents the harmful effects
of heme. QC acts as hemozoin inhibitors (Fong and Wright
2013). When CQ binds to heme, it is impossible to make
hemozoin, which causes the parasite to die in its waste
(Sullivan 2017). This idea is further supported because CQ
is distributed throughout the cytoplasm but accumulates with-
in the parasite’s acidic digestive vacuole. Extracellularly, CQ/
HCQ is often found in a protonated form that is incapable of
entering the plasma membrane due to its positive charge.

However, according to the Henderson-Hasselbalch theo-
rem, the unprotonated component that reaches the intracellular
compartment becomes protonated in a way that is inversely
proportional to the pH. The CQ/HCQ is abundant in acid
organelles such as the endosome, Golgi vesicles, and
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lysosomes, where the pH is low, and the majority of CQ/HCQ
molecules are charged positively, reachingmillimolar concen-
trations compared with the nanomolar concentrations found in
the plasma (Ohkuma and Poole 1981; Sullivan et al. 1996).
CQ/HCQ is released primarily by exocytosis to the extracel-
lular medium and/or through the activity of the multidrug
resistance protein MRP-1, a cell surface drug transporter
belonged to the ATP-binding cassette family, which further
consists of the more extensively studied P-glycoprotein
(Vezmar and Georges 1998; Vezmar and Georges 2000). It
is well known that weak bases, as CQ/HCQ, impair many
enzymes, including acid hydrolases, by increasing the pH of
lysosomal and trans-network vesicles and prevent post-
modification of newly synthesized proteins. The increase in
endosomal pH caused by CQ modulates iron metabolism
within human cells by impairing the endosomal release of iron
from holo-transferrin, thus reducing the intracellular iron con-
centration. This decrease, in turn, affects the role of many
cellular enzymes involved in pathways that lead to cellular
DNA replication and the expression of numerous genes
(Byrd and Horwitz 1991; Legssyer et al. 2003). Recently,
(Quiros Roldan et al. 2020) hypothesized that clinical CQ/
HCQ treatment could inhibit the complex between Tf and
transferrin receptor 1 (TFR1), inducing a cellular iron defi-
ciency which results in a negative influence of the SARS-
CoV-2 life cycle, as has also been already shown for other
human viruses (Drakesmith and Prentice 2008). However,
currently, there is no experimental evidence to confirm this
hypothesis. Conversely, a few in vitro studies have also shown
that CQ can form a membrane-bound complex with heme that
promotes lipid peroxidation due to close contact of iron ions
with unsaturated fatty acids of membrane phospholipids
(Klouda and Stone 2020). QC’s effect amplifies five times
that seen with heme alone (Sugioka et al. 1987).

Chloroquine as treatment of SARS-CoV-2

CQ has been shown to possess a wide range of potential action
against viruses, including most coronaviruses, particularly its
close relative SARS-CoV-1. Consequently, in a public health
emergency and the absence of any known effective therapy, it
makes sense to examine the possible effects of CQ on SARS-
CoV-2, which shares a similar phylogenetic heritage with pre-
vious coronavirus species and also because its entry occurs
through the endolysosomal pathway (Burkard et al. 2014).
CQ exerts several functions, one of which is to increase the
pH of intracellular vesicles, interfering with the pH-dependent
steps of viral replication, including maturation and fusion of
endosomes and lysosomes and virus uncoating (Wang et al.
2020). It has also been suggested that CQ-induced altered
ACE2 glycosylation that prevents S-protein binding, the even-
tual phagocytosis, and then releasing them into the cytoplasm

where viral replication happens (Vincent et al. 2005; Yang
et al. 2004). In vitro studies have indicated that both drugs
could block the transport of the virus from early endosomes
to endolysosomes, thus preventing the release of the viral
genome and blocking its reproductive cycle (Liu et al.
2020). In addition to its direct antiviral effect, CQ inhibits
cytokine synthesis, facilitating the inflammatory complica-
tions of viral infections (Karres et al. 1998; Savarino et al.
2003). Post-translational modification of membrane glycopro-
teins occurs within the vesicles of the endoplasmic and trans-
Golgi network for enveloped viruses. This event requires pro-
tease, glycosyltransferase, and a low pH value for proper func-
tioning. CQ, as a weak base, could inhibit this event. It is
assumed that CQ, as a lysosomotropic agent, can effectively
inhibit the coronavirus because the virus requires endosomal
acidification for proper functioning. (Vincent et al. 2005).
However, in a German study, it was observed that the virus
might penetrate some types of respiratory epithelial cells with
a pH-independent pathway. As a result, the authors stated that
CQ is unable to appreciably interfere with viral entry or later
stages of the viral replication cycle (Hoffmann et al. 2020).
Based on the promising in vitro data of Wang et al. on the
efficacy of both QC and antiviral remdesivir in inhibiting
SARS-CoV-2, it has been proposed to test these drugs in
patients with COVID-19 (Wang et al. 2020). Whether the
in vitro activity of CQ and HCQ against the novel coronavirus
resulted in appreciable activity in vivo with a safe and con-
ventional human dosage. Following other early positive re-
ports, CQ and HCQ were considered the best-known candi-
dates for affecting the frequency of human SARS-CoV-2 in-
fections (Gautret et al. 2020). In February 2020, the China
National Center for Biotechnology Development suggested
including CQ as a drug with a promising effectiveness profile
against the new coronavirus SARS-CoV-2. According to pre-
liminary results, it has been reported that, compared to the
control groups, approximately 100 affected patients treated
with CQ experienced a greater gradual decrease in fever and
progress in pulmonary computed tomography (CT) images
with a shorter recovery period without apparent adverse ef-
fects (Cortegiani et al. 2020; Gao et al. 2020b). As a result, CQ
was the first drug used on China’s front line and abroad for
treating serious SARS-CoV-2 infections. From early trials in
China, and soon in other countries, there was compelling ev-
idence demonstrating the effectiveness of CQ and HCQ in the
SARS-CoV-2 procedure. However, risk-of-bias assessments,
unadjusted estimates of effect, and overall ratings of strength
of evidence were found in several early RCTs and cohort
studies (Chowdhury et al. 2020; Hernandez et al. 2020).
Since then, scientific research has tried to find new evidence
on the effectiveness of CQ and HCQ in COVID-19 therapy,
with mixed results, debates, and sometimes reports with
forced or unsupported data (Mehra et al. 2020). At the begin-
ning of May, the Infectious Diseases Society of America
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(IDSA) and the National Institute of Health (NIH) stated there
is no significant evidence to point to the use of CQ/HCQ in the
treatment of COVID-19 infection. However, in August 2020,
a Belgian national observational study appeared, in which
HCQ in a dose of 2400 mg over 5 days was associated posi-
tively with a significant decrease in mortality in hospitalized
patients with respect to not treated patients (Catteau et al.
2020). Almost simultaneously in an Italian study, the drug
HCQ, in a dose of 200 mg twice/day, was used in hospitalized
COVID-19 patients showing a 30% reduction of overall mor-
tality. Despite the limitation of the non-randomized study, the
authors not discouraged the HCQ usage (Castelnuovo et al.
2020). However, in agreement with AIFA (Agenzia Italiana
del Farmaco), the Italian Ministry of Health, following IDSA
guidelines, does not recommend using CQ/HQC in hospital-
ized and non-hospitalized COVID-19 patients. Instead, in
August 2020, in the New Official Chinese Guidelines for the
treatment of COVID-19 infection, chloroquine (instead of
hydroxychloroquine) against covid-19 has been approved.
However, later soon, based on evidence frommultiple clinical
trials, observational studies, and single-arm studies, NIH rec-
ommends against the use of CQ or HCQ with or without
azithromycin for the treatment of COVID-19 in hospitalized
patients, and in non-hospitalized patients (except in a clinical
trial). In the COVID-19 Treatment Guidelines Panel, NIH
recommends against the use of high-dose chloroquine
(600 mg twice daily for 10 days) for the treatment of SARS-
CoV-2 infection (National Institute of Health 2020). On 15
October 2020, one of the largest international RCT for
COVID-19 treatments, “Solidarity Trial” launched by the
World Health Organization and partners, published interim
results. This RCT enrolled almost 12,000 patients from 500
hospitals over 30 countries and for all four treatments evalu-
ated (remdesivir, hydroxychloroquine, lopinavir/ritonavir,
and interferon) reported that they have “little or no effect on
overall mortality, initiation of ventilation, and duration of hos-
pital stay in hospitalized patients” (World Health Organization
2020). The results, summed up and described here, illustrate a
controversial hypothesis regarding the prospect that CQ or
HCQ could be successful against the novel SARS-CoV-2.
While it would seem true that CQ and HCQ do not have the
effect of reducing mortality, a number of reports indicated that
both drugs appear effective at the earliest stages of the infec-
tion (Carafoli 2020).

Conclusion

CQ is used to prevent and cure malaria and is beneficial in
treating rheumatoid arthritis and lupus erythematosus as an
anti-inflammatory agent. Studies have shown that it also has
potential broad-spectrum antiviral activities by increasing the
endosomal pH necessary for virus/cell fusion and interacting

with SARS-CoV cell receptor glycosylation. Chloroquine’s
antiviral and anti-inflammatory activities have consequently
taken into account its potent effects in treating COVID-19
pneumonia patients.

Given the latest developments and the possible adverse
impact of the drug found in previous attempts to treat acute
viral diseases, the possibility of using CQ in the treatment of
SARS-CoV-2 has been the subject of extensive scientific,
political, and economic debate. Despite some positive early
results, though subjected to substantial limitations, simplifica-
tion, and probable over-interpretation of the data, the potential
role of CQ and HCQ in fighting the virus has been empha-
sized, probably, beyond measure. Currently, no direct
supporting data on the effective role of CQ and HCQ in the
treatment for COVID-19 exist. Despite promising in vitro re-
sults, the latest largest international RCTs for COVID-19
treatments launched by WHO concluded that HCQ had little
or no effect on overall mortality, initiation of ventilation, and
duration of hospital stay in hospitalized patients, whereas po-
tential effectiveness at the early stage of the diseases should be
confirmed. However, we are still not sure if the CQ and HCQ
saga is over.
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