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CHOICE OF HIERARCHICAL PRIORS: ADMISSIBILITY IN
ESTIMATION OF NORMAL MEANS1

By James O. Berger and William E. Strawderman

Purdue University and Rutgers University

In hierarchical Bayesian modeling of normal means, it is common to
complete the prior specification by choosing a constant prior density for un-
modeled hyperparameters (e.g., variances and highest-level means). This
common practice often results in an inadequate overall prior, inadequate
in the sense that estimators resulting from its use can be inadmissible
under quadratic loss. In this paper, hierarchical priors for normal means
are categorized in terms of admissibility and inadmissibility of resulting
estimators for a quite general scenario. The Jeffreys prior for the hyper-
variance and a shrinkage prior for the hypermeans are recommended as
admissible alternatives. Incidental to this analysis is presentation of the
conditions under which the (generally improper) priors result in proper
posteriors.

1. Introduction.

1.1. The problem. Use of hierarchical Bayesian models in statistical prac-
tice is extensive, yet very little is known about the comparative performance
of priors for hyperparameters. As a simple example, suppose Xi ∼ N �θi; σ2�
and θi ∼ N �β;σ2

π� for i = 1; : : : ; p with σ2 known, and estimation of the θi is
the goal. Standard choices of the hyperparameter prior are π1�β;σ2

π� = 1 and
π2�β;σ2

π� = 1/�σ2 + σ2
π�, yet little is known about their comparative perfor-

mance or properties. The reason typically given for ignoring such questions is
that the hyperparameter prior is thought to have less effect on the answers
than other features of the model [cf. Goel (1983) and Good (1983)]. While this
is true, the effect of the hyperparameter prior can nevertheless be substan-
tial, especially when p is small (or, more generally, when the ratio of p to
the number of hyperparameters is small), and the almost standardized use of
these models suggests that it is time to address these questions.

The study of this issue is not merely of theoretical interest, because it will
be seen that standard choices of the hyperparameter prior, such as π1 or π2
above, can lead to inadmissible estimators in terms of mean-squared error.
Alternatives will be proposed, both “noninformative” and “robust subjective,”
that are recommended for general use. Conditions are also given under which
the overall posterior is proper or improper, a concern that Bayesians often
face in practice when using improper priors. (Note that we focus, here, on
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improper priors because proper priors automatically result in admissible sta-
tistical procedures. Also, we fully encourage use of proper priors based on
careful subjective elicitation, but have observed that this is rarely done in
practice for hyperparameters.)

We will evaluate hyperparameter priors using the criterion of frequen-
tist admissibility. In particular, we consider the case X = �X1; : : : ;Xp�t ∼
Np �u;

/
S �, with

/
S being a known positive definite matrix, and we as-

sume that the goal is to estimate u = �θ1; : : : ; θp�t by an estimate d�x� =
�δ1�x�; : : : ; δp�x��t, under loss

L�u;d� =� u− d �2=
p∑
i=1

�θi − δi�2:

[The results would be identical for any quadratic loss �u − d�tQ�u − d�, with
Q positive definite.] The frequentist risk function of d�X�, or mean-squared
error, is

R�u;d� = EuL�u;d�X�� = Eu � u− d�X� �2;
where Eu denotes expectation w.r.t. X. Our goal is to ascertain which hier-
archical priors result in admissible Bayes estimators, that is, admissible pos-
terior means. [As usual, an estimator d�x� is said to be inadmissible if there
exists a d∗�x� with R�u;d∗� ≤ R�u;d�, with strict inequality for some u; if no
such d∗ exists, then d is admissible.]

The stated problem is of clear interest to a frequentist because of the in-
admissibility of d0�X� = X when p ≥ 3 [the Stein phenomenon; see Stein
(1956)] and the fact that the most successful improved shrinkage estimators
have been developed as hierarchical Bayes estimators [see Berger (1980, 1985)
and Berger and Robert (1990) for discussion]. It is less clear that Bayesians
should be interested in these results. It has been frequently argued, however
[cf. Berger and Bernardo (1992a)] that comparison and choice of noninfor-
mative priors must involve some type of frequentist computation and that
consideration of admissibility of resulting estimators is an often enlightening
approach. Indeed, it has been suggested that prior distributions which are
“on the boundary of admissibility” are particularly attractive noninformative
priors [see Berger (1984) and the references therein]. Finding such is one of
our goals.

1.2. The hierarchical model. We specialize to the most commonly utilized
hierarchical normal model in which the prior distribution for u is given in two
stages:

u�b; σ2
π ∼ Np�yb; σ2

πI�; �b; σ2
π� ∼ π1�σ2

π�π2�b�:
Here b = �β1; : : : ; βk�t and σ2

π are the unknown “hyperparameters,” and y is
a �p × k� matrix of known covariates which has rank k. [See Morris (1983)
and Berger (1985) for background and discussion of this model.] The p × p
identity matrix I could be replaced by any known positive definite matrix
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without affecting the results. Analogous results could be derived for second
stage priors which incorporate dependence between b and σ2

π , but such are
rarely utilized in practice.

Quite general forms of π1�σ2
π� will be considered. Indeed, we assume only

the following condition.

Condition 1. (i) For c > 0,
∫ c

0 π1�σ2
π�dσ2

π <∞.
(ii) For some constant C > 0, π1�σ2

π� ∼ C/�σ2
π�a as σ2

π →∞.

Typical values of a that are considered are a = 0 (constant prior), a = 1/2
(Carl Morris, personal communication), a = 1 [see (1.3)] and a = 3/2 [see
Berger and Deely (1988)].

Choice of π2�b� is more involved. The following three possibilities will be
analyzed.

Case 1. π2�b� = 1. This is, by far, the most common choice made in prac-
tice.

Case 2. π2�b� is Nk�b0;A�, where b0 and A are subjectively specified.
[See Berger (1985) for discussion.]

Case 3. π2�b� is itself given in two stages:

b�λ ∼ Nk�b0; λA�; λ ∼ π3�λ�;(1.1)

where b0 and A (positive definite) are again specified and π3 satisfies the
following condition.

Condition 2. (i) For c > 0,
∫ c

0 π3�λ�dλ <∞.
(ii) For some constant C > 0, π3�λ� ∼ Cλ−b as λ→∞.

The Case 3 prior is of interest for a number of reasons. First, we will see that
the commonly employed π2�b� = 1 frequently results in inadmissible estima-
tors (especially if k ≥ 3) and hence that alternatives are required. Subjective
choices, as in Case 2, are fine, but automatic hyperpriors are also needed. Such
are available in Case 3. For instance, if b0 = 0;A = I and π3�λ� = λ−b, where
�1− k/2� < b < 1, then

π2�b� ∝� b �−�2b+k−2� :(1.2)

This is recognizable as a standard “shrinkage” prior for b; indeed, for b = 0 this
was suggested by Baranchik (1964), although only for the original u. Priors for
b must typically have at least this amount of shrinkage in the tails to achieve
admissibility.

A second motivation for Case 3 is that it can allow use of subjective infor-
mation about b (through choice of b0 and A), yet utilizes this information in
a very robust fashion. For instance, if π3�λ� is chosen to be inverse gamma
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��b− 1�/2;2/�b− 1��, then π2�b� is Tk�b− 1;b0;A�. The considerable robust-
ness of T priors here was established in Angers (1987); see also Berger (1985)
and Berger and Robert (1990).

A final motivation for consideration of the priors in Case 3 is computa-
tional. Such priors are very amenable to computation via Gibbs sampling. For
a practical illustration in which π2�b� =� b �−�k−2� [i.e., π3�λ� = 1� is used,
see Andrews, Berger and Smith (1993).

1.3. Preview. In Section 2 we present needed technical preliminaries,
which include the conditions under which the posterior is proper or improper.
Section 3 considers the simpler Cases 1 and 2 from Section 1.2; essentially
complete characterizations of admissibility and inadmissibility are possible in
these cases. Section 4 considers the much more difficult Case 3 and presents
a variety of partial results that cover the estimators of major interest.

It is worthwhile to briefly summarize the methodological recommendations
that arise from this work. First, the common noninformative prior π1�σ2

π� = 1
is typically inadmissible, while priors which behave like C/σ2

π for large σ2
π are

typically admissible. In the case
/
S = σ2I, the Jeffreys (and reference) prior

[see Box and Tiao (1973) and Berger and Bernardo (1992b)] is

π1�σ2
π� = 1/�σ2 + σ2

π�;(1.3)

which is of this admissible form. Hence use of (1.3) or its nonexchangeable
analogues [see Berger and Deely (1988) and Ye (1993)] is recommended.

When k = 1 or 2, use of π2�b� = 1 is fine, but it is typically inadmissible if
k ≥ 3. We then recommend either using the default π2�b� =� b �−�k−2� [cor-
responding to π3�λ� = 1], which is typically admissible [see Andrews, Berger
and Smith (1993) for a practical example], or using a robust subjective Bayes
choice as discussed in the previous section. Note that expressions for the re-
sulting estimators are given in Section 2 and require at most two-dimensional
integration.

As a final methodological recommendation, we suggest following the “spirit”
of these results in more complicated normal hierarchical or random effects
models; avoid using constant priors for variances or covariance matrices, or
for groups of mean parameters of dimension greater than 2. Instead try adap-
tions of the above recommended priors. Rigorous verification of these recom-
mendations would be very difficult, but the results in this paper, together with
our practical experience, suggest that they are very reasonable.

1.4. Background. Many references to normal hierarchical Bayesian analy-
sis can be found in Berger (1985), Berger and Robert (1990) and Ghosh (1992).
Results on admissibility or inadmissibility for particular cases include Straw-
derman (1971, 1973), Berger (1976), Hill (1977) and Zheng (1982).

The most comprehensive technique for proving admissibility and inadmissi-
bility in these models is that of Brown [(1971), Section 6], based on properties
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of the marginal density

m�x� =
∫ exp�−�x − u�t

/
S
−1�x − u�/2�

�2π�p/2�det
/
S �1/2

π�u�du(1.4)

corresponding to the (improper) prior π�u�. We will utilize only the following
two results of Brown’s. For these results, define

m�r� =
∫
m�x�dϕ�x�;(1.5)

m�r� =
∫
�1/m�x��dϕ�x�;(1.6)

where ϕ�·� is the uniform probability measure on the surface of the sphere
of radius r. Also, suppose d�x� is the posterior mean corresponding to the
prior π�u�.

Result 1 (Admissibility). If �d�x� − x� is uniformly bounded and
∫ ∞
c
�rp−1m�r��−1 dr = ∞(1.7)

for some c > 0, then d is admissible.

Result 2 (Inadmissibility). If
∫ ∞
c
r1−pm�r�dr <∞(1.8)

for some c > 0, then d is inadmissible.
In computing expressions such as (1.5) and (1.6), the following well-known

result will be very useful.

Result 3 [cf. Kelker (1970)]. If X has a uniform distribution on the surface
of the sphere of radius r and b̂ = �yty�−1ytX, then W =� X − yb̂ �2 / � X �2
has a beta ��p− k�/2; k/2� distribution.

2. Preliminaries.

2.1. Basic expressions. We first record expressions for m�x� and d�x�.
These are simple modifications of the expressions in Section 4.6.3 of Berger
(1985).

For the Case 3 scenario of Section 1.2,

m�x� = C
∫ ∞

0

∫ ∞
0

[
exp�−�1/2��� x − yb̃ �2∗ + � b̃− b0 �2∗∗��
�det W�−1/2�det�λytWyA + I��1/2

]

× π1�σ2
π�π3�λ�dσ2

π dλ;

(2.1)

where W = �
/
S + σ2

πI�−1; b̃ = �ytWy�−1ytWx,

� x − yb̃ �2∗ = �x − yb̃�tW�x − yb̃�;
� b̃− b0 �2∗∗ = �b̃− b0�t��ytWy�−1 + λA�−1�b̃− b0�

(2.2)
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and

d�x� = posterior mean = Eπ�σ2
π ; λ�x��m∗�x; λ; σ2

π��;(2.3)

where π�σ2
π; λ�x� is proportional to the integrand in (2.1) and

m∗�x; λ; σ2
π� = x −

/
S W�x − yb̃� −

/
S Wy�λAytWy + I�−1�b̃− b0�:

Above, and henceforth, we use C and c to denote generic constants. An anal-
ogous expression for the posterior covariance matrix can be found in Berger
(1985).

For Case 2 of Section 1.2, these expressions remain valid with λ = 1 and
the integral over λ removed. The formulas for Case 1 are

m�x� = C
∫ ∞

0

exp�−�1/2� � x − yb̃ �2∗�
�det W�−1/2�det�ytWy��1/2π1�σ2

π�dσ2
π;(2.4)

d�x� = Eπ�σ2
π �x��x −

/
S W�x − yb̃��;(2.5)

where π�σ2
π �x� is proportional to the integrand of (2.4).

2.2. Boundedness of m�x� and �d�x� − x�. We need to clarify when the
integrals in (2.1) and (2.4) exist and when �d�x� − x� is uniformly bounded.
Note that these imply that the posterior is proper and that the posterior mean
exists—important practical issues in their own right. Special cases of these
results were given in Berger and Robert (1990).

Lemma 1. In the Case 3 scenario, m�x� and �d�x� − x� are uniformly
bounded if

a > 1− p
2
; b > 1− k

2
and

p

2
+ a+ b− 2 > 0:(2.6)

Proof. Note that, since y has rank k and
/
S and A are positive definite,

C�1+ σ2
π�p/2 ≤ �det W�−1/2 ≤ C′�1+ σ2

π�p/2;(2.7)

C

(
1+ λ

�1+ σ2
π�

)k/2
≤ �det�λytWyA + I��1/2 ≤ C′

(
1+ λ

�1+ σ2
π�

)k/2
:(2.8)

Hence

m�x� ≤ C
∫ ∞

0

∫ ∞
0

1
�1+ σ2

π�p/2�1+ λ/�1+ σ2
π��k/2

π1�σ2
π�π3�λ�dσ2

π dλ:

Break this integral up into integrals over �0; c�×�0; c�, �0; c�×�c;∞�, �c;∞�×
�0; c� and �c;∞�×�c;∞�, where c is chosen so that π1�σ2

π� ≤ C/σ2a
π for σ2

π > c
and π2�λ� ≤ C/λb for λ > c (see Conditions 1 and 2); call these four integrals
I1; I2; I3 and I4, respectively. Note that

I4 ≤ C
∫ ∞
c

∫ ∞
c

1
�1+ σ2

π�a+p/2�1+ λ/�1+ σ2
π��k/2λb

dσ2
π dλ;
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where recall that we use C as a generic positive constant. Making the change
of variables µ = �1+ σ2

π� and v = λ/�1+ σ2
π� yields

I4 ≤ C
∫ ∞

0

∫ ∞
max�c′;c/v�

1
µ�a+b−1+p/2��1+ v�k/2vb dµdv

= C
∫ ∞

0

[
max�c′; c

v
�
]�2−a−b−p/2�

�1+ v�−k/2v−b dv

= C
∫ c

0
�1+ v�−k/2v�a−2+p/2� dv+C

∫ ∞
c
�1+ v�−k/2v−b dv;

which are finite under the given conditions.
Bounding I1, I2 and I3 is easy, using also Condition 1(i) and Condition 2(i)

in Section 1.2. We thus have that m�x� is uniformly bounded under the given
conditions.

To show that � d�x� − x � is uniformly bounded, it suffices to show that

g�z� =
∫ /

S Wz�det W�−1/2 exp�−�1/2�ztWz�π1�σ2
π�dσ2

π∫
�det W�−1/2 exp�−�1/2�ztWz�π1�σ2

π�dσ2
π

(2.9)

is uniformly bounded as a function of z; this suffices because it is straightfor-
ward to show, as in Section 2.3.1 of Berger and Robert (1990), that

x − d�x� = Eπ2�b�x��g�x − yb��;

and if the integrand is uniformly bounded for all �x − yb�, then so is the
expectation.

Define c2 and c1 as the maximum and minimum characteristic roots of/
S , respectively, and [using Condition 1(ii)] choose c1 so that, for σ2

π > c1;
C/σ2a

π ≤ π�σ2
π� ≤ C′/σ2a

π : Finally, let c4 = max�1;2�c1 + c3��.
For � z �≤ c4, it is trivial that g�x� is uniformly bounded (since W ≤

/
S
−1�.

Hence we need only consider the case � z �> c4.
We first find an upper bound on the numerator of (2.9). Clearly,

�numerator� ≤ C
∫ ∞

0

� z �
�c3 + σ2

π�
exp�−�1/2� � z �2 /�c2 + σ2

π��
�c3 + σ2

π�p/2
π1�σ2

π�dσ2
π :

Break this up into integrals over �0; c1� and �c1;∞�, to be called I1 and I2,
respectively. Using Condition 1(i), it is clear that

I1 ≤ C
∫ c1

0

�z�
c3

exp�−�1/2��z�2/�c2 + c1��
c
p/2
3

π1�σ2
π�dσ2

π

≤ C�z� exp
{ −�z�2
c2 + c1

}
:

(2.10)



938 J. O. BERGER AND W. E. STRAWDERMAN

Next, again recalling that we use C as a generic constant and making the
change of variables v = �z�2/2�c2 + σ2

π�,

I2 ≤ C
∫ ∞
c1

�z��c3 + σ2
π�−�a+1+p/2� exp

{
− 1

2�z�2/�c2 + σ2
π�
}
dσ2

π

≤ C
∫ ∞
c1

�z��c2 + σ2
π�−�a+1+p/2� exp

{
− 1

2�z�2/�c2 + σ2
π�
}
dσ2

π

≤ C�z�−�2a+p−1�
∫ �z�2/2�c1+c2�

0
v�a+p/2−1�e−v dv

≤ C�z�−�2a+p−1�;

(2.11)

the last step using a > 1− p/2. Combining (2.10) and (2.11) yields

�numerator� ≤ C�z� exp�−�z�2/�c2 + c1�� +C�z�−�2a+p−1�:(2.12)

Next, we find a lower bound on the denominator of (2.9). Clearly, making the
change of variables v = �z�2/2�c3 + σ2

π�,

denominator > C
∫ ∞
c1

exp�−�1/2��z�2/�c3 + σ2
π��

�c2 + σ2
π��a+p/2�

dσ2
π

= C
∫ �z�2/2�c1+c3�

0

(
c2 − c3 +

�z�2
2v

)−�a+p/2�
e−v
�z�2
2v2

dv

> C�z�−�2a+p−2�
∫ 1

0
v�a−2+p/2�e−v dv;

since �z�2 > 2�c1+c3�: Since a > 1−p/2, we can conclude that the denominator
is greater than

C�z�−�2a+p−2�:(2.13)

Combining (2.12) and (2.13) yields

�g�z�� ≤ C�z��2a+p−1� exp�−�z�2/�c2 + c1�� +C�z�−1;

which is clearly uniformly bounded (recall that �z� > c4�. This completes the
proof. 2

Lemma 2. In the Case 2 scenario, m�x� and �d�x� − x� are uniformly
bounded if a > 1− p/2.

Proof. Equations (2.7) and (2.8) remain valid with λ = 1, so that

m�x� ≤ C
∫ ∞

0

1
�1+ σ2

π�p/2�1+ 1/�1+ σ2
π��k/2

π1�σ2
π�dσ2

π

≤ C
∫ c

0
π1�σ2

π�dσ2
π +C

∫ ∞
c
�σ2

π�−�a+p/2� dσ2
π;

which is bounded since a > 1−p/2 [and using Condition 1(i)]. The proof that
�d�x� − x� is uniformly bounded is identical to that in Lemma 1. 2
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Lemma 3. In the Case 1 scenario, m�x� and �d�x� − x� are uniformly
bounded if a > 1− �p− k�/2.

Proof. Applying (2.7) and C�1+σ2
π�−k/2 ≤ �det�ytWy��1/2 ≤ C′�1+σ2

π�−k/2
to (2.4) yields

m�x� ≤ C
∫ ∞

0

1
�1+ σ2

π�p/2�1+ σ2
π�−k/2

π1�σ2
π�dσ2

π

≤ C
∫ c

0
π1�σ2

π�dσ2
π +C

∫ ∞
c
�σ2

π�−�a+�p−k�/2� dσ2
π;

which is finite. The proof that �d�x� − x� is uniformly bounded is identical to
that in Lemma 1. 2

3. Results when p2�b� = 1.

3.1. Summary. For this most common choice of π2�b�, admissibility of d�x�
depends only on p, k and a. Table 1 summarizes the conclusions. For p = 2,
note that if a ≤ 1

2 when k = 1, or if k ≥ 2, then m�x� [and hence d�x�] is
not defined. Hence Table 1 provides a complete resolution of admissibility and
inadmissibility when π2�b� = 1, except when k ≥ 3 and a ≥ k/2. We think
that d�x� is actually inadmissible even in this case, since, in the exchange-
able situation or for fixed σ2

π , a direct shrinkage argument shows d�x� to be
inadmissible. Since a ≥ k/2 does not correspond to any previously proposed
estimators, we did not attempt to extend the argument to this case.

Our recommendation in Section 1.3 was to use the prior (1.3), which is of
the general form in Condition 1 with a = 1. Based on Table 1, when k = 1
and p ≥ 3 one could argue instead for the choice a = 1/2, this being on
the “boundary of admissibility.” Indeed, Carl Morris (personal communication)
has suggested the choice π1�σ2

π� = 1/σπ , which does satisfy Condition 1 with
a = 1/2. We find this proposal to be quite reasonable; our recommendation to
always use a = 1 was mainly based on a desire for simplicity.

Table 1
Admissibility and inadmissibility of the Bayes estimator when π2�b� = 1

k

p 1 2 ≥≥≥3

2 a > 1
2 ⇒ admissible δ not defined δ not defined

a ≤ 1
2 ⇒ δ not defined

≥ 3 a ≥ 1
2 ⇒ admissible a ≥ 1⇒ admissible a < k/2⇒ inadmissible

a < 1
2 ⇒ inadmissible a < 1⇒ inadmissible a ≥ k/2 not analyzed
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3.2. Inadmissibility and admissibility of d�x�.

Theorem 1. Suppose π2�b� = 1 and π1�σ2
π� satisfies Condition 1 with a >

1−�p−k�/2. Then d�x� is admissible or inadmissible as indicated in Table 1.

Proof. By Lemma 3, �d�x� − x� is uniformly bounded. Hence to estab-
lish admissibility or inadmissibility of d�x� we need only verify (1.7) or (1.8),
respectively.

Note first that

C�x − ytb�2
�1+ σ2

π�
≤ �x − ytb�t�

/
S + σ2

πI�−1�x − ytb� ≤ C
′�x − ytb�2
�1+ σ2

π�
;(3.1)

which, together with (2.7) and (2.8), can be directly used to verify that m�x�
can be bounded above and below (for appropriate choices of C and C′) by

m∗�x� = C
∫ ∞

0
�1+ σ2

π�−�p−k�/2 exp
{−C′�x − yb̂�2
�1+ σ2

π�

}
π1�σ2

π�dσ2
π;

where b̂ = �yty�−1ytx. Defining

r2 = �x�2; w = �x − yb̂�2/�x�2;(3.2)

this can be rewritten as

m∗�r;w� = C
∫ ∞

0
�1+ σ2

π�−�p−k�/2 exp�−C′r2w/�1+ σ2
π��π1�σ2

π�dσ2
π

≡m∗1�r;w� +m∗2�r;w�;
(3.3)

where m∗1 is the integral on �0; c� and m∗2 is the integral on �c;∞�.
Using Condition 1(i), it is clear that m∗1 can be bounded above and below

by

m∗∗1 = C exp�−C′r2w�:(3.4)

Using Condition 1(ii), one can show that m∗2 can be bounded above and below
by

m∗∗2 = C
∫ ∞
c
�1+ σ2

π�−�a+�p−k�/2� exp�−C′r2w/�1+ σ2
π��dσ2

π

= C
∫ c′r2w

0
�r2w�−�a−1+�p−k�/2�u�a−2+�p−k�/2�e−u du;

(3.5)

making the change of variables u = C′r2w/�1+ σ2
π�:
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Proof of inadmissibility. From (1.6), Result 3 and the above

m�x� ≥m∗�r;w� ≥m∗∗1 �r;w� +m∗∗2 �r;w�:

It is clear that

m�r� ≤
∫ 1

0

g�w�
m∗�r;w� dw

≤
∫ c/r2

0

g�w�
m∗∗1 �r;w�

dw+
∫ 1

c/r2

g�w�
m∗∗2 �r;w�

dw;

(3.6)

where

g�w� = Cw��p−k�/2−1��1−w��k/2−1�:(3.7)

Now, using (3.4),

∫ c/r2

0

g�w�
m∗∗1 �r;w�

dw ≤ C
∫ c/r2

0
exp�C′r2w�g�w�dw ≤ C:(3.8)

Next, using (3.5),

∫ 1

c/r2

g�w�
m∗∗2 �r;w�

dw ≤ C
∫ 1

c/r2

r�2a−2+p−k�w�a+p−k−2��1−w��k/2−1�
∫ c′r2w

0 e−uu�a−2+�p−k�/2� du
dw:

However, c′r2w ≥ c′c over the domain of integration of w, so the integral in
the denominator is bounded below by a constant. Hence,

∫ 1

c/r2

g�w�
m∗∗2 �r;w�

dw ≤ Cr�2a−2+p−k�
∫ 1

c/r2
w�a+p−k−2��1−w��k/2−1� dw

≤ Cr�2a−2+p−k�;

(3.9)

since a+ p− k− 2 > �1− �p− k�/2� + p− k− 2 = �p− k�/2− 1 > −1:
Combining (3.6), (3.8) and (3.9), we obtain

m�r� ≤ C+Cr�2a−2+p−k�:

Hence, the integral in (1.8) becomes

∫ ∞
c
r1−pm�r�dr ≤ C

∫ ∞
c
r1−p dr+C

∫ ∞
c
r2a−1−k dr;

which is finite if p ≥ 3 and a < k/2. This completes the inadmissibility part
of the proof.
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Proof of admissibility. From (1.5), Result 3 and the above m�x� ≤
m∗�r;w� ≤m∗∗1 �r;w� +m∗∗2 �r;w�, it is clear that

m�r� ≤
∫ 1

0
m∗∗1 �r;w�g�w�dw+

∫ 1

0
m∗∗2 �r;w�g�w�dw:(3.10)

Using (3.4) and (3.7), the first integral can be bounded by
∫ 1

0
m∗∗1 �r;w�g�w�dw = C

∫ 1

0
exp�−C′r2w�w��p−k�/2−1��1−w��k/2−1� dw

≤ C
∫ c

0
exp�−C′r2w�w��p−k�/2−1� dw

+C exp�−C′r2c�
∫ 1

c
g�w�dw

≤ Cr−�p−k� +C exp�−C′r2�:

(3.11)

Using (3.5), the second integral in (3.10) is
∫ 1

0
m∗∗2 �r;w�g�w�dw

= C

r�p−k+2a−2�

∫ 1

0

�1−w��k/2−1�

wa

∫ c′r2w

0
e−uu�a−2+�p−k�/2� dudw:

Break the integral over w into integrals I1 and I2 over �0; c/r2� and �c/r2;1�,
respectively. Dropping e−u and then �1−w��k/2−1� in I1 results in the bound

I1 ≤
C

r�p−k+2a−2�

∫ c/r2

0

�1−w��k/2−1�

wa
�r2w��a−1+�p−k�/2� dw

≤ C
∫ c/r2

0
w��p−k�/2−1� dw

= Cr−�p−k�:

(3.12)

Bounding the integral over u in I2 by 0�a− 1+ �p− k�/2�, we obtain

I2 ≤
C

r�p−k+2a−2�

∫ 1

c/r2
w−a�1−w��k/2−1� dw

≤ C

r�p−k+2a−2�

[∫ c′

c/r2
w−a dw+

∫ 1

c′
�1−w��k/2−1� dw

]

=





Cr−�p−k+2a−2�; if a < 1;

C�log r�r−�p−k�; if a = 1;

Cr−�p−k�; if a > 1:

(3.13)

It is clear that (3.11) and (3.12) are of equal or smaller order than (3.13), so
that we can conclude that m�r� has an upper bound of order (3.13).

Finally, we verify (1.7) for each range of a and k. If a < 1, then
∫ ∞
c
�rp−1m�r��−1 dr ≥

∫ ∞
c
r�2a−1−k� dr = ∞

if a ≥ k/2. This clearly applies only when k = 1.
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If a ≥ 1, then
∫ ∞
c
�rp−1m�r��−1 dr ≥

∫ ∞
c
�rk−1 log r�−1 dr = ∞

if k ≤ 2. This completes the verification of the admissibility portions of
Table 1. 2

4. Results for hierarchical p2�b�.

4.1. Summary. The following theorems summarize the results we estab-
lish in this section concerning admissibility and inadmissibility of the Bayes
rule d�x� for the priors defined in Case 2 and Case 3 of Section 1.2.

Theorem 2. Suppose π2�b� is Nk�b0;A�; with A positive definite, and
π1�σ2

π� satisfies Condition 1 with a > 1 − p/2. Then d�x� is inadmissible if
a < 0 and admissible if a ≥ 0.

Theorem 3. Suppose π2�b� has the hierarchical structure defined in Case 3
of Section 1:2, with π1�σ2

π� and π3�λ� satisfying Conditions 1 and 2 with a >
1− p/2; b > 1− k/2; and a+ b > 2− p/2. Then d�x� is inadmissible if a < 0
or a+ b < 1 and is admissible if a and b are as in Table 2.

Note that Theorem 3 leaves certain situations unsettled, primarily the case
�0 ≤ a < 1, a + b ≥ 1�. A finer argument would be needed to resolve this
situation. The theorem does cover the following cases of major interest:

1. If k ≥ 3 and b = 0 [satisfied by the recommended “shrinkage prior” π2�b� =
��b��−�k−2�], then d�x� is admissible if a ≥ 1 and inadmissible if a < 1 (since
then a+ b < 1).

2. If a = 1 [corresponding to the recommended priors for π1�σ2
π�], then d�x�

is always admissible when p ≥ 3 and b ≥ 0 [and when m�x� is defined, i.e.,
b > 1− k/2]. The requirement a > 1 for k = 1 and p = 2 is a bit annoying
(and probably not necessary), but for k = 1 and p = 2 the choice π2�b� = 1
will be made most of the time.

Table 2
Sufficient conditions for admissibility of d�x�

k

p 1 2 ≥≥≥3

2 b ≥ 1
2 and a > 1 — —

≥ 3 b > 1
2 and a ≥ 1 b > 0 and a ≥ 1 b ≥ 0 and a ≥ 1
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4.2. Proofs of Theorems 2 and 3.

Proof of Theorem 3. Without loss of generality, we can set b0 = 0 in
the proof. By Lemma 1, �d�x� − x� is uniformly bounded. Hence to establish
admissibility of d�x� we need only verify (1.7). To establish inadmissibility it
suffices to show (1.8).

Using (2.7) and (3.1), it is clear that m�x� can be bounded above and below
by

m∗�x� = C
∫ ∞

0

∫
�1+ σ2

π�−p/2 exp
{−C′��x − yb��2
�1+ σ2

π�

}
π2�b�π1�σ2

π�dbdσ2
π

= C
∫ ∞

0

∫ ∞
0

[
exp�−C′���x − yb̂��2/�1+ σ2

π� + ��b̂��2∗∗��
�1+ σ2

π�p/2�det�λ�1+ σ2
π�−1ytyA + I��1/2

]

× π1�σ2
π�π3�λ�dσ2

π dλ;

where b̂ = �yty�−1ytx and �� · ��2∗∗ is defined in (2.2) with W = �1+ σ2
π�−1I and

b0 = 0. Next, utilizing (2.8) and the bounds

C��yb̂��2
�1+ σ2

π + λ�
≤ ��b̂��2∗∗ ≤

C′��yb̂��2
�1+ σ2

π + λ�
;

m∗�x� can be bounded above and below by

m∗∗�x� = C
∫ ∞

0

∫ ∞
0

[
exp

{
�−C′��x−yb̂��2/�1+σ2

π��−�C
′′ ��yb̂��2/�1+σ2

π+λ��
}

�1+ σ2
π�p/2�1+ λ/�1+ σ2

π��k/2
]

× π1�σ2
π�π3�λ�dσ2

π dλ:

Finally, defining

r2 = ��x��2 and w = ��x − yb̂��2
��x��2 = 1− ��yb̂��2

��x��2

and replacing theC′ andC
′′

by their minimum or maximum, one obtains upper
and lower bounds for m∗∗�x� [and hence for m�x�] of the form

m∗∗∗�r;w�

= C
∫ ∞

0

∫ ∞
0

[
exp

{
−C′r2�1+ σ2

π�−1�w+ �1−w�/�1+ λ/�1+ σ2
π���

}

�1+ σ2
π�p/2�1+ λ/�1+ σ2

π��k/2
]

× π1�σ2
π�π3�λ�dσ2

π dλ:

(4.1)
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Proof of inadmissibility. Using Conditions 1 and 2,

m∗∗∗�r;w�

≥ C
∫ ∞
c

∫ ∞
c

exp
{
−C′r2�1+σ2

π�−1�w+�1−w�/�1+λ/�1+σ2
π���

}

�1+ σ2
π��a+p/2��1+ λ/�1+ σ2

π��k/2λb
dλdσ2

π

≥ C
∫ ∞
c

exp�−C′r2�1+ σ2
π�−1�

�1+ σ2
π��a+p/2�

(∫ ∞
c

1
�1+ λ/�1+ σ2

π��k/2λb
dλ

)
dσ2

π

≥





C
∫ ∞
c

exp�−C′r2�1+ σ2
π�−1�

�1+ σ2
π��a+p/2� − �1− b�+�

dσ2
π; if b 6= 1;

C
∫ ∞
c

exp�−C′r2�1+ σ2
π�−1�

�1+ σ2
π��a+p/2��log�1+ σ2

π��−1
dσ2

π; if b = 1;

where + denotes the positive part. For b 6= 1, making the change of variables
u = c′r2/�1+ σ2

π� yields

m∗∗∗�r;w� ≥ C
∫ cr2

0

exp�−u�u�a+p/2−2−�1−b�+�

r�p+2a−2−2�1−b�+� du

≥ Cr−�p+2a−2−2�1−b�+�

for r > c′. Applying this to the integral in (1.8) yields
∫ ∞
c
r1−pm�r�dr ≤ C

∫ ∞
c
r�1−p+p+2a−2−2�1−b�+� dr;

which is finite if a−�1−b�+ < 0. For b = 1 the same change of variables leads
to
∫∞
c r1−pm�r�dr ≤ C

∫∞
c r�−1+2a��log r�−1 dr, which is finite if a < 0. Hence

(1.8) is satisfied and d�x� is inadmissible if a− �1− b�+ < 0, which happens if
either a < 0 or a+ b < 1, completing the proof.

Proof of admissibility. We break the integral in (4.1) into the four regions
�0; c�×�0; c�, �0; c�×�c;∞�, �c;∞�×�0; c� and �c;∞�×�c;∞�; call the resulting
integrals I1, I2, I3 and I4, respectively. Clearly, using Conditions 1(i) and 2(i),

I1 ≤ C exp
{
− C′r2

�1+ c�

[
w+ �1−w��1+ c�

]}
≤ C exp�−C∗r2�:(4.2)

Similarly,

I2 ≤ C exp
{
− C

′r2w

�1+ c�

} ∫ ∞
c

exp�−C′r2�1−w�/�1+ c+ λ��
�1+ c+ λ�b+k/2 dλ;(4.3)

where we have used 1 ≤ �1 + c + λ�/�1 + λ� ≤ 1 + c. Changing variables to
v = C′r2�1−w�/�1+ c+ λ� results in

I2 ≤
C exp�−C′r2w�
�r2�1−w���k/2+b−1�

∫ c∗r2�1−w�

0
e−vv�k/2+b−2� dv

≤ C exp�−C′r2w�
�r2�1−w���k/2+b−1� min

{
0

(
k

2
+ b− 1

)
;
�c∗r2�1−w���k/2+b−1�

�k/2+ b− 1�

}
;
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where the second term of “min” arises from bounding exp�−v� by 1. Recalling
that w has a beta ��p− k�/2; k/2� density g�w�, it follows that

I∗2�r� ≡
∫ 1

0
I2�r;w�g�w�dw

≤ C
∫ �1−c/r2�

0

exp�−C′r2w�
�r2�1−w���k/2+b−1�g�w�dw

+C
∫ 1

�1−c/r2�
exp�−C′r2w�g�w�dw

≤ C
∫ �1−c/r2�

0

exp�−C′r2w�w��p−k�/2−1�

r�k+2b−2��1−w�b dw+C exp�−C∗r2�

≤ C
∫ 1

0

exp�−C′r2w�w��p−k�/2−1�

r�k−2� dw+C exp�−C∗r2�;

where we have used r2�1−w� > c on the domain of the next to last integral.
Making the change of variables v = C′r2w, yields

I∗2�r� ≤ C�r−�p−2� + exp�−C∗r2��:(4.4)

To deal with I3, use Condition 1(ii) and then Condition 2(i) to yield

I3 ≤ C
∫ ∞
c

∫ c
0

[
exp�−C′r2�1+ σ2

π�−1�w+ �1−w�/�1+ λ/�1+ σ2
π����

�1+ σ2
π��p/2+a�

]

× π2�λ�dλdσ2
π

≤ C
∫ ∞
c

exp�−C∗r2/�1+ σ2
π��

�1+ σ2
π��p/2+a�

dσ2
π

≤ Cr−�p+2a−2�:

(4.5)

Finally, we must deal with I4 which, using Conditions 1(ii) and 2(ii), can be
bounded by

I4 ≤ C
∫ ∞
c

∫ ∞
c

exp�−C′r2�1+ σ2
π�−1�w+ �1−w�/�1+ λ/�1+ σ2

π����
�1+ σ2

π��p/2+a��1+ λ/�1+ σ2
π��k/2�1+ λ�b

dλdσ2
π :

Making the change of variables v = λ/�1+ σ2
π� for the inner integral yields

I4 ≤ C
∫ ∞
c

∫ ∞
c/�1+σ2

π�

exp�−C′r2�1+ σ2
π�−1�w+ �1−w�/�1+ v���

�1+ σ2
π��p/2+a−1��1+ v�k/2�1+ v�1+ σ2

π��b
dvdσ2

π

≤ C
∫ ∞
c

∫ ∞
0

exp�−C′r2�1+wv�
/
��1+ σ2

π��1+ v���
�1+ σ2

π��p/2+a−1��1+ v��k/2+b� dvdσ2
π :

Reversing the order of integration, making the change of variables (for σ2
π)

u = C′r2�1+wv�/��1+ σ2
π��1+ v��
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and defining ψ�r; v;w� = r2�1+wv�/�1+ v�,

I4 ≤ C
∫ ∞

0
�ψ�r; v;w��−�p/2+a−2��1+ v�−�k/2+b�

×
(∫ c∗ψ�r;v;w�

0
exp�−u�u�p/2+a−3� du

)
dv

≤ C
∫ ∞

0
�ψ�r; v;w��−�p/2+a−2��1+ v�−�k/2+b�

×min
{
0

(
p

2
+ a− 2

)
;C′�ψ�r; v;w���p/2+a−2�

}
dv

≤ C
∫
�
�1+ v�−�k/2+b� dv+C

∫
�c
�ψ�r; v;w��−�p/2+a−2��1+ v�−�k/2+b� dv;

(4.6)

where

� = �v:ψ�r; v;w� ≤ c∗ ≡ �0�p/2+ a− 2�/c′�1/�p/2+a−2��:

Note that we need a > 2 − p/2 for the above to be valid; this is satisfied by
the conditions in Table 2.

Denoting the two integrals in (4.6) by I∗1�r;w� and I∗2�r;w�, we have

∫ 1

0
I4g�w�dw ≤

∫ 1

0
I∗1�r;w�g�w�dw+

∫ 1

0
I∗2�r;w�g�w�dw:(4.7)

Now � can be rewritten

� = ��v;w�: 0 < w < c∗/r2; v > �r2 − c∗�/�c∗ − r2w��;

so that
∫ 1

0
I∗1�r;w�g�w�dw

≤ C
∫ c∗/r2

0

(∫ ∞
�r2−c∗�/�c2−r2w�

�1+ v�−�k/2+b� dv
)

×w��p−k�/2−1��1−w��p/2−1� dw

≤ C
∫ c∗/r2

0

(
c∗/r2 −w

1−w

)�k/2+b−1�
w��p−k�/2−1��1−w��k/2−1� dw

≤ C
∫ c∗/r2

0

(
c∗

r2
−w

)�k/2+b−1�
w��p−k�/2−1� dw;

since b ≥ 0 under all cases of Table 2. Making the change of variables u =
r2w/c∗, it follows directly that

∫ 1

0
I∗1�r;w�g�w�dw ≤ Cr−�p−2�:(4.8)
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Next, we consider
∫ 1

0
I∗2�r;w�g�w�dw

= C
∫ ∫

�c

[
r2
(

1+wv
1+ v

)]−�p/2+a−2�

× �1+ v�−�k/2+b�w��p−k�/2−1��1−w��k/2−1� dvdw

≤ C

r�p+2a−4�

∫ ∫

�c

(
1+wv
1+ v

)−�p/2+a−2�
�1+ v�−�k/2+b�w��p−k�/2−1� dvdw:

(4.9)

Define �∗ = �c ∩ ��v;w�: �1 +wv�/�1 + v� < c′ ≤ 1�, and break up (4.9) into
integrals over �∗ and ��c−�∗�. The integral over ��c−�∗� is trivially bounded
since �1 +wv�/�1 + v� ≥ c′ and the remainder of the integrand clearly has a
finite integral. Hence
∫ 1

0
I∗2�r;w�g�w�dw

≤ C

r�p+2a−4�

(
1+

∫
�∗

(
1+wv
1+ v

)−�p/2+a−2�
�1+ v�−�k/2+b�w��p−k�/2−1� dvdw

)

≤ c

r�p+2a−4�

(
1+

∫
�∗

�1+ v���p−k�/2+a−b−2�w��p−k�/2−1�

�w�1+ v� + 1− c′��p/2+a−2� dvdw

)
;

where we used

1+wv = w�1+ v� + 1−w ≥ w�1+ v� + 1− c′

on �∗. Next, change variables from v to u = w�1 + v� and observe that �∗

transforms to
{
�u;w�: c

∗

r2
< w

[
1+ �1−w�

u

]
< c′

}

⊂
{
�u;w�: c

∗

r2

(
u

u+ 1

)
< w < c′

(
u

u+ 1− c′
)}
:

Thus we obtain
∫ 1

0
I∗2�r;w�g�w�dw

≤ c

r�p+2a−4�

(
1+

∫ ∞
0

u��p−k�/2+a−b−2�

�u+ 1− c′��p/2+a−2�

(∫ c′u/�u+1−c′�

c∗u/�r2�u+1��
wb−a dw

)
du:

Computations now have to be done separately for the three cases b− a < −1,
b− a = −1 and b− a > −1. The analysis is straightforward and yields

∫ 1

0
I∗2�r;w�g�w�dw ≤

C log r
r�p+2a−4� +

C

r�p+2b−2� :(4.10)
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Combining this with (4.7) and (4.8), we conclude that
∫ 1

0
I4g�w�dw ≤ C

(
1

r�p−2� +
log r

r�p+2a−4� +
1

r�p+2b−2�

)
:(4.11)

To complete the proof, we conclude from (4.2), (4.4), (4.5) and (4.11) that

m�r� ≤
∫ 1

0
�I1 + I2 + I3 + I4�g�w�dw

≤ C
[
e−C

∗r2 + 1
r�p−2� +

log r
r�p+2a−4� +

1
r�p+2b−2�

]
:

Hence (1.7) becomes
∫ ∞
c
�rp−1m�r��−1 dr ≥ C

∫ ∞
c
�r+ �log r�r�3−2a� + r�1−2b��−1 dr;

which is clearly infinite under the conditions of Table 2. This completes the
proof of admissibility. 2

Proof of Theorem 2. Upper and lower bounds on m�x� are given by (4.1)
with λ = 1 and the integral over λ removed, that is by

m∗∗∗�r;w�

= C
∫ ∞

0

exp�−C′r2�1+ σ2
π�−1�w+ �1−w�/�1+ 1/�1+ σ2

π����
�1+ σ2

π�p/2�1+ 1/�1+ σ2
π��k/2

× π1�σ2
π�dσ2

π :

(4.12)

Proof of inadmissibility. Using Condition 1(ii),

m∗∗∗�r;w� ≥ C
∫ ∞
c

exp�−C′r2�1+ σ2
π�−1�

�1+ σ2
π��p/2+a�

dσ2
π

≥ Cr−�p+2a−2�:

Hence
∫ ∞
c
r1−pm�r�dr ≤ C

∫ ∞
c
r�2a−1� dr;

which is finite if a < 0. By (1.8), d�x� is then inadmissible.
Proof of admissibility. Clearly

m∗∗∗�r;w� ≤ C
∫ ∞

0

exp�−C∗r2�1+ σ2
π�−1�

�1+ σ2
π�p/2

π2�σ2
π�dσ2

π :

Breaking this integral up into integrals over �0; c� and �c;∞� and using Con-
dition 1 yields, after a change of variables in the second integral,

m∗∗∗�r;w� ≤ C exp�−C′r2� +Cr−�p+2a−2�:

Hence
∫ ∞
C
�rp−1m�r��−1 dr ≥ C

∫ ∞
c
r�2a−1� dr;

which is infinite if a ≥ 0. By (1.7), d�x� is thus admissible. 2
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