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Running title: Choice between semi-parametric estimators

ABSTRACT. We consider models based on multivariate count-
ing processes, including multi-state models. These models are spec-
ified semi-parametrically by a set of functions and real parameters.
We consider inference for these models based on coarsened obser-
vations, focusing on families of smooth estimators such as pro-
duced by penalized likelihood. An important issue is the choice
of model structure, for instance the choice between a Markov and
some non-Markov models. We define in a general context the ex-
pected Kullback-Leibler criterion and we show that the likelihood
based cross-validation (LCV ) is a nearly unbiased estimator of it.
We give a general form of an approximate of the leave-one-out
LCV . The approach is studied in simulation and illustrated by es-
timating Markov and two semi-Markov illness-death models with
application on dementia using data of a large cohort study.

Key Words: counting processes, cross-validation, dementia, interval-censoring,
Kullback-Leibler loss, Markov models, multi-state models, penalized likeli-
hood, semi-Markov models.
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1 Introduction

Multi-state models, and more generally models based on multivariate count-
ing processes, are well adapted for modeling complex event histories (An-
dersen et al., 1993; Hougaard, 2000). Assumptions have to be made about
the law of the processes involved. In particular the Markov assumption has
been made in many applications (Aalen & Johansen, 1978; Joly et al., 2002)
while semi-Markov models have been considered in other applications (Joly
& Commenges, 1999). Subject-matter knowledge can be a guide for mak-
ing these assumptions (for instance risk of AIDS essentially depends on time
since infection, leading Joly & Commenges (1999) to choose a semi-Markov
model); however in many cases the choice is not obvious. Other assumptions
have to be made relative to the influence of explanatory variables: multi-
plicative or additive structures for instance may be considered. The problem
is generally not to assert whether the “true” model is Markov or has a mul-
tiplicative structure but to choose the best model relative to the data at
hand.

The semi-parametric approaches offer the greatest flexibility. Aalen (1978)
has studied non-parametric inference for counting processes. If we wish to
estimate smooth intensities we have to consider families of estimators such
as kernel estimators (Ramlau-Hansen, 1983), sieve-estimators (Kooperberg
& Clarkson, 1997) or penalized likelihood estimators (Good & Gaskin, 1971;
O’Sullivan, 1988; Joly et al., 2002). These families are indexed by a param-
eter that we may call “smoothing coefficient”. A practical way for choosing
the smoothing coefficient is by optimizing a cross-validation criterion. In
particular likelihood cross-validation (LCV ) has been shown to have good
properties in simulation (Liquet, Sakarovitch & Commenges, 2003; Liquet &
Commenges, 2004) while it has been shown that in some cases it could be con-
sidered as a proxy for the expected Kullback-Leibler loss and had the optimal
property of being asymptotically as efficient as this theoretical criterion (Hall,
1987; van der Laan, Dudoit & Keles, 2004). Liquet, Saracco & Commenges
(2006) argued that LCV could be used not only for choosing the smoothing
coefficient but also for choosing between different semi-parametric models,
such as stratified and non-stratified proportional hazard survival model.

Additional complexity comes from the fact that the model must be es-
timated from incomplete data. Coarsening mechanisms have been studied
in a general context by Gill, van der Laan & Robins (1997). Commenges &
Gégout-Petit (2005) have studied a general time-coarsening model for pro-
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cesses which they called GCMP; we will use this coarsening process under
the name TCMP for “time-coarsening model for processes”; in effect it is
not completely general because it assumes that there are times where the
process is exactly observed; this is most often the case for counting processes
but not for more general processes. Even for counting processes the TCMP
does not include the filtering process of Andersen et al. (1993) in a natural
way. Writing the likelihood for observations of multi-state models through
the TCMP has been done by Commenges & Gégout-Petit (2006).

The aim of this paper is to advocate the use of the expected Kullback-
Leibler risk, EKL, based on the observation, for the choice between semi-
parametric estimators for coarsened observations. We also advocate the use
of LCV as an estimator of EKL. Thus LCV can be used in particular for
choosing between estimators of Markov and non-Markov multi-state models
or between multiplicative and additive models in the presence of generally
coarsened observations. It is worth noting that the LCV choice fits well with
using families of smooth estimators, such as produced by penalized likelihood,
because non smooth estimators are strongly rejected by this criterion.

In section 2 we recall the description of multi-state models as multivariate
counting processes and suggest possible Markov and non-Markov structures
for the illness-death model. In section 3 we recall the construction of the
likelihood ratio for counting processes and its extension to penalized like-
lihood and we unify the problem of choice of smoothing coefficients and
model structure. In section 4 we tackle the problem of likelihood ratio and
penalized likelihood in the TCMP framework. In section 5 we define the ex-
pected Kullback-Leibler loss as a general criterion for choosing an estimator
in a family of estimators based on generally coarsened observations; we also
study the case where there are observed explanatory variables. In section 6
it is proposed to use LCV as a proxy for this theoretical criterion and we
give a general approximation of the Leave-one-out LCV . In section 7 we
present a simulation study in which we study in particular the variability of
LCV and we give insight about the interpretation of a difference of LCV .
This approach is then applied in section 8 for choosing and estimating an
illness-death model for dementia, based on the data of a large cohort study;
section 9 concludes.
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2 Multi-state and counting processes models;

illness-death model

2.1 Multi-state and counting processes models

A multi-state process X = (Xt) is a right-continuous process which can take
a finite number of values {0, 1, . . . , K}. If the model is Markov it can be
specified by the transition intensities αhj(.), h, j = 0, . . . , K. The correspon-
dence between multi-state processes and multivariate counting processes was
studied in Commenges & Gégout-Petit (2006) where the advantage of rep-
resenting multi-state processes as multivariate “basic” counting processes is
highlighted. Multi-state models are often generated by p types of events, each
type occurring just once. For instance the three-state illness-death model (see
Figure 1) is generated by considering the events “illness” and “death” ; the
five-state model considered by Commenges & Joly (2004) is generated by
“dementia”, “institutionalization” and “death”. So these multi-state models
can be represented by a p-variate counting process N , each Nj making at
most one jump, and we will denote Tj the jump time of Nj.

2.2 Possible semi-parametric Models

A model for a multivariate counting process N = (Nj, j = 1, . . . , p) is spec-
ified for a given filtration {Ft} by its intensity λθ(t) = (λθ

j(t), j = 1 . . . , p)
under Pθ.

For efficient inference one has to make assumptions: often the Markov
assumption is made: the process is Markov if and only if λθ(t) is a function
of only time t and the indicator functions 1{Tj<t}, j = 1, . . . , p. An interesting
non-Markov model occurs if λθ(t) depends on the time elapsed since the last
jump of one of the components of N . If the intensities do not depend on the
time t itself this defines a particular semi-Markov model (used for instance
by Lagakos, Sommer & Zelen, 1978) that we will call “current-state” model
because the transition intensities depend only on the time spent in the current
state.

Completely parametric models are often too rigid but parametric assump-
tions may be made for some parts of the model: thus a semi-parametric ap-
proach, in which a great flexibility is preserved on some part of the model
while some parametric assumptions are made for simplicity and easier inter-
pretation, is often attractive. In such an approach, λθ(t) will depend on a
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certain number of functions on which no parametric assumptions are made,
some of them representing baseline transition intensity functions, and param-
eters which appear in modeling how these baseline intensities will be changed
as a function of events that have happened.

Let us consider some possible three-state irreversible illness-death models;
these models are Markov or semi-Markov. Any model of this type is described
by a bivariate counting process, N1 counting illness and N2 counting death.
The intensity of N1 necessarily takes the form λθ

1(t) = 1{T1≥t}1{T2≥t}α01(t),
where α01(t) has the interpretation of the transition intensity toward illness.
The intensity of N2 can generally be written λθ

2(t) = 1{T2≥t}[1{T1≥t}α02(t) +
1{T1<t}α12(t, t − T1)]. The function α02(t) has the interpretation of the tran-
sition intensity from health toward death (the mortality rate of healthy sub-
jects). To avoid having to estimate non-parametrically a bivariate function
we may consider models in which α12(t, t − T1) depends on two univariate
functions h(t) and g(t−T1); for instance we may consider an additive model
α12(t, t − T1) = h(t) + g(t − T1) as in Scheike (2001).

Particular cases of this model are:
M1: g = 0: non-homogeneous Markov model; here h(t) has the interpre-

tation of α12(t), the transition intensity from illness toward death;
M2: h(t) = 0: current state model; here g(.) has the interpretation of a

random transition intensity from illness toward death;
M3: h(t) = α02(t): excess mortality model; here g(t − T1) has the inter-

pretation of an excess mortality due to illness as a function of time passed
in the illness state.

If explanatory variables Zi(t) for subject i are available we may consider
different models for the dependence of the intensities on the Zi(.) (the vari-
ables are either external or internal and in the latter case the filtration must
be rich enough so that the processes (Zi(t)) be adapted); in particular a mul-
tiplicative structure (in the spirit of the proportional hazard model) or an
additive structure (in the spirit of the Aalen additive model: Aalen, Borgan
& Fekjær, 2001) could be considered. For instance a multiplicative structure
for the explanatory variables could be:

αi
01(t) = α0

01(t) exp(β01Zi(t)),

αi
02(t) = α0

02(t) exp(β02Zi(t)),

αi
12(t, t − T1) = α0

12(t, t − T1) exp(β12Zi(t)),
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where α0
01(t), α0

02(t) and α0
12(t, t − T1) are baseline transition intensities (the

last one being generally random and in that case defined only on {t > T1}).

3 Likelihood and penalized likelihood for count-

ing processes

3.1 Likelihood ratios

The model specifies a family of probability measures {Pθ}θ∈Θ; consider a
reference probability measure P0 such that each Pθ is absolutely continuous
relatively to P0 (P0 may or may not belong to {Pθ}θ∈Θ). The likelihood ratio
on a σ-field X is defined by:

LPθ/P0

X =
dPθ

dP0 |X

a.s.,

where dPθ

dP0 |X
is the Radon-Nikodym derivative of Pθ relatively to P0 on X .

Remark 1. All equalities involving likelihood ratios or conditional ex-
pectations are a.s. equalities; this may not be recalled every time.

Remark 2. Often likelihoods are computed using a reference measure
that is not a probability measure and is not even specified. Here we will make
it explicit and take a probability measure, in which case the term ”likelihood
ratio” is warranted. If the reference probability P0 belongs to (Pθ)θ∈Θ then

there exist θ0 such that P0 = Pθ0 and we may write Lθ/θ0

X = LPθ/P0

X .
One of the advantages of representing multi-state models in the frame-

work of counting processes (such in as section 2.1) is the availability of Jacod’s
formula for the likelihood ratio based on observation on [0, C] in the filtra-
tion {Gt} where Gt = G0 ∨ Nt, where Nt = σ(Nju, 0 ≤ u ≤ t). The model
is specified by the intensities λθ

j(t) of the Nj’s under Pθ. It is advantageous
to take as reference probability, a probability P0 under which the Nj’s are
independent with intensities λ0

j(t) = 1{Njt−=0}; equivalently the Tj’s are inde-
pendent with exponential distributions with unit parameter. Using Jacod’s
formula (Jacod, 1975) the likelihood ratio for this reference probability is:

LPθ/P0

GC
= LPθ/P0

G0

N.C
∏

r=1

λθ
Jr

(T(r)) exp(−Λθ
. (C))

p
∏

j=1

eTj∧C , (1)
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where for each r ∈ {1, . . . , N.C}, Jr is the unique j such that ∆NjT(r)
= 1;

N.t =
∑p

j=1 Njt, Λθ
. (t) =

∑p
j=1 Λθ

j(t), Λθ
j(t) =

∫ t
0 λθ

j(u)du. This formula allows
us to compute the likelihood for any multi-state model once we have written
it as a multivariate counting process.

3.2 Families of penalized likelihood estimators

Consider models specified by a set of parameters θ = (g, β) where g(.) =
(gj(.), j = 1, . . . , K) is a vector of functions from ℜ to ℜ and β a vec-
tor of real parameters. For instance for the Markov illness-death model
θ = (α01(.), α02(.), α12(.), β) where the αhj are transition intensities and β is
a vector of regression coefficients. If no parametric assumptions are made
about the functions to be estimated and if smooth estimators are favored,
the two main approaches are sieve estimators, extending the so-called hazard
regression of Kooperberg & Clarkson (1997) or using orthogonal expansions
such as in Müller & Stadtmüller (2005), and penalized likelihood (Gu, 1996;
Joly et al., 2002).

Suppose that the sample consists of n independent observations of mul-
tivariate counting processes N i = (N i

j , j = 1, . . . , p), i = 1, . . . , n represented

by GiCi
; the likelihood ratio LPθ/P0

Ōn
, where Ōn = ∨GiCi

, is the product of con-
tributions computed with formula (1). A penalized log-likelihood is defined
as:

plκŌn
(θ) = logLPθ/P0

Ōn
− J(θ, κ), (2)

where κ = (κj, j = 1, . . . , K) is a set of smoothing coefficients. It is common
to use a penalty based on the L2-norms of the second derivatives of the
unknown functions:

J(g(.), κ) =
K

∑

j=1

κj

∫

(g′′
j )

2(u)du.

The penalized likelihood defines a family of estimators of θ, (θ̂κ)κ∈ℜK+,
and thus a family of estimators of the probability Pθ, (Pθ̂κ

)κ∈ℜK+. Asymptotic
results have been given for particular cases (Cox & O’Sullivan, 1990; Gu,
1996; Eggermont & La Ricia, 1999, 2001).

Consider now the situation where we can choose between different basic
assumptions for our model (such as Markov or semi-Markov assumptions),
indexed by η = 1, . . . ,m. Formally we could include η in θ. However we prefer
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to formalize the problem in a way that is closer to intuition and practice:
for each value of η and each κ we have a maximum penalized likelihood
estimator θ̂η

κ; thus we have a family of estimators of the probability specified
by (Pθ̂η

κ
)η=1,...,m;κ∈ℜK+. The problem is to choose one estimator in this family.

In the following we will include η in κ considering that κ indexes a family
of estimators, thus unifying the problem of smoothing coefficient and model
structure.

4 Penalized likelihood for coarsened at ran-

dom counting processes

4.1 Coarsening at random in the TCMP

Here we consider a general case of incomplete data: we recall the TCMP
model proposed in Commenges & Gégout-Petit (2005) and we give a version
of the coarsening at random condition CAR(TCMP) and the factorization
theorem it implies, adapted to the case where the reference probability is
outside of the model; also we exhibit a “reduced” model that we will use
in the sequel. The TCMP can be considered for any stochastic process X;
when X is a counting process the TCMP includes in particular extensions of
the concepts of right-, left- and interval-censoring that have been defined for
survival data, as well as a combination of these different types of censoring.

Definition 1 (The time coarsening model for processes (TCMP)) A
TCMP is a scheme of observation for a multivariate process X = (X1, . . . , Xp)
specified by a multivariate response process R = (R1, . . . , Rp), where the
Rjt’s take values 0 or 1 for all j and t, such that Xjt is observed at time
t if and only if Rjt = 1, for j = 1, . . . , p; that is, the observed σ-field is
O = σ(Rt, R.Xt, t ≥ 0).

In the definition we denote R.Xt = (R1tX1t, . . . , RptXpt). A model for (X, R)
is a family of measures {Pθψ}(θ,ψ)∈Θ×Ψ on a measurable space (Ω,F). X (resp.
R) takes values in a measurable space (Ξ, ξ) (resp. (Γ, ρ)). For us X and
R will be p-dimensional càdlàg stochastic processes, so (Ξ, ξ) and (Γ, ρ) are
Skorohod spaces endowed with their Borel σ-fields. The parameter spaces
Θ and Ψ need not be finite dimensional. We will assume that the measures
in the family are equivalent. The processes X and R generate σ-fields X
and R, and we shall take F = X ∨ R. PθX is the restriction of Pθψ to X :
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that is, the marginal probability of X does not depend on ψ. The addi-
tional parameter ψ will be considered as a nuisance parameter. We assume
a ”Non-Informativeness” assumption in the coarsening mechanism, which,
writing PX

θψ = Pθψ(.|X ) (a conventional notation for conditional probabili-
ties: Kallenberg, 2001), is :

PX
θ1ψ = PX

θ2ψ, a.s., for all θ1, θ2, ψ (3)

This is a conventional assumption (although it has not been expressed in
this form) and means that the coarsening mechanism (conditionally on X)
depends on a distinct (from the parameter of interest θ) , “variation indepen-
dent” parameter ψ. Now we consider a family of equivalent probabilities Q
including in addition to {Pθψ}(θ,ψ)∈Θ×Ψ a family of possible reference proba-
bilities. Let P0 be one such probability; we denote by P0X its restriction to
X and by PX

0 the associated conditional probability given X . The likelihood

ratio is then L
Pθψ/P0

F = L
Pθψ/P0

R|X LPθX /P0X

X , where L
Pθψ/P0

R|X is the conditional
likelihood of R given X . Note that with the non-informativeness assumption

L
Pθψ/P0

R|X does not depend on θ; we will note it L
P.ψ/P0

R|X to emphasize this fact.

L
Pθψ/P0

F is the full likelihood and L
Pθψ/P0

O the observed likelihood.

Definition 2 (CAR(TCMP)) We will say that CAR(TCMP) holds for

the couple (X, R) in Q if LP1/P0

R|X is O-measurable for all P1, P0 ∈ Q.

We will use the following result (which is an adaptation of Theorem 2 in
Commenges & Gégout-Petit, 2005):

Theorem 1 (Factorization) If the couple (R,X) satisfies CAR(TCMP)

then we have L
Pθψ/P0

O = L
P.ψ/P0

R|X EP0 [L
PθX /P0X

X |O] and EP0 [L
PθX /P0X

X |O] does

not depend on PX
0 .

This factorization is a first step toward ignorability because for instance
it is the same value of θ which maximizes EP0 [L

PθX /P0X

X |O] and which maxi-

mizes L
Pθψ/P0

O ; a slightly stronger condition is necessary for ignorability (see
Commenges & Gégout-Petit, 2005).

We can achieve a nicer result which will help simplifying notations in
section 5. If we knew the true conditional probability given X , PX

∗ , we
would use the following “reduced” model: {Pθ}θ∈Θ such that PX

θ = PX
∗ .
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Definition 3 (Reduced model) Given a model {Pθ,ψ}(θ,ψ)∈Θ×Ψ such that
the restriction of Pθ,ψ to X is PθX for all θ and ψ, we call “reduced model“
the model {Pθ}θ∈Θ such as the restriction of Pθ to X is PθX and PX

θ = PX
∗

for all θ, where PX
∗ is the true conditional probability given X .

Note that this reduced model is “reduced” in the sense that it is a smaller
family than the original one; however it is a submodel only if the original
model was well-specified (P∗ ∈ {Pθ,ψ}(θ,ψ)∈Θ×Ψ). Taking a reference proba-

bility P0 such that PX
0 = PX

∗ we have that LPθ/P0

R|X = 1 a.s. Thus we have,

without additional assumption, LPθ/P0

O = EP0 [L
PθX /P0X

X |O]. If CAR(TCMP)

holds EP0 [L
PθX /P0X

X |O] does not depend on PX
0 = PX

∗ . That is, we can com-
pute the exact likelihood that we would like to compute if we knew PX

∗ ,
without in fact knowing it.

There remains in practice to compute EP0 [L
PθX /P0X

X |O] for the observed
value of R and this is explained for the case of multistate processes in the
next section.

4.2 Likelihood and penalized likelihood for counting
processes

The likelihood for the deterministic TCMP (that is in which the R’s are
deterministic functions) and when X is a multivariate counting process has
been given in Commenges & Gégout-Petit (2006). The observation in this
scheme is denoted by the σ-field O and we have O ⊂ GC , so that the observed
likelihood can be expressed as: LPθ/P0

O = EP0 [L
Pθ/P0

GC
|O]. The formula for the

likelihood follows from computation of this conditional expectation using the
disintegration theorem (Kallenberg, 2001).

In the case of the stochastic TCMP when CAR(TCMP) holds we use the

reduced model {Pθ}θ∈Θ so that the likelihood ratio is LPθ/P0

O = EP0(L
Pθ/P0

GC
|O)

and EP0(L
Pθ/P0

GC
|O) does not depend on PX

0 ; with a slightly stronger condition
it can be computed in practice as if the TCMP was deterministic, using the
formulae given in Commenges & Gégout-Petit (2006), with values of the
responses functions r equal to what has been observed.

As for the penalized likelihood it can also be extended to the case where
the observations are CAR(TCMP): the formula is the same as (2).
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5 Choice between semi-parametric models: ex-

pected Kullback-Leibler loss

5.1 General theory

The problem of choice of an estimator among a family of estimators using
expected Kullback-Leibler risk has been studied in particular by Hall (1987),
van der Laan & Dudoit (2003), van der Laan, Dudoit & Keles (2004). Since
our aim here is to choose an estimator of a probability measure among a
family of estimators, this theoretical criterion is particularly relevant. We
formalize this criterion in this general context and for incomplete observa-
tions. Although the focus of the paper is on counting processes, the formalism
developed in this section applies to more general processes, so we will call
the process of interest X as in section 4.1.

Let us now model n i.i.d. random elements (Xi, Ri), i = 1, . . . , n. We
consider a measurable space (Ω̄n, X̄n, R̄n) where Ω̄n = ×Ωi, X̄n = ⊗Xi, R̄n =
⊗Ri where the σ-fields for different i are independent. The probability mea-
sures on this space are the product measures. Finally we define full and
observed σ-fields Fi = Ri ∨ Xi and Oi = σ(Rit, Rit.Xit, t ≥ 0) respectively.

The problem is to estimate θ. When Θ is a functional space a conventional
strategy is to define estimators (that is Ōn-measurable functions) depending
on a meta-parameter κ: θ̂(κ, Ōn). κ may index nested models such as in sieve
estimators or may be a smoothing parameter such as in penalized likelihood
or kernel estimators. According to statistical decision theory (Le Cam &
Yang, 1990) we should choose an estimator which minimizes a risk function,
the expectation of a loss function. In statistics we assume that there is
a true probability P∗. We do not make the assumption that P∗ belongs
to the model; this assumption would significantly reduce the scope of the
theory. Making the assumption that P∗ is equivalent to the probabilities of
the model, the most natural “all-purpose” loss function relatively to P∗ is

− logL
P

θ̂X /P∗X

Xn+1
(we note θ̂ = θ̂(κ, Ōn)), where P∗X is the restriction of P∗ to

X . However the problem will be to “estimate” the risk, that is to find a
statistic (Ōn-measurable) which takes values close to that risk (this is not
exactly an estimation problem because the target moves with n but we will
use the word “estimate” for simplicity). It may be considered as intuitive

that a risk based on − logL
P

θ̂X /P∗X

Xn+1
will be very difficult to estimate; this is

why Liquet and Commenges (2004) suggested using the expectation of the
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observed loglikelihood of the sample, a criterion they denoted ELL. The use
of the stochastic TCMP and the CAR(TCMP) assumption allows us working
in the more comfortable i.i.d. framework for incomplete data leading to more
elegant and general results.

The straightforward loss function on On+1 is − logL
P

θ̂,ψ̂
/P∗

On+1
. A difficulty

arises in that this loss function requires an estimator of ψ. Hopefully the
CAR(TCMP) assumption allows us to construct a reduced model as in sec-
tion 4.1 in which we can construct a loss function not depending on the con-
ditional probability given X , PX

∗ . The first step is to construct the reduced
model associated to the reference probability P∗. Then we have, by apply-
ing the result of section 4.1 to that case and to σ-fields Xn+1,Rn+1,On+1:

LPθ/P∗

On+1
= EP∗ [L

PθX /P∗X

Xn+1
|On+1] and this does not depend on PX

∗ . We can now

construct the loss function as − logL
P

θ̂
/P∗

On+1
= − log EP∗ [L

P
θ̂X /P∗X

Xn+1
|On+1, Ōn];

note that we must add the conditioning on Ōn because θ̂ is an Ōn-measurable
random variable.

The conditional expectation of this loss, or conditional risk, is CKLn =

EP∗ [− logL
P

θ̂
/P∗

On+1
|Ōn] and can be interpreted as the Kullback-Leibler diver-

gence between Pθ̂ and P∗, since the Kullback-Leibler divergence of a probabil-

ity P1 relatively to P∗ over the σ-field On+1 is KL(P1, P∗) = EP∗ [− logLP1/P∗

On+1
].

Its expectation, or risk, EKLn = EP∗ [− logL
P

θ̂
/P∗

On+1
], can be interpreted as the

expected Kullback-Leibler divergence over the σ-field On+1 of interest.

5.2 Case of observed explanatory variables

Explanatory variables are considered as stochastic processes Z = (Zt)t≥0.
We can then consider the process W = (X, Z). In the TCMP framework
we associate the response process R = (RX , RZ). The observed σ-field is
O = σ(Rt, R.Wt, t ≥ 0). With such a formulation there is no need of a
special theory for explanatory variables. However it is often the case that:
i) the marginal law of Z is not of interest, but only the conditional law of X
given Z is of interest; ii) Z is completely observed, that is, all the components
of RZ are identically equal to one (we will refer to this by writing RZ = 1).
Because of i) we consider the following parametrization of the model: the
model is defined by the family of probability measures (Pθγψ)θ∈Θ,γ∈Γ,ψ∈Ψ,

where Pθγψ is specified by PγZ , PX ,Z
ψ and PZ

θX , that is γ indexes the marginal
probability of Z, ψ the conditional probability given X and Z, and θ the
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conditional probability of X given Z on which the interest focuses. We take
a reference probability P0 and we assume that CAR(TCMP) holds for (W,R),

that is L
Pθγψ/P0

R|W is O-measurable; this is equivalent to L
Pθγψ/P0

RX |W O-measurable
(where RX is the σ-field generated by RX) because RZ = 1 (this can be
seen for instance by applying property vi) of Commenges & Gégout-Petit,
2005). In that case, if ii) holds, we can get rid of both nuisance parameters
ψ and γ for the likelihood inference on θ. This is a consequence of the
double-factorization theorem.

Theorem 2 (Double-factorization) Consider the process W = (X,Z),
where X is the process of interest, Z is a process of explanatory variables; R =
(RX , RZ) is the associated response process and we have RZ = 1. Consider
the family of equivalent probability measures Q = {{Pθγψ}θ∈Θ,γ∈Γ,ψ∈Ψ,Q0},

where Pθγψ is specified by PγZ , PZ
θX and PX ,Z

ψ , and where Q0 is a family of
possible reference probabilities; the restriction of Pθγψ on W is denoted PθγW .
Consider a reference probability P0 ∈ Q0. If the couple (W,X) satisfies
CAR(TCMP) in Q, then we have:

L
Pθγψ/P0

O = L
Pθγψ/P0

R|W L
PγZ/P0Z

Z EP0 [L
PθγW/P0W

X|Z |O] (4)

and

1. L
Pθγψ/P0

R|W depends neither on θ nor on γ and can be denoted L
P.ψW/P0

R|W ;

L
PγZ/P0Z

Z depends neither on θ nor on ψ; L
PθγW/P0W

X|Z depends neither on

ψ nor on γ and can be denoted LPθ.W/P0W

X|Z ;

2. EP0 [L
Pθ.W/P0W

X|Z |O] depends neither on PX ,Z
0 nor on P0Z .

Proof. Since CAR(TCMP) holds for (W,R) we can apply the (simple)

factorization theorem which gives: L
Pθγψ/P0

O = L
Pθγψ/P0

R|W EP0 [L
PθγW/P0W

W |O].

We next use the decomposition L
PθγW/P0W

W = L
PγZ/P0Z

Z L
PθγW/P0W

X|Z and since

L
PγZ/P0Z

Z is O-measurable (because L
PγZ/P0Z

Z is Z-measurable and Z ⊂ O)
we obtain (4). Point (1) is straightforward. Another way to express Point
(2) is that if we consider two probabilities P1 and P0 such that PZ

0X = PZ
1X

we have EP0 [L
Pθ.W/P0W

X|Z |O] = EP1 [L
Pθ.W/P1W

X|Z |O]. The proof is similar to that
of Theorem 1 given in Commenges & Gégout-Petit (2005).

We can now apply the trick of the reduced model of section 4.1 to this
context. If we knew the true conditional probability given (X ,Z), PX ,Z

∗ , and
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the true marginal probability P∗Z , we would use the reduced model {Pθ}θ∈Θ

such that PX ,Z
θ = PX ,Z

∗ and PθZ = P∗Z . Taking a reference probability

P0 such that PX ,Z
0 = PX ,Z

∗ and P0Z = P∗Z we have that LPθ/P0

R|X ,Z = 1 a.s.

Thus we have, without additional assumption, LPθ/P0

O = EP0 [L
Pθ.W/P0W

X|Z |O].

If CAR(TCMP) holds EP0 [L
Pθ.W/P0W

X|Z |O] does not depend on PW
0 = PW

∗ nor
on P0Z = P∗Z . That is, we can compute the exact likelihood that we would
like to compute if we knew PX ,Z

∗ and P∗Z , without in fact knowing them.
We can adapt now the same reasoning as in the previous section for

defining the risk function for choosing estimators in the case where there are
explanatory variables. We assume that we have n i.i.d. triples (Xi, Zi, Ri),
where the stochastic processes Zi represent time-dependent explanatory vari-
ables. Assuming that CAR(TCMP) holds for (Wi, Ri), i = 1, . . . , n, with

Wi = (Xi, Zi) and using the reduced model we have that LPθ/P∗

On+1
= EP∗ [L

Pθ.W/P∗W

Xn+1|Zn+1
|On+1]

depends neither on PX ,Z
∗ nor on P∗Z . We define the loss function as before

as − logL
P

θ̂
/P∗

On+1
= − log EP∗ [L

P
θ̂.W/P∗W

Xn+1|Zn+1
|On+1, Ōn] and the risk function as

EKLn = EP∗ [− logL
P

θ̂
/P∗

On+1
].

6 Choice between semi-parametric models: like-

lihood cross-validation

6.1 Estimating EKLn by likelihood cross-validation

Making the assumption that CAR(TCMP) holds for (Xi, Ri), i = 1, . . . , n we
use a reduced model based on a reference probability P0; then the observed
likelihood ratio is LPθ/P0

Ōn
. If there are explanatory variables, we assume that

CAR(TCMP) holds for (Wi, Ri), i = 1, . . . , n, we use the reduced model and

we still denote the observed likelihood LPθ/P0

Ōn
.

Now we are seeking an “estimator” for our criterion EKLn. We consider
the leave-one-out likelihood cross-validation criterion as a possible “estima-
tor”. It is defined as:

LCVn(θ̂(.; .), κ, Ōn) = −
1

n

n
∑

i=1

logL
P

θ̂(κ,Ōn|i)
/P0

Oi
,

where Ōn|i = ∨j 6=iOj.
A first property, bearing on expectation of LCV is:
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Lemma 1 EP∗ [LCVn(θ̂(.; .), κ, Ōn)] = EKLn−1(θ̂(.; .), κ) − KL(P0, P∗).

Proof. We have

EP∗ [LCVn(θ̂(.; .), κ, Ōn)] = −EP∗ [logL
P

θ̂(κ,Ōn|i)
/P0

Oi
]

= −EP∗ [logL
P

θ̂(κ,Ōn|i)
/P∗

Oi
− logLP∗/P0

Oi
]

= EKLn−1(θ̂(.; .), κ) − KL(P0, P∗).

So, using LCVn for the choice of κ we are using an unbiased estima-
tor of EKLn−1: indeed, since KL(P0, P∗) does not depend on κ, we have
EP∗ [LCVn(θ̂(.; .), κ2, Ōn)]−EP∗ [LCVn(θ̂(.; .), κ1, Ōn)] = EKLn−1(θ̂(.; .), κ2)−
EKLn−1(θ̂(.; .), κ1). Thus LCV estimates a difference in EKL without the
assumption that the true probability belongs to the model. Moreover we
conjecture that the optimal properties obtained by Hall (1987) and van der
Laan, Dudoit & Keles (2004) extend under certain assumptions to the gen-
eral context considered here and that cross-validation will effectively be able
to choose between semi-parametric multi-state models.

6.2 Computational algorithm

6.2.1 Approximation of the solution of the penalized likelihood

The penalized likelihood estimator θ̂κ is the set of functions and parameters
which maximize plκ(θ). In general it is not possible to compute θ̂κ analytically
so the ĝκ

k are approximated, for instance by splines. With this approxima-
tion the optimisation problem becomes a standard maximization on a finite
number of parameters. (Note that the number of knots in the spline repre-
sentation is limited only by computational issues: the smoothness of the final
estimator for the gk(.) is controlled by κ in the penalized likelihood, not by
the number of knots). Calling γ the set of new parameters (including β and
the set of spline parameters) we are led to maximizing:

plŌn
= plκŌn

(γ) = Lγ
Ōn

− J(γ, κ), (5)

where Lγ
Ōn

= logLγ/P0

Ōn
. We note γ̂ = γ̂(Ōn, κ) = argmaxγ(pl

κ
Ōn

(γ)).

6.2.2 Approximation of LCV

Since LCVn (that we will note simply LCV from now on) is particularly
computationally demanding when n is large an approximate version LCVa
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has been proposed by O’Sullivan (1988) for estimation of the hazard function
in a survival case and adapted by Joly et al. (2002) to the case of interval-
censored data in an illness-death model. We may still extend it to a general
framework valid for any penalized likelihood depending on a vector of real
parameters γ. We note LCV = −n−1 ∑n

i=1 L
γ̂−i

Oi
, where γ̂−i = γ̂(Ōn|i, κ). The

first order development of L
γ̂−i

Oi
around γ̂ yields:

L
γ̂−i

Oi
≈ Lγ̂

Oi
+ (γ̂−i − γ̂)T d̂i, (6)

where d̂i =
∂Lγ

Oi

∂γ
|γ̂. The first order development of

∂plγ
Ōn|i

∂γ
|γ̂−i gives:

γ̂−i − γ̂ ≈ −H−1
plŌn|i

∂plγ
Ōn|i

∂γ
|γ̂,

where HplŌn|i
=

∂2plŌn|i

∂γ2 |γ̂, and more generally Hg = ∂2g
∂γ2 |γ̂. At first order

HplŌn|i
≈ HplŌn

. From the equality plŌn
(γ) = plŌn|i

(γ) + Lγ
Oi

we deduce by

taking derivatives:

0 =
∂plγ

Ōn|i

∂γ
|γ̂ + d̂i

which finally yields:
γ̂−i − γ̂ ≈ H−1

plŌn
d̂i,

which inserted in (6) gives:

L
γ̂−i

Ōi
≈ Lγ̂

Ōi
+ d̂T

i H−1
plŌn

d̂i.

Substituting this expression in the expression of LCV we obtain:

LCV ≈ LCVa1 = −n−1[Lγ̂
Ōn

+
n

∑

i=1

d̂T
i H−1

plŌn
d̂i].

Using the fact that both n−1 ∑n
i=1 d̂id̂

T
i and −n−1HLŌn

tend towards the in-
dividual information matrix I = −EP∗(HLOi

) we get another approximation:

LCV ≈ LCVa = −n−1[Lγ̂
Ōn

− Tr(H−1
plŌn

HLŌn
)].

This expression looks like an AIC criterion and there are arguments to in-
terpret Tr[H−1

plŌn
HLŌn

] as the model degree of freedom. For instance, if there
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is no penalty (J = 0), HplŌn
= HLŌn

so that the correction term in LCVa

reduces to dim(γ), that is LCVa reduces to AIC.
If κ is a scalar minimization of LCVa can be done by standard line-search

algorithms; if it is a vector, a grid algorithm can be used (Joly et al., 2002).

7 Simulation study

7.1 Description and main result

We did a simulation study to illustrate the ability of LCV to choose the right
model structure; the possibilities were the Markov structure and the semi-
Markov current-state structure, respectively models M1 and M2 in section
2.2. The best model is not always the right model, especially in the case
where the right model is larger than alternative models. Here, the model 1
and model 2 structures are of similar complexities, so we think that the right
model should be the best model.

We considered two particular models (or probability measures, M1 ∈ M1

and M2 ∈ M2). For both M1 and M2 the transition intensities toward
illness, α01(t), and death, α02(t), were taken equal to the hazard function of
Weibull distributions, namely: pγptp−1 with parameters (p = 2.4; γ = 0.05)
and (p = 2.5; γ = 0.06) respectively. Models M1 and M2 differed by the
intensity of N2 for t > T1, that is the mortality rate of diseased. For M1 the
mortality rate was defined by h(t) and was a Weibull hazard function with
parameters (p = 2.6; γ = 0.08); for M2 it was defined by g(t − T1) which
was equal to a Weibull hazard function with parameters (p = 1.5; γ = 0.2).
For each subject we generated an ignorable TCMP observation scheme by
generating R1 and R2 independently from N1 and N2. In intuitive terms R1

and R2 were constructed to represent a situation where N1 was observed at
discrete times and N2 was observed in continuous time and possibly right-
censored (the same as in the application). For each subject we generated visit
times Vj at which N1 was observed as Vj = Vj−1 + 2 + 3Uj, where the Uj’s
were independent uniform [0, 1] random variables and observation of both N1

and N2 was right-censored by a variable C which had a uniform distribution
on [2, 52]. We had R1(t) = 1{t<C}

∑

j=1 1{t=Vj} and R2(t) = 1{t<C}. To take
into account the discrete-time observation scheme on one component we used
formula (13) of Commenges & Gégout-Petit (2006).

We generated 100 replicas of samples N1 and N2 from M1 and M2; each
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sample had n = 1000 subjects. For each replica, the three functions deter-
mining the model (α01(.), α02(.) for both models and h(.) for M1 and g(.)
for M2) were estimated by penalized likelihood while the parameter η̂ (de-
termining model structure) and the smoothing coefficients κ̂ = (κ̂1, κ̂2, κ̂3)
which minimized LCV were determined.

The first result is that when the Markov model was generated it was
chosen in 99 cases out of 100; when the semi-Markov model was generated it
was chosen in 93 cases out of 100. This shows that LCV does a good job in
picking the right model structure. Table 1 shows the distance in term of the
risk EKL (the avrage Kullback-Leibler loss is an estimate of EKL) between
the estimated models and the true model: choosing the model structure by
LCV incurs a very slight additional risk (of order 10−4) as compared to
knowing the true model but a lower risk as compared to choosing the wrong
model; in the latter case the additional risk is of order 10−2.

This result must not be falsely interpreted. First the discrimination prop-
erties of LCV depends on many parameters and particularly on the quantity
of information available in the samples. Second and even more important the
aim of estimator choice is not to choose the right model but to choose the
best estimator. The choice between the two structures depends on how “far”
the two models are. If the models are “close” it is of course more difficult to
discriminate between them, but at the same time it becomes less important
to choose the right one. For instance the homogeneous Markov model be-
longs to both structures so it is possible by small perturbations of this model
to construct two models, one Markov and one semi-Markov, which are very
near in term for instance of Kullback-Leibler divergence.

7.2 Study of the variability of LCV

In this section we exploit the above simulation study to explore the variability
of LCV . We have estimated from the 100 replicas from M1 the density of
LCV (κ̂) assuming M1 and assuming M2. The upper-left panel of Figure 2
displays these estimated densities: there seems to be little difference between
the two, so one may wonder whether LCV can be of any use for choosing
between the two model structures. However when we look at the density
of the difference between LCV (κ̂) for M1 and M2 we see that most of the
mass is in the negative values, so that most of the time the true model M1

will be chosen. Similarly the lower panels show the estimated densities of
LCV , assuming M1, for two different values κ1 and κ2 of the smoothing

18

H
A

L
 a

u
th

o
r m

a
n
u
s
c
rip

t    in
s
e
rm

-0
0
1
3
3
0
0
6
, v

e
rs

io
n
 1



coefficient. Here the two densities are nearly undistinguishable while the
density of the difference is clearly shifted toward positive values. Another
way to examine this issue is to look at the standard deviations of LCV (κ1),
LCV (κ2) and LCV (κ2)-LCV (κ1): we estimated these values (under M1)
to be 0.048, 0.048 and 0.0024 respectively. Thus the standard deviation of
the difference is about twenty times less than that of LCV for κ1 or κ2.
This explains why LCV does a good job in model choice in spite of its large
variability.

7.3 Quantitative interpretation of Kullback-Leibler di-
vergences

For practical use of the method proposed in this paper it is important to have
an idea of whether a particular EKL value, or a difference of EKL values or
their LCV estimators are large or not. As in more conventional situations
we must distinguish the interpretational issue from statistical issues. For
instance in the conventional situation of a regression parameter the statistical
issues beyond the point estimation of the parameter are to test the hypothesis
of a null value of the parameter and to give a confidence interval for this
parameter; the interpretational issue is to be able to assess the importance
of the effect on the variable of interest. For instance in an epidemiological
application using a Cox model we would consider the exponential of the
parameter and interpret it as a relative risk, considering that a value of 1.1,
2, 5 would correspond to a small, moderate, large increase of risk respectively.
We would like have a guide toward such an interpretation when manipulating
EKL values.

Since EKL is an expected Kullback-Leibler divergence it can be inter-
preted as a Kullback-Leibler divergence. So let us try to interpret KL(P̃ , P∗).
If we consider that P∗ is the true probability this means that we will make
errors by evaluating the probability of an event A by P̃ (A) rather than by
P∗(A). For instance we may evaluate the relative error re(P̃ (A), P∗(A)) =
P∗(A)−P̃ (A)

P∗(A)
. Consider the typical event on which P̃ (A) will be under-evaluated

defined as: A = {ω : LP̃ /P∗ < 1}. In order to obtain a simple formula
relating KL(P̃ , P∗) to the error on P∗(A) we consider the particular case

P∗(A) = 1/2 and LP̃ /P∗ constant on A and AC (or equivalently we com-
pute KL for a likelihood defined on σ(A)). In that case we easily find:

re(P̃ (A), P∗(A)) =
√

1 − e−2KL(P̃ ,P∗) ≈
√

2KL(P̃ , P∗), the approximation be-
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ing valid for small KL value. For KL values of 10−1, 10−2, 10−3, 10−4, we
find that re(P̃ (A), P∗(A)) is equal to 0.44, 0.14, 0.045 and 0.014, errors that
we may qualify as “large”, “moderate”, “small” and “negligible”.

As an example the KL divergence of a double exponential relative to a
normal distribution with same mean and variance is of order 10−1 leading to
a “large” re(P̃ (A), P∗(A)). In the previous simulation study we have found
that choosing the wrong model leads to an increase of the risk of order 10−2

which is “moderate”, while choosing the model by LCV leads to and increase
of order 10−4 which may be qualified as “negligible”.

8 Application on dementia

We illustrate the use of this general approach using the data of the Paquid
study (Letenneur et al., 1999), a prospective cohort study of mental and
physical aging that evaluates social environment and health status. The tar-
get population consists of subjects aged 65 years and older living at home
in southwestern France. The diagnosis of dementia was made according to a
two-stage procedure: the psychologist who filled the questionnaire screened
the subjects as possibly demented according to DSM-III-R or not; subjects
classified as positive were later seen by a neurologist who confirmed (or not)
the diagnosis of dementia and made a more specific diagnosis, assessing in
particular the NINCDS-ADRDA criteria for Alzheimer’s disease. Subjects
were re-evaluated 1, 3, 5, 8, 10 and 13 years after the initial visit. Subjects
already demented at the initial visit were removed from the sample, a se-
lection condition which is easily taken into account by using a conditional
likelihood as mentioned in Commenges & Gégout-Petit (2006). The sam-
ple consisted of 3673 subjects, 1540 men and 2133 women. Previous work
(Commenges et al., 2004) has shown that the effect of gender on the risk
of dementia is neither multiplicative nor additive; in fact the dynamics of
ageing is so different between men and women that it is safer to perform
completely separate analyses. For the purpose of this illustration we ana-
lyzed only women. During the 13 years of follow-up 396 incident cases of
dementia and 835 deaths were observed. We wish to jointly model dementia
and death, an approach conventionally referred to as the illness-death model;
the model can be graphically described as in figure 1, where the mortality
rate of demented is noted α12(t, t − T1) to emphasize the fact that it may
depend on both age t and time since onset of dementia t − T1; we assume
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that the transition intensities do not depend in addition on universal (or
calendar) time. Note that dementia is observed in discrete time while death
is observed in continuous time. One effect of the observation scheme is that
we miss a certain number of dementia cases: we do not observe a dementia
case which has happened when the subject develops dementia and dies be-
tween two planned visits. This scheme of observation and the likelihood for
it are explained heuristically in Commenges et al. (2004) and rigorously in
Commenges & Gégout-Petit (2006).

We tried the three model structures depicted in section 2.2. We took
as reference probability the homogeneous Markov model fitted to the data.
Thus LCV estimated the change in EKL when going from the homoge-
neous Markov maximum likelihood estimator to another estimator. The
values of the best LCV criteria for the different model structures were: Non-
homogeneous Markov model (M1): -0.2182; Current state model (M2): -
0.2100; Excess mortality model (M3): -0.2180. This means for instance that
the best penalized likelihood estimator in the non-homogeneous model has
an estimated expected Kullback-Leibler divergence (EKL) relative to the
true model which is smaller by 0.2182 than the homogeneous Markov esti-
mator. The best LCV was found for the non-homogeneous Markov model.
However the best “excess mortality” estimator is not far from the best non-
homogeneous estimator, while the current state estimator seems to be farther.
In terms of the interpretation of section 7.3 the difference between M2 and
M1 is moderate while that between M3 and M1 is negligible.

We compared graphically the best estimators found for the three model
structures considered. Figure 3 shows the three estimators for the age-specific
incidence of dementia (α01) and the mortality rates of non-demented respec-
tively: the three estimators are very close for incidence of dementia; there
is a certain difference between the Markov model and the two semi-Markov
models for mortality rates of non-demented above 90. Figure 4 displays the
three estimators of the age-specific mortality rates of demented for different
ages at onset of dementia, respectively 70, 80 and 90. Here the patterns are
different although the magnitude of these estimators are similar. In partic-
ular the current-state estimator is the same for the three ages at onset (by
assumption) while we see a marked increase of mortality for age at onset of
90 in the non-homogeneous Markov estimator. From a qualitative point of
view we may say that the three estimators agree for ages at onset of 70 and
80: the mortality rate for demented women does not vary much either with
time since onset of dementia or with age at onset, and is around 0.2.
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9 Conclusion

We have extended the expected Kullback-Leibler risk function (EKL) for
estimator choice from generally coarsened observations of a stochastic pro-
cess, including in the case of explanatory variables. We have suggested that
this could be used for choosing both smoothing coefficients and model struc-
ture; we have suggested that EKL could be approached by LCV and we
have given a general approximation formula for the leave-one-out LCV . The
simulation presented showed that the LCV did a good job in discriminating
between model structures. The approach was illustrated in the problem of
choosing between different additive illness-death models. The approach is in
fact quite general and could be applied for instance to the choice between
additive and multiplicative models.

Other choices might have been done: other loss functions, families of
estimators and ways of estimating the risk function might have been cho-
sen. However the choices we have done for the different components of the
approach are adapted to the problem and fit well together. For instance
the CAR(TCMP) assumption allows us to eliminate the nuisance param-
eters from the chosen loss function; LCV is a natural estimator of EKL;
penalized likelihood yields a flexible family of smooth estimators for which
an approximation of LCV can easily be computed. The approach yields an
operational tool for exploring complex event histories, for instance in the
domain of ageing.

There are many open problems and useful developments would be: find-
ing a better algorithm for minimizing LCV over multiple smoothing parame-
ters; studying the variance of LCV (see Bengio & Grandvalet, 2004); finding
asymptotic properties of the estimators chosen by minimizing LCV .
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replications = 100 KL
sample size = 1000 M1 M2 M1 or M2

true model M1 0.00489 (0.00024) 0.02918(0.00024) 0.00515 (0,00035)
true model M2 0.10335 (0.00018) 0.09675(0.00019) 0.09719 (0,00025)

Table 1: Average Kullback-Leibler loss KL and the corresponding standard
errors (numbers in the parentheses) for estimators chosen by LCV
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0: Health 1: Illness

2: Death

α01(t)

α02(t) α12(t, t − T1)

✲

❏
❏

❏
❏

❏
❏❏❫

✡
✡

✡
✡

✡
✡✡✢

Figure 1: The illness-death model. t: age; T1: age of onset of illness.
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Figure 2: Kernel density estimation of LCV (left) and of differences of LCV
(right) for a) Markov and semi-Markov choices, b) for two different values of
the smoothing parameter; in all cases the true model is Markov.
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Figure 3: Incidence of dementia (a) and mortality (b) for non-demented
women for the three models. Continuous line: non-homogeneous Markov
model; dashed line: current state model; dotted line: excess mortality model
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Figure 4: Mortality of demented women for the three models: Continuous
line: non-homogeneous Markov model; dashed line: current state model;
dotted line: excess mortality model. Age at onset of dementia: a): 70; b):
80; c): 90.
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