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Abstract. In this paper we propose an approach to over-approximate
the reachable set (with bounded time and number of transitions) of a hy-
brid system by a finite set of polytopes. The constraints of the polytope
are determined by a direction choice method. For the hybrid systems
whose (1) continuous dynamics are linear, (2) invariants and guards are
defined by linear inequalities, and (3) variable resets are expressed by
invertible affine maps, we show that the over-approximations can be
computed in polynomial time, and the overestimation can be arbitrar-
ily reduced by decreasing the discretization time step if the continuous
dynamics are all deterministic. Some experimental results are also pre-
sented to show the effectiveness of our approach.

1 Introduction

Hybrid systems are systems with combined discrete and continuous behavior.
Typical examples of hybrid systems are physical systems, continuously evolv-
ing over time, controlled by some discrete controller, e.g., a chip or a program.
Hybrid systems are often modeled by hybrid automata, an extension of discrete
transition systems. The discrete locations model the discrete part, e.g., the states
of the controller. While control stays in a location, time goes by, and the contin-
uous quantities evolve according to some ordinary differential equations (ODEs)
associated with the locations. Location invariants may force the control to move
from one location to another, following discrete guarded transitions.

The verification of safety-critical hybrid systems is an active research area
in computer science as well as in engineering sciences. For the verification of
safety properties of hybrid systems the main challenge is to compute the set of
the reachable states of hybrid automata. In general, this reachability problem is
undecidable [1]. Instead of computing the exact reachable set, most approaches
compute an over-approximation. If the over-approximation does not intersect
the unsafe state set, then the system is safe, otherwise we need to refine the
approximation.

In this paper, we consider hybrid systems whose continuous dynamics are
defined by ODEs of the form ẋ = Ax + Bu where A,B are constant matri-
ces and u is an input from a bounded set U . The invariants, transition guards
and initial sets are defined by linear inequalities. The initial set should also be
bounded. For each transition, the reset of the variables is defined by an invertible



affine map. For such hybrid systems, many geometric objects and their repre-
sentations are proposed as over-approximations of the reachable sets, such as
orthogonal polyhedra [2], polyhedra [3], ellipsoids [4], zonotopes [5] and support
functions [6]. These objects are generally used in a flowpipe construction man-
ner, decomposing a time interval into small time steps and over-approximating
reachability within each small time step by a geometric object. However, the
representations of the objects do not have polynomial-time algorithms for all of
the necessary operations. Therefore, to reduce the computation time, additional
approximations are introduced, with the drawback that the overestimation is no
longer reducible by shortening the time step.

Our approach is a new trade-off between efficiency and accuracy. We use
polytopes (bounded polyhedra) for the over-approximations, which are defined
by conjunctions of linear constraints. We show that if the continuous dynamics
are deterministic, then (1) the computation time is polynomial, and (2) the
overestimation can be arbitrarily reduced by decreasing the time step.

The rest of the paper is structured as follows. In Sect. 2 we introduce hybrid
automata and their reachability computation. In Sect. 3 we present our direc-
tion choice method to determine over-approximations for reachable sets. After
providing experimental results in Sect. 4 we conclude the paper in Sect. 5.

2 Preliminaries

Hybrid automata [7] are a popular modeling formalism for hybrid systems. A
hybrid automaton is a tuple HA = (Loc,Var,Flow,Trans, Inv, Init). The finite
set Loc contains the locations and Var the real-valued variables. We also use
x = (x1, x2, . . . , xd) for the variables and ẋ = (ẋ1, ẋ2, . . . , ẋd) for their first
derivatives. A configuration is a location-valuation pair (l, v) ∈ Loc × Rd. The
continuous dynamics in location l is defined by Flow(l) which is an ODE of
the form ẋ = Ax + Bu with A,B constant and u ∈ U where U is bounded.
When U is singleton, we call the continuous dynamics deterministic. The set

Trans ⊆ Loc × 2R
d×Rd × Loc contains discrete transitions a = (l, r, l′) leading

from l to l′ and updating the variables according to the reset rule r. We call
the set G = {v ∈ Rd | ∃v′ ∈ Rd. (v, v′) ∈ r} the guard of a. Given a location l,
its invariant and initial sets are defined by Inv(l) and Init(l) respectively. We
consider in the following systems whose invariants and guards can be defined by
a conjunction of finitely many linear inequalities cTx ≤ z with c ∈ Rd, z ∈ R.

The semantics of a hybrid automaton HA distinguishes between:

– Continuous evolution or time delay (l, v)
t→ (l, v′) is possible if there is a

solution f of Flow(l) with f(0) = v, f(t) = v′ and for all 0 ≤ t′ ≤ t,
f(t′) ∈ Inv(l).

– Discrete evolution (l, v)
a→ (l′, v′) follows a discrete transition a = (l, r, l′) ∈

Trans with v ∈ Inv(l), v′ ∈ Inv(l′) and (l, l′) ∈ r.

An execution is a chain of continuous and discrete evolutions starting in an initial
configuration. A valuation (or state) v reachable if it appears in an execution.
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Fig. 1. The computation of Ω0

The reachability problem is to compute the set of configurations reachable
from a location l0 and an initial set V0. As this reachability problem is unde-
cidable [1], most algorithms over-approximate the reachable set by bounding
the duration and the number of evolutions. For the continuous evolution with
dynamics ẋ = Ax + Bu we can over-approximate the states reachable from V0
within time T by deviding T into N small steps of length δ = T/N and con-
structing the overapproximating flowpipe Ω0, . . . , ΩN with Ωi+1 = eδAΩi ⊕ V
where ⊕ is the Minkowski sum with X ⊕ Y = {x+ y | x ∈ X, y ∈ Y } and V is a
set depending on B and U only. Each Ωi is an over-approximation of the states
reachable in the time interval [iδ, (i+ 1)δ]. The set Ω0 can be computed by the
convex hull of V0 and a set which is bloated from the set eδAV0. In Fig. 1(a), we
can see that the convex hull of V0 and eδAV0 does not necessarily cover all of the
trajectories even if there is no input. The purpose of bloating eδAV0 by the set
αδB, where B is a unit cube, is to include all trajectories from time 0 to δ when
the input in zero. When considering inputs from U , e.g. the behavior depicted
by the red curve in Fig. 1(b) is still not covered. Hence, we bloat the result with
another set βδB⊕δU . The result now includes all trajectories (see Fig. 1(c)). The
value of αδ and βδ are given by αδ = (eδ‖A‖−1−δ‖A‖) supv∈V0

‖v‖ and βδ =

(eδ‖A‖−1−δ‖A‖) supu∈U B‖u‖
‖A‖ respectively. The remaining Ωi+1, i=0, . . ., N−1,

can be computed by Ωi+1=eδAΩi⊕βδB⊕δU . If there is an invariant I, we need
to replace Ω0 by Ω0∩I and define Ωi+1=(eδAΩi⊕βδB⊕δU)∩I. The overestima-
tion generated by this approach can be arbitrarily reduced by decreasing δ [8].

Over-approximating the set reachable via a discrete transition a = (l, r, l′),
with the reset rule r defined by an invertible affine map x′ = Arx+ b and with
guard G, is much easier. AssumeΩ0, . . . , ΩN are the flowpipe over-approximations
in l. Then the reachable set after a is over-approximated by the union of the sets
Ω′i = Ar(Ωi∩G)+b, i = 0, . . . , N . In order not to bring a burden in the following
computation, this union is further over-approximated by its convex hull, which
is viewed as the initial set in location l′.



3 Choice of the Directions for the Approximations

In this section, we present our approach to over-approximate Ωi, i = 0, . . . , N
by a polytope whose facet normals are determined by a direction choice method.

A polytope is a bounded polyhedron which can be represented (1) either as
a V-polytope by the convex hull of its vertices, (2) or as an H-polytope by a con-
junction

∧
1≤j≤n c

T
j x ≤ zj of finitely many linear inequalities, where {c1, . . . , cn}

is called its template.
For V-polytopes, computing the convex hull or Minkowski sum is polynomial-

time, but it is not the case for the intersection. For H-polytopes, computing
the intersection is polynomial-time, but not the convex hull or Minkowski sum.
Therefore, when invariants are involved, for the flowpipe approximation using
polytopes none of the representations can be used if we want to keep the com-
putation time polynomial. Furthermore, due to the Minkowski sum in each iter-
ation, the representation size of Ωi can increase heavily with each iteration. To
reduce this size, additional overapproximation of Ωi is needed.

Remark 1. The sets Ωi can also be over-approximated by other objects like, e.g.,
ellipsoids or zonotopes, but since they cannot exactly represent all polytopic sets,
it can come to an irreducible overestimation. Another method [6] symbolically
represents every Ωi by its support function. However, the intersection of a sup-
port function and a set defined by linear inequalities is hard to compute. Though
we can overcome this problem using an additional overapproximation, it again
leads to a possibly irreducible overestimation.

In the following we assume that the initial set V0 and input set U are H-
polytopes. We first suggest a new method to over-approximateΩ0 byΩ0. Assume
a location l with invariant I and continuous dynamics ẋ = Ax + Bu, u ∈ U .
Since any polytope can be defined by an intersection of finitely many rectangles,
we assume without loss of generality that the initial set V0 is a rectangle. That
means, V0 can be expressed by V0 = QX0 where Q is an orthogonal matrix
and X0 is such an axis-aligned rectangle that its length in the i-th dimension is
not shorter than that in the j-th dimension for all i < j. We use the following
procedure to find the template of Ω0:

1. Compute a matrices S0 and Sδ whose columns are the facet centroids of V0
and eδAV0, respectively.

2. Let M0 = (S0, S0) and Mδ = (S0, Sδ) be the matrices composed by S0, S0

and S0, Sδ respectively.
3. Compute the covariance matrices Cov0 and Covδ of M0 and Mδ, respectively.
4. Compute the singular value decomposition for Covδ, i.e., Covδ = UδΣδV

T
δ .

5. Compute the singular value decomposition for CovW = QW (QTCov0Q)QT+
(Covδ − Cov0), where W = diag(w1, . . . , wd) with w1 > . . . > wd is a user
defined weight matrix. We have CovW = UWΣWV

T
W .

6. Compute the row vector sets Tempδ = {vT | v or −v is a column in Uδ},
and TempW = {vT | v or −v is a column in UW }.

7. Return Temp = Tempδ ∪ TempW .
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Fig. 2. The computation of Ω0

The set Temp is the template of Ω0. In Steps 3-5 we apply principal component
analysis (PCA) [9] and weighted PCA to find the proper directions. The template
Tempδ is the set of proper directions obtained by the standard PCA. For TempW ,
the reason to use the weighted matrix is that we need to differentiate the length
of the nonparallel edges of V0 such that we can ensure the convergence of the
template TempW to the template of V0 when δ converges to 0. Finally, the set
Ω0 is computed by

∧
v∈Temp v

Tx ≤ zv, where for each v ∈ Temp, the vector zv
is a solution for the following linear program:

z = max(sup vTx, sup vT y) s.t. x ∈ V0 ∧ y = y1 + y2 + y3 ∧
y1 ∈ eδAV0 ∧ y2 ∈ δU ∧ (αδ + βδ)B

In the 2-dimensional example showed in Fig. 2, the vectors v1, v2,−v1,−v2∈Temp
are computed by the standard PCA, and the vectors vw1 , v

w
2 ,−vw1 ,−vw2 ∈ TempW

by the weighted PCA. The over-approximation Ω0 is the light gray region.

Theorem 1. The set Ω0 is an over-approximation of the reachable set in time
[0, δ], and it converges to the exact reachable set when δ → 0.

The first part of the theorem is clear, since Ω0 ⊆ Ω0. The second part can be
proved via the matrix perturbation theory [10].

Next, we turn to the over-approximation for Ωi, i = 1, . . . , N . Since Ωi =
eδAΩi−1⊕βδB⊕δU , we replace the recurrence relation byΩi = Approx(eδAΩi−1⊕
βδB⊕δU). The template of Ωi is computed by Tempi = eδATempi−1∪Su where

Tempi−1 is the template of Ωi−1, and Su is a set of all the vectors v such that
(−v)Tx ≤ zv is a linear inequality in the definition of the unsafe set. The set
Su is crucial for the safety verification, since it prevents the over-approximation
from growing too fast towards the unsafe set. An example is presented in Fig. 3,
in which the vectors v1, v2, v3, v4 are from the template of eδAΩi−1, i.e., the set
eδATempi−1, and Su = {−v5}. Other heuristics to refine the over-approximations
by adding linear inequalities are stated in [11].
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Fig. 3. The computation of Ωi

Theorem 2. The set Ωi is an over-approximation of the reachable set in time
[iδ, (i + 1)δ]. The total overestimation of Ω0, . . . , ΩN can be arbitrarily reduced
by decreasing δ if U is singleton.

Proof. The first part follows from Ωi ⊆ Ωi. For the second part, notice that
when U is singleton, there is no bloating from Ωi−1 to Ωi, and the total over-
estimation only depends on the overestimation in Ω0. As we proved before, the
overestimation of Ω0 can be arbitrarily reduced by decreasing δ, thus it is also
the case for the total overestimation. ut

In each location, first the approximation Ω0 is determined before computing
Ωi for i = 1, . . . , N until ΩN+1 = ∅ for some N > 0. If we use the interior point
method [12] for solving linear programs, the total computational complexity is
polynomial time.

Suppose that we computed Ω0, . . . , ΩN in the location l. As stated in Sect. 2,
the reachable set after a discrete transition a = (l, r, l′) can be over-approximated

by the convex hull of Ω
′
i = Ar(Ωi ∩ G) + b, where r is defined by the invertible

affine map x′ = Arx + b and G is the guard. Notice that the set Ω
′
i is also

an H-polytope and can be computed in polynomial time, since Ωi ∩ G is an H-
polytope whose inequalities are the union of the inequalities of Ωi and G, and for
an H-polytope P =

∧
1≤j≤n c

T
j x ≤ zj , the polytopes ArP + b can be computed

by
∧

1≤j≤n(cTj A
−1
r x ≤ zj + cTj A

−1
r b). However, the representation size of the

convex hull of Ω
′
0, . . . , Ω

′
N can be very large. Therefore, we over-approximate

this convex hull by a rectangle Π as follows:

1. For each linear inequality cTx ≤ z ofΩ
′
i, we compute a point on the boundary

of Ω
′
i by solving the linear program: supx c

Tx s.t. x ∈ Ω′i.
2. Compute the covariance matrix CovD for the points, and compute the sin-

gular value decomposition of the covariance matrix: CovD = UDΣDV
T
D .

3. Compute the set TempD = {v | v or −v is a column of UD}.

TempD is the template of Π. The role of PCA is to keep the over-approximation

and the convex hull of the same dimension. We can also separate the Ω
′
is into

several groups and over-approximate each of them by a rectangle.
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Fig. 4. The hybrid automaton Fig. 5. Results of the experiments

Dimension 5 8 10 15

Octagons 3.97s 21.11s 66.33s > 600s

Our method 11.74s 24.02s 34.33s 83.85s
Table 1. Average running time of 100 samples

4 Experimental Results

We apply our approach to a room heating benchmark [13]. There are two rooms
and one heater. The heater can be turned off and on, and it can be moved from
one room to another when some condition is satisfied. The variables x1 and x2
of the hybrid automaton model, shown in Fig. 4, represent the temperatures of
the rooms. Locations l1, l2 model that the heater is on in Room 1 and Room 2
respectively, and l3, l4 model analogously the heater turned off. In location lk, the
variable xi changes according to ẋi = 9hk+0.3([2.5, 3.5]−xi)+0.3(xj−xi) where
h1 = h2 = 1 and h3 = h4 = 0. Fig. 5 shows the over-approximations computed
for the reachable set in time [0, 1]. The red region is the unsafe set. The black
region is the over-approximation computed by the support function method with
boxes; it has a large overestimation and intersects the unsafe set. The magenta
part is produced by the support function method with octagons [14]). The blue
region is the result of our method. we can see that our method is very competitive
to the support function method with octagon approximations.

We investigated the scalability of the two methods on 100 continuous systems
with dynamics ẋ = Ax + Bu where A is randomly generated, B is an identity
matrix, and u ∈ [−0.1, 0.1]d. Table 1 lists the average running time1, from that
we conclude that our method has a better scalability.

1 Platform: Matlab 2010b, Linux, Intel Core i7 2.8 GHz, 4G Memory.



5 Conclusion

We introduced the direction choice method for over-approximating flowpipes and
the reachable set after a discrete transition. We find the proper directions via
PCA and weighted PCA on a set of well selected samples, such that the compu-
tational complexity is polynomial-time. In [15], the authors also use PCA to find
the orientations of the rectangular approximations. However, the computation
time is not polynomial and by applying their method to the hybrid automata
considered in this paper, the overestimation is not reducible by decreasing time
step. As future work we will apply the direction choice method to nonlinear
continuous dynamics with some adaptations.
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15. O. Stursberg and B. H. Krogh. Efficient representation and computation of reach-
able sets for hybrid systems. In Proc. of HSCC’03, volume 2623 of LNCS, pages
482–497. Springer, 2003.


