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Summary — A modelling procedure is presented for height-growth curves in maritime pine (Pinus
pinaster Ait). We chose to fit 4 parameter nonlinear functions. Some of the parameters were fixed or
estimated globally (1 value for all curves in a data set). The models were reparametrized to ensure good
identifiability and better characterization of the data. The structural properties of parametrizations
were investigated using sensitivity functions and the models were compared using a test file. We
show that the estimation of 4 parameters for each curve is not possible in practice and that even the
estimation of only 3 parameters should be avoided, in particular with the Lundgvist-Matern model or
with short growth curves. With 2 local parameters, the Lundqvist-Matern mode! appears slightly more
suitable than the Chapman—Richards model.

height—growth curves / nonlinear regression / Pinus pinaster/ parametrization

Résumé — Choix d'un modeéle pour I'étude des courbes de croissance en hauteur du pin mari-
time. Une procédure de modélisation est présentée pour |'étude des courbes de croissance en hau-
teur de pins maritimes (Pinus pinaster Ait). Nous avons choisi 'ajustement a des fonctions non linéaires
a 4 parametres. Certains parametres ont éte fixés ou estimes globablement (une valeur commune a
toutes les courbes). Les modeles ont été reparametrés, de fagon a améliorer l'identifiabilité ainsi que
la caractérisation des données. Les propriétés des modéles et des paramétrisations ont été examinées
a l'aide des fonctions de sensibilité. Les modéles ont été comparés sur un fichier test. Nous mon-
trons que l'estimation de 4 parametres pour chaque courbe est pratiquement impossible, et que méme
l'estimation de seulement 3 paramétres doit étre évitée, en particulier avec le modele de Lundqvist-Matem
ou avec des courbes courtes. En revanche, avec 2 paramétres locaux, le modele de Lundqvist-Matern
semble un peu mieux adapté que le modéle de Chapman-Richards, ce dernier sous-estimant les hau-
teurs aux 4ges avances.

courbe de croissance en hauteur / régression non linéaire /Pinus pinaster / paramétrisation



590 F Danjon, JC Hervé

INTRODUCTION

Nonlinear growth functions have been used
to assess the genetic variability of height—
growth curves of forest trees (Namkoong et
al, 1972; Buford and Bukhart, 1987; Sprinz
et al, 1987; Magnussen, 1993). A well-
known advantage of these models is that
they can provide an efficient summary of
the data via a small number of meaningful
parameters, the significance of which does
not change with the trials.

Our aim is to select a model to be used
on several data sets of individual height-age
curves of maritime pines (Pinus pinaster
Ait) aged between 20 and 80 years. Most
of the work was carried out on 22-year-old
progeny tests, especially to investigate their
genetic variability. From an examination of
nearly 4 000 curves we observed that they
generally have a regular sigmoidal shape,
with an inflexion point at about 10 years and
an asymptote between 20 and 50 m (Dan-
jon, 1992). It therefore seems possible to
describe all the curves by a sigmoidal growth
function.

However, fitting the model by nonlinear
regression may pose a number of practical
difficulties, especially if the curves are short.
lll-conditioning is @ commonly encountered
problem (see, eg, Seber and Wild, 1989,
chapter 3), resulting in highly correlated and
unsound estimates, which can greatly affect
the use of the method (Rozenberg, 1993).
The problem may partly come from the data,
but also from the model itself, and/or from
the parametrization used; this last point is
often neglected in applications.

In order to detect and avoid these poten-
tial shortcomings, a preliminary investiga-
tion was carried out and is presented in this
paper. Different models and different
parametrizations of the same model are
compared on a test file of long growth series.
The obijectives were to check the model's
ability to fit the full growth profile and to char-

acterize the general behaviour of the mod-
els, noting the properties that are inherent in
the models themselves and those that
depend on the parametrization.

MODELLING PROCEDURE

Model functions

Debouche (1979) recommend the use of
Lundgvist-Matern (Matern, 1959) and Chap-
man—Richards (Richards, 1959) variable-
shape functions. Both curves have 4 param-
eters, which have the following meanings: A
= asymptote; r = related to relative growth
rate; m = shape parameter; and a position
parameter (location of the curve on the time
axis).

With height at time O (hg) as position
parameter, the Lundqvist—-Matern model
(LM1) is (h = height; t = time):

i1 A
ht)=Aexp-[—+(log—)~]-
m o

and the Chapman-Richards model (CR1)
is:

h(t)= A[1 —gexp (-] /1~ m

with g =1 — (hy/A)r-m

Number of parameters

As the curves are sometimes rather short,
estimating all 4 parameters for each curve
may be wasteful (Day, 1966): the preci-
sion of each estimation will be low, with
high correlations between the estimates
for each curve (which we will call ‘e-corre-
lations’), and a poor convergence of the
numerical procedures in many cases.
Hence, to produce reliable estimations,
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some parameters must be fixed at a given
value or estimated globally for the popu-
lation (one value for the whole set of
curves) with minimum total sum of squares
as a criterion.

Because the age of the trees are known
and because we use height at age zero (hg)
as position parameter, the latter can be fixed
to zero. As suggested by Day (1966), scale
parameters (asymptote and growth rate) are
considered specific to each individual
whereas the shape parameter (m) may be
estimated globally for the population.

Parametrization

The original equations were reparametrized
to gain ‘stable parameters’ (Ross, 1970).
Such parameters vary little in the whole
region of best fittings. They are simple
expressions of physical characters of a
curve, and only have a major influence on a
limited portion of the curve.

For the LM model, the maximum growth
rate is given by:

1 1
Ry =rAexp[(1 + —)(log(1 + —)—1)]
m m

Three parameters are related to this
essential characteristic of the curve, which
is likely to induce e-correlations between
parameters and instability. To avoid these
problems, Ry, will be used as a parameter,
instead of r.

The shape parameter m locates the
inflexion point on the h-axis at a proportion
p = exp~(1+1/m) of the final size. This expres-

sion can be inverted to yield m as a func-
tion of p. It is hence possible to use p directly
as shape parameter instead of m in order
to make the interpretation of the estimated
value easier . This leads to the following
new form of the LM model (LM2) where Ry,
is called r o and pis called my y, for homo-
geneity of notation:

A
h(t) = Aexp — [(|0%,7 —)(1+logm )
0

1
five 1+ logmy )

]1W+ log my w2

Aexpl(logmy yp)(log(-logmy y)) — 1]

In the same way, for the CR2 model, reRy
is changed to rzRro, the maximum growth
rate:

m

But in this case, the relative height of the
inflexion point is p = m™1-m and there is
no closed form solution for m in terms of p.
This precludes the use of p for the CR
model. Keeping m, the new form of the CR

model (CR2} is as follows:
,

=
h(t) = A1 - gexp(~rcppA '~ "t]
After reparametrization of both models,

all parameters have a direct physical mean-
ing, except min CR2.

Sensitivity functions

Seber and Wild (1989, p 118) state that “one
advantage of finding stable parameters lies

1 This transformation is made for this practical reasons but, being univariate, it has essentially no
effect on the precision and on e-correlations with other parameters. Notably, the sensitivity
functions of m and p (see below) are identical, apart from a multiplicative constant, and the first-
order estimates of e-correlations will be strictly equal under either parametrization. Nevertheless,
the transformation may have second-order effects on the precision by reducing the parametric

nonlinearity, but we did not investigate this point.
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in forcing us to think about those aspects
of the model for which the data provide good
information and those aspects for which
there is little information”. Sensitivity func-
tions are a convenient means of studying
the repartition of information along the time
scale.

For a model f(1,60), depending on the
parameter vector 6, the sensitivity function
of a parameter 6;is the partial derivative of
the model function with respect to 6; (Beck
and Arnold, 1977):

Pyt = I(t,6) 1 D6,

and indicates how the growth curve is mod-
ified at time t by a small change A6, in the
parameter value 6;:

Formally, the importance of the sensitiv-
ity function may be appreciated by consid-
ering that the asymptotic variance—covari-
ance matrix of the estimates is proportional
to (X!X)-1, where X is a rectangular matrix
whose columns are the sensitivity functions
of each estimated parameter, evaluated at
each observed time.

If the sensitivity functions of 2 parame-
ters are proportional on a given sampling
interval, the 2 parameters have essentially
the same effect on the corresponding part of
the curve and their e-correlation will be high.
Additionally, the precision of estimation of
a given parameter is better when its sensi-
tivity function is higher (in absolute value)
in the observed time range.

Chapman-Richards model

It can be seen on figure 1a that, for CR1,
the sensitivity functions of A, rand m are
neatly proportional on the [0, 25] time inter-
val. Figure 1b shows that this feature dis-
appears in the second parametrization,
which concentrates the effects of min the

early ages, and those of A in the latter part
of the growth curve. This is likely to reduce
e-correlations between A and r, and rand m.

It should be noted that fitting trees under
20 years old will result in imprecise esti-
mates for both parametrizations: for CR1,
precision will be low for all parameters
because of e-correlations between all of
them, while for CR2, imprecision will essen-
tially concern A, because its sensitivity func-
tion is very small and negative in this time
range.

Lundqvist—Matern modei

The features of the different parametriza-
tions are essentially the same as for the
Chapman-Richards model. The major dif-
ferences are that, for the LM2 model, the
maximum of @, is after 50 years and the
rise of @, is slower than for CR2 (fig 1c,d).

The former happens because, in the LM
model, m controls both the beginning of the
curve and its convergence rate to the
asymptote. This is a special property of the
LM model, and is not shared by the CR
model. It is potentially misleading since a
single parameter controls 2 distinct features
of the curve, between which no evident bio-
logical link exists. It is aiso likely to increase
e-correlation between A and m, compared
to the CR model.

The latter illustrates that although the
convergence rate to the asymptote depends
on m (the curve converges to its asymptote
in M when t—> +0), it is always under-
exponential, while it is exponential for the
CR model. Both features are intrinsic prop-
erties of the LM model, which do not depend
on the parametrization.

MATERIAL AND METHODS

The models were tested with a data set contain-
ing 44 trees belonging to 13 good growing stands,
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sampled in the Landes de Gascogne area and
aged more than 35 years to get the main part of
the curve. This selection was made because fur-
ther studied tests are all good growing stands
and because we suspect that potential drawbacks
of the different models, although always present,
may not be fully appreciable on short curves. Half
of the trees were measured by stem analysis
(stems sectioned at 2-m intervals, see Carmean,
1972), and for the remaining trees annual height
increments were assessed using branch whorls
as morphological markers (Kremer, 1981). Mea-
sures started at about age 5 years, the zero point
was included in the analysis. Two trees had non-
sigmoidal curves.

Nonlinear regression was made with a spe-
cial software which use ordinary least-squares
estimation and the Gauss—Marquardt algorithm
following the implementation recommended by
Moré (1977).

The quality of fit was appreciated by graphical
displays including plots of the observed points
together with the regression curve, plots of resid-
uals versus time and plots of bivariate distribu-
tion of parameter estimates with ellipses repre-
senting first-order asymptotic approximations of
confidence regions (as in Corman et al, 1986).
The ellipse area was related to the precision of
estimation. An inclination and a lengthening of
the ellipse indicates a high e-correlation. These
graphical representations provide a synthetic
overview of estimation quality which cannot be
so easily assessed by marginal standard errors
and e-correlations. Note that residuals and resid-
ual sum of squares do not vary with the

F Danjon, JC Hervé

parametrization, but depend only on the model
functions (LM or CR).

RESULTS AND DISCUSSION

Number of local parameters

All estimations with 4 local parameters yield
very high e-correlations, indicating over-
parametrization. With 3 local parameters
(A, rand m), convergence for 5 trees with
LM1 and for 1 tree with other models could
not be obtained and e-correlations were all
higher than 0.8 (table I).

The origin of the strong correlation
between A and m (0.98 for LM1 and LM2)
in the Lundgvist—Matern model has been
previously investigated with the sensitivity
functions and, consequently, the use of 3
local parameters with this model should be
considered with care and restricted to long
growth series. Only fitting with 2 local
parameters (A and r) is carried out in the
sequel.

Typical examples of fit are shown in fig-
ure 2. No evidence of systematic behaviour
of residuals exist (fig 3), and so the basic
hypothesis concerning the sigmoidal shape
of curves prove to be reasonable. Further-

Table 1. Mean of absolute values of e-correlations as a function of model, parametrization and number

of local parameters.

Number of local parameters e-correlation Chapman—Richards mode/

3 (A0
3 (A,m)
3 (r,m)
2 (A1

{-) Mean correlation is negative.

Lundgqvist-Matern model

CR1 CR2 LM1 LM2
(-}0.95 (-)0.83 (-)0.996 (~)0.84
(-}0.85 (-}0.85 (-)0.980  (-)0.98

0.96 0.84 0.990 0.81
(-)0.94 (-)0.56 (-)0.95 () 0.55
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more, the constant shape imposed by the
global estimation of m seems acceptable.

Effect of reparametrization

For both models, the mean e-correlation
between A and ris close to 1 with the first
parametrization (table [). Following
reparametrization the correlation decreases
to approximately 0.5.

On the CR1 plot of the bivariate distribu-
tion of A and r (fig 4), a nonlinear trend
between A and ris visible, and the confi-
dence ellipses are large compared with the
distance between curves and oriented along
the trend. With CR2, ellipses are smaller,
with no general trend being observed. Sim-
ilar observations have been made con-
cerning LM1 and LM2 (not shown). These
considerations show that the second
parametrizations are certainly more appro-
priate to appreciate true differences between
curves.

Comparison of the LM2
and CR2 models

The position parameter (h) was first fixed at
zero for both models, which resulted in good
fit with CR but gave rise to positive residuals
around 3 years for all trees with LM model:
the Lundgvist—-Matern model starts slowly,
the lag phase at the beginning of the curve
seems too long for maritime pine, and best
fitting is generally obtained with a very low
non-zero value of hy (a few cm or less).
Indeed, with the test file, a global estima-
tion of the position parameter (hg) yielded

Fig 2. Typical fits with the LM model (residuals
versus age at the bottom): tree 307 (bad fit), tree
609 (medium fit) and tree 1321 (good fit}; mand hy
globally estimated (my, = 0.16 and hy = 9.2 cm).
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residuals (m)

2

-2 | CR model

0 20

60 age (ym) 80

2

-2

0 20

60 age (1) 80

Fig 3. Residuals versus age for all trees with CR and LM models; m and h, globally estimated (for
CR2, mgro = 0.43 and hy = 0 cm; for LM2, see fig 2).

about 0 cm for CR but 10 cm for LM, so hy
was fixed to 10 cm for the LM model.

Mean, standard deviation and mean stan-
dard errors are quite similar for r, but not
for A (table 1l). There is a general tendency
for A to be about 30% greater for LM2 than
for CR2. This is a consequence of the faster

convergence of the Chapman-Richards
model to its asymptote (exponential) com-
pared with that of the Lundqvist—Matern
model (under-exponential).

Examination of the residuals (fig 3)
reveals another consequence of this intrin-
sic difference between the 2 models: the

Table 1l. Comparison of Lundqvist-Matern (LMZ2) and Chapman—Richards (CR2) model.

Mode!  Global sum
of squares (m?)

mean s—€

A (inm)

LM2 118 394 061 53 32

CR2 134 303 059 55 25

s—d min

r (in cm/year)

max mean s—e s-d min max
46 727 066 7.1 56 88
54 69.2 066 66 54 84

s—e = mean estimation standard error; s—d = standard deviation; min = minimum; max = maximum.
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pattern of the residuals is rather similar
under the 2 models, nevertheless, there is a
visible tendency for the last CR2 residuals to
be positive. Indeed, the mean of the last
observed residual of each curve is signifi-
cantly positive (22 cm, p = 0.9995) for CR2,
which is not the case for LM2 (5 cm, p =
0.85). Therefore, it seems that the CR model
joins its asymptote too quickly, underesti-
mating height for old ages.

The maxima of the asymptote estimates
are rather high, but not completely unreal-
istic. Furthermore, they are obtained for the
non-sigmoid curves (by removing them, the
maxima decrease to 37 and 48 m). How-
ever, the estimated asymptotes should not
(and need not) be considered as estima-
tions of ultimate heights of trees, because
such an interpretation involves extrapola-
tions of the models far beyond the last
observed points. In any case, we have no
real interest in the prediction of growth after
80 years; we use this parameter to charac-
terize the later part of the curves.

Comparing residual sum of squares, LM2
is a little better than CR2, and the precision
of estimations and e-correlations are close
for the 2 models (table 1 and Il). The rela-
tive positions of each curve on the A-rplane
(fig 4) are very similar: correlations between
the estimations obtained with the 2 models
are high (0.95 for A and 0.996 for ). As long
as one is not concerned with extrapolation
towards old ages, the 2 models (with only 2
local parameters) are likely to yield similar
resuits.

Fig 4. Bivariate distribution of asymptote (A) and
growth rate parameter (r) with 50% confidence
ellipses for CR1, CR2 and LM2 models, with trees
307 and 320 removed. For CR1, mwas estimated
globally (m = 0.43) and hy was fixed to zero. For
CR2 and LM2, m and hy were globally estimated
(see fig 3). Each tree is identified by a number.
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CONCLUSION

The analysis was made with rather long
series. However, the classical parametriza-
tions (CR1 and LM1) always yield high e-
correlations and even after reparametriza-
tion e-correlations remain high with 3 local
parameters. This is especially true with the
Lundqvist-Matern model. We have empha-
sized the dual influence of the shape
parameter in this case, which partially
explains the high e-correlation. For this
model, a variable shape parameter between
curves will also lead to interpretative diffi-
culties (asymptotes are not comparable
when the convergence rate varies). Exam-
ination of the sensitivity functions indicates
that, handling shorter growth series, it will
be even more essential to use the
reparametrized functions and to keep only
2 local parameters.

With 2 local parameters, the Lund-
qvist-Matern function appears slightly bet-
ter than the Chapman-—Richards one, yield-
ing a lower sum of squares, as a result of a
closer fit to the last part of the curves. With
8 other data sets (Danjon, 1992), the advan-
tage of the LM model is conserved. This
seems to indicate that the exponential slow-
ing down of growth that characterized the
Chapman-Richards function is too fast and
does not well describe maritime pine final
growth. Nevertheless, it is a small effect
and, in contrast, the Lundqvist-Matern does
not fit the very beginning of growth while
the CR model does. On a practical ground,
when 2 local parameters are sufficient, and
for descriptive purposes, the 2 models will
fead to similar conclusions. However, they
will probably differ in extrapolation, and this
requires further study.
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