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Automated Scheduling, Optimisation and Planning Research Group,
University of Nottingham, School of Computer Science, Jubilee Campus,Wollaton Road,

Nottingham, NG8 1BB ,UK.
1email: m.maashi@alumni.nottingham.ac.uk

2The University of Nottingham Malaysia Campus
email:graham.kendall@nottingham.edu.my

3email: ender.ozcan@nottingham.ac.uk

Abstract

A selection hyper-heuristic is a high level search methodology which op-
erates over a fixed set of low level heuristics. During the iterative search
process, a heuristic is selected and applied to a candidate solution in hand,
producing a new solution which is then accepted or rejected at each step.
Selection hyper-heuristics have been increasingly, and successfully, ap-
plied to single-objective optimization problems, while work on multi-objective
selection hyper-heuristics is limited. This work presents one of the initial
studies on selection hyper-heuristics combining a choice function heuris-
tic selection methodology with great deluge and late acceptance as non-
deterministic move acceptance methods for multi-objective optimization.
A well known hypervolume metric is integrated into the move accep-
tance methods to enable the approaches to deal with multi-objective prob-
lems. The performance of the proposed hyper-heuristics is investigated
on the Walking Fish Group test suite which is a common benchmark for
multi-objective optimization. Additionally, they are applied to the vehi-
cle crashworthiness design problem as a real-world multi-objective prob-
lem. The experimental results demonstrate the effectiveness of the non-
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deterministic move acceptance, particularly great deluge when used as a
component of a choice function based selection hyper-heuristic.

Keywords: Hyper-heuristic, metaheuristic, great deluge, late acceptance,
multi-objective optimization

1. Introduction

Hyper-heuristics perform a search over the space of heuristics when
solving problems. In a hyper-heuristic approach, different heuristics or
heuristic components can be selected, generated or combined to solve a
given computationally difficult optimization problem in an efficient and
effective way. A selection hyper-heuristic, which is the focus of this study,
manages a predetermined set of low level heuristics with the goal of choos-
ing the best one at any given time using a performance measure main-
tained for each low level heuristic. This type of hyper-heuristic comprises
two main stages: heuristic selection and move acceptance strategy. A selec-
tion hyper-heuristic is often described as heuristic selection-move acceptance.
Hyper-heuristics are sufficiently general and modular search methods en-
abling reuse of their components for solving problems from different do-
mains [1]. The task of heuristic selection, also referred to as the high level
strategy, is to guide the search intelligently and adapt taking into account
the success/failure of the low level heuristics or combinations of heuristic
components during the search process.

The low level heuristics in a selection hyper-heuristic framework are
in general human designed heuristics which are fixed before the search
starts. An initial solution (or a set of initial solutions) is iteratively im-
proved using the low level heuristics until some termination criteria are
satisfied. During each iteration, the heuristic selection decides which low
level heuristic will be employed next. After the selected heuristic is ap-
plied to the current solution(s), a decision is made whether to accept the
new solution(s) or not using an acceptance criteria. Usually, in a selec-
tion hyper-heuristic framework, there is a clear separation between the
high level strategy and the set of low-level heuristics or heuristic compo-
nents. It is assumed that there is a domain barrier between them [2]. The
purpose of domain barrier is increase the level of the generality of hyper-
heuristics by being able to apply it to a new of problem without changing
the framework. Only a new set of problem-related low-level heuristics

2



need to be supplied. The barrier allows only problem domain indepen-
dent information to flow from the low level to the high level, such as the
fitness/cost/penalty value measured by an evaluation function, indicat-
ing the quality of a solution [3]. Low level heuristics, or heuristic com-
ponents, are the problem domain specific elements of a hyper-heuristic
framework. Hence they have access to any relevant information, such as
candidate solution(s).

Many real-world optimization problems are multi-objective requiring
improvement of more than one objective, simultaneously. Often, there is
some trade-off between multiple conflicting objectives [4, 5, 6, 7]. Hence,
the multi-objective approaches provide a set of improved solutions (not a
single solution as in single objective optimization) capturing the trade-off
between those objectives for a given problem at the end of the search pro-
cess. There is a variety of population based approaches for multi-objective
optimization in the scientific literature, such as NSGAII [8], SPEA2 [9],
and MOGA [10]. However, there are a few studies on multi-objective se-
lection hyper-heuristics. To the best of the authors’ knowledge, this paper
is one of the first studies that investigate the influence of the move ac-
ceptance component on the performance of a selection hyper-heuristic for
multi-objective optimization. In this study, we extend our previous work
in [11] which describes a HHMO CF AM multi-objective hyper-heuristic
controlling a set of low level (meta-)heuristics (NSGAII [8], SPEA2 [9], and
MOGA [10]). We have adopted the great deluge algorithm (GDA) and late
acceptance (LA) separately as a non-deterministic move acceptance com-
ponent of a selection hyper-heuristic for multi-objective optimization and
we have tested the performance of the overall algorithm using the same
set of low level heuristics as in our previous study on the well-known
Walking Fish Group (WFG) benchmark instances [12]. Moreover, we have
applied the proposed selection hyper-heuristics with embedded GDA and
LA, on a multi-objective real-world problem of vehicle crashworthiness [13]
for which a solution aims to provide a vehicle design satisfying multiple
objectives reducing different types of injuries as much as possible for the
passengers within the vehicle during a crash. The empirical results are
aligned with the previous observations for single objective optimization
[14] that different combinations of heuristic selection and move acceptance
under a selection hyper-heuristic framework yield different performances.
Move acceptance components could be extremely influential on the over-
all performance of a selection hyper-heuristic. Moreover, the proposed
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multi-objective hyper-heuristic, embedding GDA, turns out to be an effec-
tive, reusable and general approach for multi-objective optimization. The
empirical results show that it is the best option as a multi-objective selec-
tion hyper-heuristic move acceptance component, outperforming each in-
dividual low level (meta-)heuristic run on their own for the WFG instances
and NSGA II for the vehicle crashworthiness design problem.

The rest of the paper is organized as follows. In Section 2, a broad
overview of the scientific literature on move acceptance methods, in par-
ticular the great deluge and late acceptance algorithms, is provided. An
overview of existing studies on multi-objective selection hyper-heuristics
and a selection hyper-heuristic framework supporting the use of great
deluge and late acceptance move acceptance methods for multi-objective
optimization are covered in Section 3. The experimental results for the
proposed hyper-heuristics to the WFG benchmark and vehicle crashwor-
thiness problem instances are provided in Section 4 and 5, respectively.
Finally, the conclusions are presented in Section 6.

2. Move Acceptance Methods

The choice of heuristic selection and move acceptance methods in se-
lection hyper-heuristics influences the performance of a hyper-heuristic
[14]. A move acceptance criterion can be deterministic or non-deterministic.
A deterministic move acceptance criterion produces the same result given
the same initial solutions. A non-deterministic move acceptance criteria
may generate a different result even when the same solutions are used.
This could be because the move acceptance criterion depends on time or
it might have a stochastic component while making the accept/reject de-
cision. Examples of deterministic move acceptance criteria are All-Moves,
Only-Improving and Improving & Equal. In All-Moves, the candidate so-
lution is always accepted whether a move worsens or improves the solu-
tion quality. The candidate solution in Only-Improving criteria is accepted
only if it improves the solution quality, while in Improving & Equal crite-
ria, the candidate solution is accepted only if it improves or it is equal
to the current solution. For a non-deterministic move acceptance criteria,
the candidate solution is always accepted if it improves the solution qual-
ity, while the worsening solution can be accepted based on an acceptance
function some of which include the great deluge algorithm [15], simulated
annealing [16] and monte carlo [17].

4



The choice function (CF) is introduced as a heuristic selection method
as part of a selection hyper-heuristic in Cowling et al. [18]. The choice
function maintains a score for each low level heuristic and chooses the
one with the highest score at each decision point during the search pro-
cess. A low level heuristic’s score depends on whether or not the heuristic
generates improvement when used individually, when used in coopera-
tion with another heuristic and how much time has been passed since
its last invocation. This initial study has been followed by many other
studies indicating the success of choice function based hyper-heuristics
using different move acceptance methods on different problems. Cowling
et al. [19] developed an approach using several proposed hyper-heuristic
components in order to solve a real-world scheduling problem; namely
project presentations. The approach employed deterministic move ac-
ceptance strategies {All-Moves, Only-Improvements} and seven heuristic
selection methods {Simple Random, Random Gradient, Random Permu-
tation, Random Permutation-Gradient, Greedy, Reinforcement Learning,
Choice Function}. The experimental results show that choice function all-
moves performs better than simple random moves over the given prob-
lems, and produced better solutions than those produced by humans.

There are a few comparative studies which evaluate the performances
of different heuristic selection and move acceptance methods. A set of
seven different heuristic selection strategies (Simple Random, Random
Descent, Random Permutation, Random Permutation Descent, Greedy,
Choice Function, Tabu Search) are combined with a set of five acceptance
strategies {All-Moves, Only-Improving, Improving & Equal, Exponential
Monte Carlo with Counter, GDA}. The combination set is tested on four-
teen benchmark functions against genetic and memetic algorithms. Choice
Function-Improving & Equal performs the best [14]. Another study was
conducted by Bilgin et al. [20] using a set of eight heuristic selection strate-
gies {Simple Random, Random Gradient, Random Permutation, Random
Permutation Gradient, Greedy, Choice Function, Reinforcement Learn-
ing, Tabu Search} and five move acceptance strategies {All-Moves, Only-
Improving, Improving &Equal, GDA, EMCQ} which were tested on dif-
ferent timetabling benchmark problems. The study showed that there is
no one strategy that dominates. In the scientific literature, a wide variety
of hyper-heuristics have been proposed that use different heuristic selec-
tion and acceptance strategies in different domains: packing, vehicle rout-
ing, timetabling, channel assignment, component placement, personnel
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scheduling, planning and shelf space allocation (see [21]). The choice func-
tion simulated annealing hyper-heuristic performed better than a simple
random great deluge hyper-heuristic over a set of examination timetabling
problems as presented in [20]. In [22] different heuristic selection meth-
ods {Simple Random, Greedy, Reinforcement Learning, Reinforcement,
Tabu Search, Choice Function} were combined with a Late Acceptance
methodology. The results show that the random heuristic selection with
late acceptance obtained the best results on the examination timetabling
problem.

All these previous studies focus on single-objective optimization prob-
lems. To the best of the authors’ knowledge, this paper is one of the first
studies that investigates the influence of the move acceptance component
of selection hyper-heuristics for multi-objective optimization. In the fol-
lowing subsections we describe the move acceptance methods that we
have used in our experiments, as well as related work.

2.1. Great Deluge

The great deluge algorithm (GDA) is a metaheuristic proposed by Dueck
[15] using a threshold move acceptance criterion as illustrated in Algo-
rithm 1. This algorithm is adopted from [15], assuming a maximization
problem. GDA always accepts improving moves, while a worsening move
is accepted only if it is better than a threshold (target improvement denoted
as LEV EL) at a given step. The algorithm starts with an initial water level,
which is often taken as the quality of the initial solution (step 4). At each
step, a solution in hand (s) is modified and a new solutions (s∗) is obtained
from its neighbourhood using a move operator (step 6). The water level is
increased gradually (usually linearly) at each iteration, during the search,
according to a predefined rate referred to as Rain Speed (UP ). A worsen-
ing solution (s∗) is accepted if the quality of the solution (measured by
(f (s∗)) is greater than or equal to the water level (steps 7 and 8) and then
the water level is updated (step 9). The algorithm terminates when there
is no change in the solution quality within a predefined time or when the
maximum number of iterations is exceeded.

The main advantage of GDA is that it is simple and easier to imple-
ment when compared to many other metaheuristics, such as, simulated
annealing [16] and tabu search (TS) [23]. Moreover, better quality solu-
tions could be produced with an increased search time [24]. GDA requires
fewer input parameters; in fact it only has one parameter, rain speed (UP)
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Algorithm 1 Great Deluge Algorithm

1: procedure GDA
2: Produce an initial solution s

3: Choose an initial rain speed UP > 0
4: Choose an initial water level LEV EL > 0 ◃ LEV EL = f(s)
5: repeat

6: Obtain a new solution s∗ ∈ N(s,Q) from s using a move operator Q
7: if (f(s∗) > LEV EL) then

8: s = s∗
9: LEV EL = LEV EL+ UP

10: end if

11: until (termination criteria are satisfied)
12: end procedure

[25]. The value of UP is usually a small value greater than 0, and less than
0.03 [26]. Dueck [15] provided various recommendations regarding UP .
For example, a suggestion is that UP should be on average smaller than
1% of the average distance between the quality of the current solution and
the water level. So the water level can be calculated for a solution s∗ using:

LEV EL = LEV EL+ UP (LEV EL+ f(s∗)) (1)

The value of UP can also be calculated based on the time allocated for the
search and by defining upper/lower bounds of an estimated quality of
solution [27]. However, both of those parameters depend on the problem
dimensions and can affect the quality of final solution for a given problem
[28]. An extended GDA with reheating was proposed by McMullan and
McCollum [29]. The idea is similar to the reheating scheme utilized in
simulated annealing. The reheating (re-levelling in the GDA context) aims
to widen the boundary condition, via improving the rain speed, in order
to allow a worsening move to be accepted and avoid becoming trapped
in a local optimum. If there is no improvement, water level is reset and
re-levelling strategy is applied using a new rain speed value based on the
number of total moves in the process.

GDA has been used in many hyper-heuristic approaches as an accep-
tance move strategy. Özcan et al. [30] proposed a reinforcement learning
great deluge hyper-heuristic. It was applied to examination timetabling,
producing good quality solutions when compared to some other approaches
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in the literature. Kendall and Mohamad [31] presented a variant of a
GDA based hyper-heuristic. It was applied to channel assignment bench-
marks. The experimental results show that a Simple Random GDA hyper-
heuristic produced good results when compared to a constructive heuris-
tic and a genetic algorithm. In addition, a variant of the GDA hyper-
heuristic approach including flex deluge, non-linear and extended great
deluge is proposed in [32]. These approaches were applied to large scale
and highly constrained timetabling problems and tested on exam timetabling
benchmark problems. The experimental analysis demonstrates that non-
linear great deluge produced the best results compared to other approaches.

In the scientific literature, there are many other studies that investigate
GDA and its variants in tackling various optimization problems. How-
ever, the majority of them are applied to optimization problems with a
single-objective. In fact, there is only one study that proposed the GDA for
multi-objective optimization [33] in which weighted sum of the objectives
is used for multi-criteria examination timetabling. GDA guides the search
process via a trajectory, determined by adaptively changing weights. In
this study, we employ a different method rather than reducing the multi-
ple objectives into a single objective.

2.2. Late Acceptance

Late acceptance local search (LALS) is an iterative method, proposed
recently by Burke and Bykov [34]. This approach won an international
competition to automatically solve the Magic Square problem which was
later beaten by a selection hyper-heuristic [35]. It is based on a hill-climbing
framework as illustrated in Algorithm 2 (adopted from [34]) which em-
beds a new move acceptance strategy. The idea is to delay the comparison
between the cost of the current solution and the previous solution, hence
the move acceptance method is referred to as late acceptance (LA) at the
core of the local search algorithm. LA is simple and easy to implement,
requiring implementation of a list C of size L. Each item Cl (0 ≤ l < L)
in the list contains the cost (fitness/objective) value of a solution visited in
the lth previous iteration. At the beginning of the search, C list is filled by
the initial cost value. During the search process, a new solution s∗ is ob-
tained by applying the move operator to the current solution s. The cost of
the new solution f(s∗) is compared to the cost of a previously visited solu-
tion. This is done via the use of the list C. The last element indicating the
cost of a solution visited L steps prior to the current step (i) is maintained
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at Cl. Hence, Cl is compared to the cost of the new solution f(s∗) for the
accept/reject decision. If this cost is better than or equal to the cost of the
last element, then the new solution is accepted (s is set to s∗). The cost of s
is inserted into the beginning of the list, while the last element is removed
from the list. This process is repeated until a set of stopping criteria is met.
In order to avoid shifting the whole list at each iteration and reduce the
processing time of LA, a circular queue is employed as suggested and l is
calculated using the following formula:

l = i mod L (2)

where mod represents the remainder of integer division, ith is the current
iteration, L is the length of the cost list C.

Algorithm 2 Late Acceptance Local Search Algorithm

1: procedure LALS
2: Begin
3: Produce an initial solution s

4: Calculate cost of s using f(s)
5: for ∀l ∈ {0, ..., L− 1} do

6: Cl = f(s)
7: end for

8: Initialize the iteration counter, i = 0
9: repeat

10: Create a new solution s∗ from s using a move operator
11: Calculate its cost by f(s∗)
12: l = i mod L

13: if (f(s∗) ≤ Cl or f(s∗) ≤ f(s)) then

14: Accept candidate (s = s∗)
15: end if

16: Cl = f(s)
17: i = i+ 1
18: until (a chosen stopping condition)
19: end procedure

Intuitively, in order to be able to exploit the unique features of LA, L
should be set to a value less than the number of iterations and greater than
or equal to two. If L is equal to one, LALS becomes a greedy hill-climber
[34]. If it is equal to the number of iterations, the search could turn into
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random walk depending on the move operator. Since LA is a fairly new
methodology, there is only a limited number of studies in the scientific lit-
erature and none of those previous studies has dealt with a multi-objective
optimization problem. In [22], the late acceptance strategy was combined
with different heuristic selection methods (Simple Random, Greedy, Re-
inforcement Learning, Tabu Search and Choice Function) and applied to
examination timetabling problems. The experiments show that the ran-
dom heuristic selection with late acceptance performs well among other
combination methods. In [36], an experimental comparison of LALS with
well-known search methods (simulated annealing (SA), threshold accept-
ing (TA) and GDA were carried out on the traveling salesman and exam
timetabling problems. The results show the success of LALS when its per-
formance is compared to the others.

3. Proposed Multi-objective Selection Hyper-heuristic Approach

The interest in selection hyper-heuristics has been growing in recent
years. However, the majority of research in this area has been limited to
single-objective optimization. To date, only a limited number of studies
have been identified that address/deal with selection hyper-heuristics for
multi-objective problems. Section 3.1 discusses some of those selection
hyper-heuristics. Section 3.2 describes the proposed choice function based
hyper-heuristic which embeds non-deterministic acceptance methods.

3.1. Related Work

A multi-objective hyper-heuristic based on tabu search was proposed
in [37]. The key feature of this study lies in choosing a suitable heuris-
tic at each iteration to tackle the problem at hand by using tabu search
as a high-level search strategy. The proposed approach was applied to
space allocation and timetabling problems, and produced results with ac-
ceptable solution quality. Another approach [38] comprises two phases.
The first phase aims to produce an efficient Pareto front (this may be of
low quality based on the density), while the second phase aims to deal
with the problem in a flexible way to drive a subset of the population to
the desired Pareto front. This approach was evaluated on multi-objective
travelling salesman problems using eleven low level heuristics. It was
compared to other multi-objective approaches from the literature, reveal-
ing that the proposed approach generates good quality results but that
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future work is still needed to improve the methodology. A Markov chain
based selection hyper-heuristic (MCHH) has been investigated in [39]. The
Markov chain guides the selection of heuristics and applies online rein-
forcement leaning to adapt transition weights between heuristics. MCHH
was applied to the DTLZ test problems [40] and compared to a (1+1) evo-
lution strategy, a random hyper-heuristic and a hyper-heuristic presented
in [37]. The comparison shows the efficacy of the proposed approach in
terms of Pareto convergence and its ability to select good heuristic com-
binations. MCHH was applied to the Walking Fish Group (WFG) test
problems [12]. The experiments show the efficacy of the method but fu-
ture work is still needed in terms of acceptance strategies to improve the
search [39]. MCHH has also been applied to real-world water distribution
network design problems and has produced competitive results [41]. In
[42], a new hyper-heuristic based on the multi-objective evolutionary algo-
rithm NSGAII [8] is proposed. The main idea of this method is in produc-
ing the final Pareto-optimal set, through a learning process that evolves
combinations of condition-action rules based on NSGAII. The proposed
method was tested on many instances of irregular 2D cutting stock bench-
mark problems and produced promising results. In [43],[44], a hyper-
heuristic-based encoding was proposed for solving strip packing and cut-
ting stock problems with two objectives that maximize the total profit
and minimize the total number of cuts. Experimental results show that
the hyper-heuristic outperforms individual heuristics. In [45] a multi-
objective hyper-heuristic for the design and optimization of a stacked neu-
ral network is proposed. The proposed approach is based on NSGAII com-
bined with a local search algorithm (Quasi-Newton algorithm). In [46] a
multi-objective hyper-heuristic optimization scheme for engineering sys-
tem design problems is presented. A genetic algorithm, simulated anneal-
ing and particle swarm optimization are used as low-level heuristics.

In [47], a multi-indicator hyper-heuristic for multi-objective optimiza-
tion is proposed. This approach is based on multiple rank indicators, taken
from NSGAII [8], IBEA [48] and SPEA2 [9]. In [49] a multiple neighbour-
hood hyper-heuristic for two-dimensional shelf space allocation problem
is proposed. The proposed hyper-heuristic was based on a simulated an-
nealing algorithm. In [50], a multi-objective hyper-heuristic genetic al-
gorithm (MHypGA) for the solution of Multi-objective Software Module
Clustering Problem is presented. In MHypGA, different selection, crossover
and mutation operators as the components of a genetic algorithm are uti-
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lized as low-level heuristics. A hypervolume-based hyper-heuristic for a
dynamic-mapped multi-objective island-based model is proposed in [51].
The proposed method is superior when compared to the contribution-
based hyper-heuristic and other standard parallel models over the WFG
test problems [12].

Different frameworks have been proposed for mixing a set of existing
algorithms. As an example, adaptive multi-method search called AMAL-
GAM is proposed in [52, 53, 54]. This approach employs multiple search
algorithms; (NSGAII [8], particle swarm optimization [55], adaptive Metropo-
lis algorithm [56], and differential evolution [57]), simultaneously, based
on adaptive offspring creation. AMALGAM is applied to a set of well
known multi-objective test problems, and its performance was reported
to be superior to other methods [52]. It was also applied to solve a num-
ber of water resource problems, yielding high quality solutions [53],[54].
A multi-strategy ensemble multi-objective evolutionary algorithm called
MS-MOEA for dynamic optimization is proposed in [58]. It combines dif-
ferent strategies including a memory strategy and genetic and differen-
tial operators to adaptively create offspring and achieve fast convergence
speed. The experimental results show that MS-MOEA is able to obtain
promising results.

Maashi et al. [11] investigated an online learning selection hyper-heuristic,
and its hybridization with multi-objective evolutionary algorithms. A choice
function all-moves hyper-heuristic for multi-objective optimization prob-
lems (HHMO CF AM) was proposed in their study. The choice function
variant acts as a multi-objective heuristic selection mechanism as part of
the high level search strategy. The choice function method adaptively
ranks the performance of the low level heuristics and chooses the top
ranking heuristic at each decision point. Three multi-objective evolution-
ary algorithms (NSGAII [8], SPEA2 [9], and MOGA [10]) act as low level
heuristics. A ranking scheme is used to rank each low level heuristic
against four performance measurements (AE [59], RNI [59], SSC [4], and
UD [60]). All-Moves are accepted regardless whether a move improves
the quality of the solution or not. The experimental results over the WFG
problems [12] and a real world problem [13] show that this approach can
benefit from the strengths of the low level heuristics. In the majority of
cases, HHMO CF AM outperforms the other multi-objective evolutionary
algorithms (NSGAII, SPEA2 and MOGA), when used in isolation. More-
over, HHMO CF AM is superior to AMALGAM [52] and a random hyper-
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heuristic [11]. This study extends our previous work in [11] by introducing
a metric enabling the use of non-deterministic move acceptance methods
within a selection hyper-heuristic framework.

3.2. Choice Function Multi-objective Hyper-heuristic based on Non-deterministic
Move Acceptance

Previous studies show that the use of a different move acceptance method
could improve the overall performance of a selection hyper-heuristic in
the context of single objective optimization [14]. In this study, we inves-
tigate the behavior of the great deluge algorithm (GDA) [15] and late ac-
ceptance (LA) [5] as non-deterministic move acceptance strategies within
the choice function based hyper-heuristic framework, designed for solving
multi-objective optimization problems. We attempt to improve the per-
formance of the original approach (HHMO CF AM) [11] by using GDA
and LA as an acceptance method instead of All-moves and adopting those
methods for multiobjective optimization, allowing acceptance of “worsen-
ing” moves at a given step.

The motivation for choosing GDA and LA as an acceptance method is
that both are simple and do not require many parameters, requiring less
effort in parameter tuning. More importantly, encouraging results have
been reported in the literature for single-objective optimization, but there
are only a few studies on their application to multi-objective optimization
(e.g., [33]). However, GDA and LA are different in the way that they ac-
cept worse solutions. GDA uses a time (iteration) varying threshold while
accepting a worse solution, while LA uses a delayed acceptance strategy
comparing the quality of a current candidate solution to that of a solution
visited a number of iterations earlier. Both move acceptance methods re-
quire computation of the change in the value of a single-objective at each
step and so the D performance metric [4] is proposed for their applicability
to the multi-objective optimization problems.

3.2.1. D metric

The D metric [4] is an extended version of the hypervolume, and is also
known as the size of space covered metric (SSC) [4]. The SSC metric evalu-
ates how much of the objective space is covered by a given front. Hence,
SSC cannot be directly used to decide whether a given front dominates an-
other one or not. However, the D metric can compute the space (surface)
coverage difference between two non-dominated sets (e.g., initial/current
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Figure 1: Ilustration of how D metric works for two given fronts 1 (set A) and 2 (set B)
[61].

non-dominated set) A and (e.g., new non-dominated set) B with respect
to the objective space as illustrated in Fig. 1. (A+ B) denotes the union of
surfaces covered by A and B. D(A,B) denotes the size of the space domi-
nated by A and not dominated by B while D(B,A) denotes the size of the
space dominated by B and not dominated by A:

D(A,B) = SSC(A+B)− SSC(B) (3)

D(B,A) = SSC(A+B)− SSC(A) (4)

If D(A,B) < D(B,A) then B dominates A. In other words, the non-
dominated set B (front 2) is better than the non-dominated set A (front
1) with respect to the D metric.

In the context of move acceptance criterion, in particular GDA and LA,
the quality measure of the current solution and the candidate solution is
essential in order to make a decision regarding an acceptance decision. For
the single-objective optimization problem, fitness can be used. However,
this is not applicable in a multi-objective optimization. In multi-objective
problems, the output is a set of solutions (a non-dominated set). We pro-
pose the use of the D metric as a way of comparing two non-dominated
sets with respect to the objective space. The D metric is usually used in
the literature as a performance metric to compare the final solutions ob-
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tained from multi-objective optimizers. In this study, for the first time, we
integrate the D metric into a move acceptance criterion in order to con-
vert multi-objective optimization to single optimization without having to
define weights for each criteria.

3.2.2. Great Deluge and D Metric

GDA is modified based on the D metric to enable its use in multi-
objective optimization and comparison of a new front (B) to the current
front in hand (A) for acceptance as shown in Algorithm 3. A is a non-
dominated front which represents an initial or current solution and B is a
front which represents a new solution potentially obtained from the neigh-
borhood. The water level is assigned initially to the value of D(A,B).
D(A,B) value will always be less than or equal to LEV EL at any point
during the search process. Hence, any improvement (non-dominated front)
will be accepted after checking with respect to the inequality of D(B,A) >
LEV EL. This also allows acceptance of a new front which is worse than
(dominated by) A in terms of the D measure. When B is accepted and the
water level is increased linearly using a predefined speed rate (UP ). This
rate is usually fixed as a small positive value in single objective optimiza-
tion and the same strategy is used for multi-objective optimization.

Algorithm 3 Great Deluge Algorithm with D metric

1: procedure GDA(A, B)
2: if (D(B,A) > LEV EL) then

3: A = B

4: LEV EL = LEV EL+ UP

5: end if

6: end procedure

3.2.3. Late Acceptance and D Metric

LA is modified to employ the D metric and its pseudo-code is shown
in Algorithm 4. LA utilizes a list of length L and this list C contains values
obtained using the D metric at each entry Cl, where 0 ≤ l < L. Given two
fronts (sets of solutions) A and B representing the current front and new
front, respectively, D(A,B) and D(B,A) are measured. The new front is
accepted if D(B,A) > D(A,B) (see subsection 3.2.1), since this situation
indicates an “improving” front (step 3). If not, B is still accepted if the
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value of D(B,A) is better than or equal to the value of Cl which is the
D measure of two fronts from L step prior to the current step i (see step
2); D(B,A) ≥ Cl. After B gets accepted (step 4), the value of D(B,A)
is inserted into Cl (step 7) and the old value is removed. If a move is
rejected, then Cl is set to the D value of the pair of fronts when A was
accepted previously. Cl values are initialized to D(X, Y ) when a new front
Y is obtained from the first front X at the beginning of the search process.

Algorithm 4 The Late Acceptance with D metric

1: procedure LA(A,B) ◃ Given that dval holds the D value of previous two
fronts when A was accepted

2: l = i mod L; i = i+ 1; ◃ i is the current iteration
3: if (D(B,A) ≥ Cl or D(B,A) > D(A,B)) then

4: Accept candidate A = B

5: dval = D(B,A)
6: end if

7: Insert D value into the list, Cl = dval

8: end procedure

3.2.4. Choice Function great deluge/late acceptance based Hyper-heuristic Frame-
work

Maashi et al. [11] introduced a selection hyper-heuristic framework
based on a choice function which is modified to deal with multi-objective
optimization problems and a mechanism to rank low level heuristics for
heuristic selection using equation 5.

CF (h) = αf1(h) + f2(h) (5)

Equation 5 reflects the overall performance of low level heuristics with
respect to the performance metrics (AE, RNI, SSC and UD). This mea-
sures the resulting non-dominated set in the objective space. f1 represents
the performance of an individual heuristic h based on the highest ranking
among the other heuristics. f1 is used for intensification. f2 is the number
of CPU seconds elapsed since the heuristic was last called. This provides
an element of diversification, by favoring those low level heuristics that
have not been called recently. α is a large positive value (e.g. 100). It is
important to strike a balance between f1 and f2 values, so that they are in
the same scalar unit.
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The pseudo code of the two proposed hyper-heuristics for multi-objective
optimization; choice function great deluge based hyper-heuristic (HHMO CF GDA)
and choice function late acceptance based hyper-heuristic (HHMO CF LA)
shown in Algorithm 5. Initially, a greedy algorithm is applied to determine
the best low level heuristic h to be selected for the first iteration (steps 2-6).
All low level heuristics H are executed (step 3). Then, the low level heuris-
tics are ranked based on the ranking scheme (step 4) and their choice func-
tion values are computed using equation 5 (step 5). The low level heuristic
h with the largest choice function value CF (h) is selected to be applied at
the next iteration and it produces the non-dominated front A (a current
solution) (steps 6 and 7). Then, for all low level heuristics H , the rank-
ing mechanism is updated (step 9). The choice function values are also
computed and updated (step 10). According to the updated choice func-
tion values, the low level heuristic h with the largest choice function value
CF (h) is executed and it produces the non-dominated front B (a candi-
date solution) (steps 11 and 12). In step 14, the acceptance procedure,
whether GDA(A,B) or LA(A,B) depends on the hyper-heuristic that we
used, is called and applied using the parameters that were obtained from
the search (see Sections 3.2.2 and 3.2.3). This process is repeated until the
stopping condition is met which is a fixed number of iterations (steps 8-
16). Please note the acceptance procedure is applied on the indicator value
of the whole candidate population not on the single solution of the pop-
ulation. And note that the greedy algorithm is applied only once at the
beginning of the search, in order to determine which low level heuristic to
apply first. Then, only one low level heuristic is selected at each iteration.

4. Computational Experiments on the Walking Fish Group (WFG) Test
Problems

The experiments are conducted over the Walking Fish Group (WFG)
benchmark dataset [12] to (i) investigate the influence of using non-deterministic
move acceptance strategies; great deluge algorithm and late acceptance on
the performance of online learning choice function based selection hyper-
heuristic for multi-objective optimization (denoted as HHMO CF GDA
and HHMO CF LA), and (ii) to compare their performance to the original
approach; selection hyper-heuristic based on deterministic move accep-
tance (HHMO CF AM) [11].
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Algorithm 5 Multi-Objective Hyper-heuristic based on Acceptance Proce-
dure

1: procedure HH CF(H) where H is a set of the low level heuristics.
2: Initialization
3: Run h, ∀ h ∈ H

4: Rank h, ∀ h ∈ H based on the ranking scheme
5: Get CF (h), ∀ h ∈ H

6: Select h with the largest CF (h) as an initial heuristic
7: Execute the selected h and produce a front A
8: repeat

9: Update the rank of h, ∀ h ∈ H based on the ranking scheme
10: Update CF (h), ∀ h ∈ H

11: Select h with the largest CF (h), ∀ h ∈ H

12: Execute the selected h and produce a new front B
13: Call the acceptance procedure GDA(A,B)/LA(A,B)
14: until (termination criteria are satisfied)
15: end procedure

4.1. WFG Test Problems

The WFG test suit was introduced by Huband et al. [12]. It consists
of nine continuous benchmark functions as shown in Table 1. The WFG
test suite is designed for real valued optimization with no side constraints
which makes it easier to analyze and implement. Due to the distinct fea-
tures of the problems in the WFG dataset, it is a common choice for most
MO/EA researchers [12] for assessing new algorithms.

Unlike most of the multi-objective test suites such as ZDT [6] and DTLZ
[40], the WFG test suite has powerful functionality. It also has a number of
features that the other test suites do not include. The benchmark problems
are nonseparable problems, deceptive problems, a truly degenerate prob-
lem, and a mixed-shape Pareto front problem. In addition, WFG is scal-
able to any number of objectives. The numbers of distance and position
related parameters can be scaled independently. The WFG test problems
are constructed based on a vector that corresponds to the problem’s fitness
space. This vector is derived through a series of transition vectors such as
multimodality and nonseparability. The complexity of the problem can be
increased according to the number of transition vectors. The main advan-
tage of the WFG test suite is that it is an excellent tool for comparing the
performance of EAs over a range of test problems, and it has been shown
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to offer a more comprehensive set of challenges when compared to DTLZ
using NSGAII [12].

4.2. Performance Evaluation Criteria

The comparison of the quality of solutions for multi-objective opti-
mization is more complex than single-objective problems. The number
of non-dominated individuals should be maximized, the distance of the
non-dominated front should minimized, i.e. the resulting non-dominated
set should be distributed uniformly as much as possible and converge to-
ward the Pareto optimal front (POF). We use five performance metrics
to assess the quality of approximation sets from different aspects: (i) ra-
tio of non-dominated individuals (RNI) [59], (ii) hypervolume (SSC) [4],
(iii) uniform distribution of a non-dominated population (UD) [60], (iv)
generational distance (GD) [62] and (v) the inverted generational distance
(IGD) [7] . A higher value considering one of those performance met-
rics indicates that non-dominated solutions are of good quality, except for
GD and IGD, where a lower value indicates that the approximation non-
dominated front is closer to the POF.

We have compared the mean performance of three choice function based
multi-objective hyper-heuristics; HHMO CF AM, HHMO CF GDA and
HHMO CF LA across multiple trials with respect to the metrics across
multiple trials. Moreover, t-tests are used as a statistical test for pairwise
mean performance comparison. The following notation is used when re-
porting the results. Given a pair of algorithms, A and B (denoted as A-B),
The + (−) indicates that algorithm A performs better (worse) than B on
average with respect to the given metric and this performance difference
is statistically significant within a confidence interval of 95%. ± (∓) indi-
cates that A performs slightly better (worse) than B without any statistical
significance. ≈ indicates that mean performances of both algorithms are
equal.

4.3. Experimental Settings

All experimental parameters are chosen based on those commonly used
in the literature for continuous problems (see [6] and [12]). We use the
same parameter settings that were used for HHMO CF AM in [11] for
a fair comparison. NSGAII[8], SPEA2[9], and MOGA[10] act as the low
level heuristics within the multi-objective choice function based hyper-
heuristics. The nine test problems (WFG1-WFG9) have 24 real parameters
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including four position parameters, 20 distance parameters and two objec-
tives. We concur with findings in the literature [6] that two objectives are
enough to represent the essential features of multi-objective optimization
problems to demonstrate the significance of the proposed approach.

Following the recommendation in [63] and [64], a hyper-heuristic is
terminated after 6,250 generations. All hyper-heuristics are run for a total
of 25 stages. In each stage, a low level heuristic is chosen and executed
for 250 generations with a population size of 100. The secondary popu-
lation of SPEA2 is set to 100. The execution time takes 10 to 30 minutes
depending on a given problem. For the WFG problems, 30 independent
trials were run for each method with different random seeds. For all three
low level heuristics, the simulated binary crossover (SBX) operator is used
for recombination and a polynomial distribution for mutation [65]. The
crossover and mutation probability were set to 0.9 and 1/24 respectively.
The distribution indices for crossover and mutation were set to 10 and 20
respectively. In the measure of SSC and D metric for GDA and LA, the
reference points for WFG problems with k objectives was set ri = (0, i ∗ 2),
i = 1, ..., k [12] . The distance sharing σ for the UD metric and MOGA
was set to 0.01 in the normalized space. These settings were used for
SSC and UD as a feedback indicator in the ranking scheme of the hyper-
heuristic framework and as a performance measure for the comparison.
As for HHMO CF GDA, the rain speed (UP ) is set to 0.0003 based on the
empirical experiments that are presented in the supplementary files. The
length of the fitness array (LFa) in HHMO CF LA is set to 5.00 as recom-
mended in [36]. All methods are implemented using Microsoft Visual C++
2008 on an Intel Core2 Duo 3GHz\2G\250G computer.

4.4. Results

The average values associated with their standard deviations consid-
ering the performance metrics, including RNI, SSC, UD, GD and IGD for
each WFG problem generated by each hyper-heuristic across 30 trials are
provided in Table 2. The pairwise (t-test) mean performance comparison
of different choice function based selection hyper-heuristics each using
a different move acceptance method are provided in Table 3. Overall,
HHMO CF GDA performs the best. The experimental result show that
the selection hyper-heuristic using GDA and LA performs better than the
one using AM on average with respect to the ratio of non-dominated solu-
tions (RNI). From this point onward, each hyper-heuristic will be referred
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to by its move acceptance method utilized within each hyper-heuristic.
The pairwise performance differences of GDA and LA from AM are sta-
tistically significant with respect to the measure of RNI for all benchmark
functions, except WFG1. GDA and LA perform relatively similar with re-
spect to RNI. With respect to the measure of the hypervolume (SSC), GDA
has the best overall mean performance when compared to AM and LA,
and this performance difference is statistically significant across all WFG
problems, except WFG2. For this instance, GDA performs slightly better
than LA. In addition, LA delivers a significantly better performance than
AM for all WFG problems, except WFG5. Similarly, GDA delivers a signif-
icantly better mean performance when compared to AM and LA with re-
spect to the measure of generational distance (GD) for all benchmark func-
tions, except WFG1 and WFG9. For WFG1, AM performs slightly better
than GDA and significantly better than LA, while for WFG9, LA performs
significantly better than AM and GDA performs slightly better than AM.
With respect to the measure of inverted generational distance (IGD), GDA
performs significantly better than AM in all instances except in WFG1. In
addition, GDA performs significantly better than LA in four instances of
WFG2, WFG4, WFG8 and WFG9 while it performs significantly similar to
LA in the rest.

Although non-deterministic move acceptance methods improve the over-
all mean performance of the hyper-heuristic with respect to RNI, SSC, GD
and IGD, AM performs the best with respect to the measure of the uni-
form distribution of non-dominated solutions (UD). The performance dif-
ferences from GDA and LA are statistically significant for all problems, ex-
cept WFG4, for which AM still performs slightly better than LA. GDA and
LA have relatively similar performance across all WFG problems except
WFG5, WFG8 and WFG9. The success of AM with respect to UD might be
due to the use of the D metric within the acceptance procedure. Since D

metric is a binary hypervolume measure that is designed to compare two
sets of non-dominated solutions with respect of their convergence towards
the POF, there is no consideration regarding how uniformly these solu-
tions are distributed along the POF. This might also be a reason why non-
deterministic move acceptance produces high quality solutions in terms
of the convergence towards the POF.

To further understand how the move acceptance strategies, AM, GDA
and LA, are performing and how their performances could affect the qual-
ity of the solutions, Fig. 2 illustrates the average number of heuristic invo-

21



cations of each low level heuristic selected and applied at 25 consecutive
decision points during the whole search process over all runs. Each bar in
the plot also indicates the average number of accepted and rejected Pareto
fronts. A similar pattern for the choice of low level heuristics during the
search process has been observed in Fig. 2 on almost all WFG problems
considering the three hyper-heuristics. This is highly likely due to the use
of the same heuristic selection mechanism (choice function). However, the
pattern in the plots for accepted or rejected Pareto fronts produced by the
chosen low level heuristic varies for a given problem depending on the
move acceptance strategy that the hyper-heuristic employed. NSGAII is
always selected more than the other low level heuristics regardless of the
move acceptance method, except for WFG5 and WFG9. For WFG5, SPEA2
is the most frequently chosen algorithm regardless of the move acceptance
component of the hyper-heuristic during the search process. On the other
hand, SPEA2 is frequently chosen when GDA is used as the move accep-
tance on WFG9. The performance of MOGA is the worst among the three
hyper-heuristics on the WFG problems; thus it is invoked relatively less
frequently during the search process in all test problems for all methods.
NSGAII appears to be a good choice for solving the WFG problems. Our
observations are consistent with the result obtained in [66] showing that
the best performance is achieved by NSGAII on the WFG test problems
with two objectives. As discussed in [11], mixing different metaheuristics
under a selection hyper-heuristic framework yields an improved perfor-
mance.

Fig. 2 shows that there is only one case in which all moves are accepted
when a non-deterministic strategy is used, that is GDA for WFG1. The rate
of moves rejected for LA is higher than that for GDA on all test problems
regardless of the low level metaheuristic employed, except for MOGA,
where LA accepts more moves (solutions) than GDA on almost all prob-
lems. These observations offer some explanation why the performance of
GDA is better than LA in terms of convergence towards the POF: (i) The
good moves that are accepted in GDA are rejected in LA, and (ii) as MOGA
does not perform well in the WFG test problem and it is invoked rela-
tively less frequently during the search process, LA accepts all MOGA’s
moves (solutions) while GDA rejects them. LA produces better solutions
than AM. So, the non-deterministic acceptance strategies (GDA and LA)
beat the deterministic acceptance strategy (AM). In addition, GDA and LA
appear to positively affect the performance of the multi-objective choice
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function based hyper-heuristic when used as the move acceptance strat-
egy over the WFG test problems.

5. Computational Experiments on the Multi-objective Design of Vehi-
cle Crashworthiness

More experiments are conducted over a multi-objective real-world prob-
lem, namely the design of vehicle crashworthiness problem [13], to evalu-
ate the performance of selection hyper-heuristics. The same performance
evaluation criteria and algorithms are used as described in the previous
section. In this study, the performances of HHMO CF AM, HHMO CF GDA
and HHMO CF LA is compared to the NSGAII [8].

5.1. Problem Formulation

In the automotive industry, crashworthiness is a very important issue
when designing a vehicle. Crashworthiness design of real-world vehicles
involves the optimization of a number of objectives including the head,
injury criterion, chest acceleration, chest deflection, etc. However, some
of these objectives may be, and usually are, in conflict with each other, i.e.
an improvement in one objective value leads to the deterioration in the
values of the other objectives.

Liao et al. [13] presented a multi-objective design for the vehicle crash-
worthiness problem with five real-value parameters and no constraints.
The vehicle crashworthiness problem was constructed using the surro-
gate modelling techniques with latin hypercube sampling and stepwise re-
gression considering the weight, acceleration characteristics and toe-board
intrusion as the design objectives. The mass of the vehicle is tackled as
the first design objective, while an integration of collision acceleration be-
tween t1 = 0.05s and t2 = 0.07s in the full frontal crash is considered as
the second objective function. The toe-board intrusion in the 40% offset-
frontal crash is tackled as the third objective. The second and third objec-
tives (ain and intrusion, respectively) are constructed from the two crash
conditions to reflect the extreme crashworthiness and formulated in the
quadratic basis functions while the vehicle mass is formulated in a linear
function as follows:
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Mass = 1640.2823 + 2.3573285t1 + 2.3220035t2

+ 4.5688768t3 + 7.7213633t4 + 4.4559504t5
(6)

Ain = 6.5856 + 1.15t1 − 1.0427t2 + 0.9738t3 + 0.8364t4

− 0.3695t1t4 + 0.0861t1t5 + 0.3628t2t4 − 0.1106t21
− 0.3437t23 + 0.1764t24

(7)

Intrusion = −0.0551 + 0.0181t1 + 0.1024t2 + 0.0421t3

− 0.0073t1t2 + 0.024t2t3 − 0.0118t2t4 − 0.0204t3t4

− 0.008t3t5 − 0.0241t22 + 0.0109t24
(8)

So, the multi-objective design of vehicle crashworthiness problem is for-
mulated as:

min F(x)= [Mass,Ain, Intrusion]

s.t.

1mm ≤ x ≤ 3mm

where x=(t1, t2, t3, t4, t5)
T

(9)

The motivation behind applying our three hyper-heuristics multi-objective
choice function based approaches to this problem is to see their perfor-
mance on a real-world problem and measure the level of generality they
can achieve. We created three more problem instances beside the original
vehicle crashworthiness problem as shown in Table 4 after a private com-
munication with Professor Kalyanmoy Deb. Each instance contains a pair
of objectives. NSGAII was applied to the original vehicle crashworthiness
problem in [13] and produced reasonable results for the three objective
version.
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5.2. Performance Evaluation Criteria and Experimental Settings

We used five performance metrics to assess the quality of approxima-
tion sets from different aspects: (i) ratio of non-dominated individuals
(RNI) [59], (ii) hypervolume (SSC) [4], (iii) uniform distribution of a non-
dominated population (UD) [60], (iv) generational distance (GD) [62] and
(v) the inverted generational distance (IGD) [7]. t-tests are used as a sta-
tistical test for pairwise mean performance comparison of methods using
the same notations as those used in Section 4.2.

We performed 30 independent runs for each comparison method using
the same parameter settings as provided in [13] with a population size of
30 and running for 50 generations in each iteration. All hyper-heuristic
methodologies were run for a total of 75 iterations based on the empiri-
cal experiments that are presented in the supplementary files. In order to
make a fair comparison, we repeated NSGAII experiments conducted in
[13] under our termination conditions over the additional instances. So,
all methods terminated after 3,750 generations. The distance sharing σ

for the UD metric and MOGA was arbitrarily set to 0.09 in the normal-
ized space. These settings were used for UD as a feedback indicator in the
ranking scheme of the hyper-heuristic framework and as a performance
measure for the comparison. As the true Pareto front is unknown, we con-
sider the best approximation found by means of combining results of all
considered methods and used it instead of a true Pareto front for the met-
rics of GD and IGD. In the measure of SSC and the D metric for GDA and
LA, the reference points in our experiments for k objectives can be set as
ri = znadiri+0.5(znadiri−zideali)(0, i∗2), i = 1, ..., k [67]. Other experimental
settings are the same as those used in Section 4.3. All algorithms were im-
plemented with the same common sub-functions using Microsoft Visual
C++ 2008 on an Intel Core2 Duo 3GHz/2G/250G computer.

5.3. Performance Comparison of Selection Hyper-heuristics and NSGAII

The mean performance comparison of AM, GDA, LA and NSGAII based
on the performance metrics (RNI, SSC, UD, GD and IGD) for solving the
vehicle crashworthiness problems is provided in Table 5. Table 5 and the
result of the t-test in Table 6 show that GDA, LA and NSGAII produce
a slightly higher average ratio of non-dominated individuals (RNI) com-
pared to AM for all problems. This means that the comparison methods
produce non-dominated solutions that are equal to the given population
size and perform very well with respect to this metric. AM performs well
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with respect to RNI on Car4, but not for other problem instances. With
respect to the hypervolume (SSC), GDA has the highest average value
among the other methods for all problem instances. The performance dif-
ference of GDA from the other hyper-heuristics is statistically significant
for Car1, Car3 and Car4. With respect to the measures of GD and IGD,
GDA is superior to the other methods for all problem instances, except
Car3, where NSGAII performs the best. This performance difference is
statistically significant for Car1, Car2 and Car4. Considering UD, GDA
produces solutions that are distributed uniformly along the POF for all
problem instances, except Car2, where NSGAII performs the best.

In summary, GDA performs the best considering convergence and di-
versity, producing solutions that converge towards the POF and that are
distributed uniformly along the POF.

Figs. 3 and 4 illustrates the 50% attainment surfaces from the 30 fronts
after 3,750 generations produced by each method for each problem in-
stance. GDA appears to generate good convergence for all problem in-
stances. This can be clearly observed for Car2 and Car3, where GDA con-
verges to the best POF with a well spread optimal Pareto front as com-
pared to the other approaches. In contrast, AM generates the poorest solu-
tions in almost all cases. NSGAII and LA have similar convergence for all
problem instances, except Car2, where NSGAII has covered a larger pro-
portion of objective space compared to LA. From the above observations,
we conclude that GDA outperforms NSGAII and other methods in the
majority of cases. The hyper-heuristics for even real world multi-objective
problems benefits from the use of a learning heuristic selection method as
well as GDA.

6. Conclusion

Studies on selection hyper-heuristics for multi-objective optimization
are limited. This is one of the first studies which investigates the influ-
ence of the move acceptance component of a selection hyper-heuristic for
multi-objective optimization. Two choice function based online learning
selection hyper-heuristics are introduced, each embedding a different non-
deterministic move acceptance criteria; great deluge algorithm (GDA) and
late acceptance (LA) which are adopted for multi-objective optimization
using the well-known D metric. The proposed selection hyper-heuristic
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framework is highly flexible and its components are reusable. It is built
on an interface which allows other researchers to write their own hyper-
heuristic components easily. If new and better performing components are
found in the future, the software can be easily modified to include those
components for testing.

The performance of the two proposed hyper-heuristics, namely HHMO CF GDA
and HHMO CF LA are compared to a previous approach HHMO CF AM
[11] on the Walking Fish Group test problems (WFG) which is a common
benchmark for multi-objective optimization. Additionally, their perfor-
mance is compared to the well-known multi-objective algorithm, NSGAII
on the real-world vehicle crashworthiness multi-objective design problem
instances. The experimental results demonstrate the effectiveness of non-
deterministic move acceptance strategy based methodology. HHMO CF GDA
and HHMO CF LA outperforms the previously proposed approach of HHMO CF AM
[11] over the WFG test problems, indicating that the non-deterministic ac-
ceptance strategies improve the performance of the multi-objective choice
function based selection hyper-heuristic. Moreover, this observation is
supported further by empirical evidence obtained from testing those hyper-
heuristics against NSGAII over the vehicle crashworthiness problems. HHMO CF GDA
turns out to be the best choice for solving this problem.

The results from both benchmark test problems (WFG) and the real-
world problems (vehicle crashworthiness design) demonstrate the ability
and potential of the multi-objective selection hyper-heuristic approaches
in solving continuous multi-objective optimization problems. Investigat-
ing the performance of selection hyper-heuristics utilizing other heuristic
selection or move acceptance which are adopted for multi-objective opti-
mization is a trivial future work. Applying the proposed selection hyper-
heuristics on other types of multi-objective problems, such as discrete or
dynamic environment problems is also left as future work for testing the
level of generality of the proposed approaches further.
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Table 1: The WFG Test Functions
WFG1 hM=1 : M = convexm

hM = mixedM (with α = 1 and A = 5)
t1i=1:k = yi
t1i=k+1:n = S linear(yi, 0.35)

t2i=1:k = yi
t2i=k+1:n = b flat(yi, 0.8, 0.75, 0.85)

t3i=1:n = b poly(yi, 0.02)
t4i=1:M−1 = r sum({y(i−1)k/(M−1) +

1, ..., yik/(M−1)}, {2((i− 1k/(M − 1, ..., 2ik/(M − 1)})

t4M = r sum({yk+1, ..., yn}, {2(k + 1), ..., 2n})
WFG2 hM=1 : M = convexm

hM = discM (with α = β = 1 and A = 5)
As t1 from WFG1. (Linear shift.)
t2i=1:k = yi
t2
i=k+1:k+l/2

= r nonsep({yk+2(i−k)−1, yk+2(i−k)}

, 2)
t3i=1:M−1 = r sum({y(i−1)k/(M−1) +

1, ..., yik/(M−1)}, {1, ..., 1})

t3M = r sum({yk+, ..., yk+l/2}, {1, ..., 1})

WFG3 hM=1 : M = linearm(degenerate)
As t1:3 from WFG2.(Linear shift, non separable
reduction
and weighted sum reduction.)

WFG4 hM=1 : M = concavem
t1i=1:n = S multi(yi, 30, 10, 0.35)
t(i = 1 : M − 1)2 = r sum({y(i−1)k/(M−1) +
1, ..., yik/(M−1)}, {1, ..., 1})

t2M = r sum({yk+1, ..., yn}, {1, ..., 1})
WFG5 hM=1 : M = concavem

t1i=1:n = S decept(yi, 0.35, 0.001, 0.05)
As t2 from WFG4. (weighted sum reduction.)

WFG6 hM=1 : M = concavem
As t1 from WFG1. (Linear shift.)
t2i=1:M−1 = r nonsep({y(i−1)k/(M−1) +

1, ..., yik/(M−1)}, k/(M − 1))

t2M = r nonsep({yk+1, ..., yn}, l)
WFG7 hM=1 : M = concavem

t2i=1:k = b param(yi, r sum({y(i−1), ..., yn}, {1, ...
, 1}), 0.98/49.98, 0.02, 50)
t2i=k+1:n = yi

As t1 from WFG1. (Linear shift.)
As t2 from WFG4. (weighted sum reduction.)

WFG8 hM=1 : M = concavem
t1i=1:k = yi
t1i=k+1:n = b param(yi, r sum({y1, ..., yi−1}, {1, ...

, 1}), 0.98/49.98, 0.02, 50)
Ast1fromWFG1.(Linearshift.)
As t2 from WFG4. (weighted sum reduction.)

WFG9 hM=1 : M = concavem
t1i=1:n−1 = b param(yi, r sum({yi+1, ..., yn}, {1, ...
, 1}, 0.98/49.98, 0.02, 50)
t1n = yn
t2i=1:k = S decept(yi, 0.35, 0.001, 0.05)
t2i=k+1:n = S multi(yi, 30, 95, 0.35)

As t2 from WFG6. (non separable reduction.)
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Table 3: Pairwise t-test results for the choice function based multi-objective hyper-
heuristics using AM, GDA and LA as the move acceptance component on each WFG
test problem instance with respect to different metrics; the ratio of non-dominated indi-
viduals (RNI), the hypervolume (SSC), the uniform distribution (UD), the generational
distance (GD) and the inverted generational distance (IGD).

Problem Methods Metrics
RNI SSC UD GD IGD

WFG1 AM-GDA ∓ - + ± +
AM-LA - - + + +
GDA-LA ∓ + ± + +

WFG2 AM-GDA - - + - -
AM-LA - - + - -
GDA-LA ≈ ± ± + +

WFG3 AM-GDA - - + - ∓
AM-LA - - + - ∓
GDA-LA ≈ + ± + ±

WFG4 AM-GDA - - + - -
AM-LA - - ± - -
GDA-LA ≈ + ∓ + +

WFG5 AM-GDA - - + - -
AM-LA - ± + - ∓
GDA-LA ≈ + + + ±

WFG6 AM-GDA - - + - -
AM-LA - - + - -
GDA-LA ≈ + ∓ + ±

WFG7 AM-GDA - - + - -
AM-LA - - + - -
GDA-LA ≈ + ∓ + ±

WFG8 AM-GDA - - + - -
AM-LA - - + - -
GDA-LA ≈ + + + +

WFG9 AM-GDA - - + - -
AM-LA - - + - -
GDA-LA ∓ + + ± +

Table 4: The vehicle crashworthiness problems
Problem Name Objective Functions

Car1 Mass and Ain
Car2 Mass and Intrusion
Car3 Ain and Intrusion
Car4 Mass, Ain and Intrusion
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Figure 2: The average number of low level metaheuristic invocations (NSGAII, SPEA2
and MOGA) and accepted/rejected moves produced by selection hyper-heuristics using
AM, GDA and LA over the WFG test problems.
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Table 6: Pairwise t-test results for NSGAII and choice function based multi-objective
hyper-heuristics using AM, GDA and LA as the move acceptance component on the
vehicle crashworthiness problems with respect to different metrics; the ratio of non-
dominated individuals (RNI), the hypervolume (SSC), the uniform distribution (UD), the
generational distance (GD) and the inverted generational distance (IGD)

Problem Methods Metrics
RNI SSC UD GD IGD

Car1 NSGAII-AM ± + + ∓ +
NSGAII-GDA ≈ - - - ∓
NSGAII-LA ± + - ± ±
AM-GDA ∓ - + - -
AM-LA ∓ ∓ - - -
GDA-LA ± + ± + +

Car2 NSGAII-AM ± + + ∓ ±
NSGAII-GDA ≈ ∓ ± - ∓
NSGAII-LA ≈ + + ∓ +
AM-GDA ∓ - - - -
AM-LA ∓ + - ± ∓
GDA-LA ≈ + ± + +

Car3 NSGAII-AM ± + + ± +
NSGAII-GDA ≈ ∓ - ± +
NSGAII-LA ≈ ± ± ± +
AM-GDA ∓ - ∓ ∓ -
AM-LA ∓ - + ± -
GDA-LA ≈ ± + ± +

Car4 NSGAII-AM ≈ + ± ± -
NSGAII-GDA ≈ - + ∓ -
NSGAII-LA ≈ + + + -
AM-GDA ≈ - - ∓ -
AM-LA ≈ - ± + -
GDA-LA ≈ + + + ∓
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Figure 3: The 50% attainment surfaces for NSGAII and choice function based hyper-
heuristics embedding AM, GDA and LA, which are averaged over 30 fronts obtained
after 3750 generations on Car1, Car2 and Car3.
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Figure 4: The 50% attainment surfaces for NSGAII and choice function based hyper-
heuristics embedding AM, GDA and LA, which are averaged over 30 fronts obtained
after 3750 generations on Car4.
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