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Summary. The determination of the density distribution of the Earth from 
gravity data is called the inverse gravimetric problem. A unique solution to 
this problem may be obtained by introducing a priori data concerning the 
covariance of density anomalies. This is equivalent to requiring the density to 
fulfil a minimum norm condition. The generally used norm is the one equal 
to the integral of the square of the density distribution (L2-norm), the use 
of which implies that blocks of constant density are uncorrelated. It is shown 
that for harmonic anomalous density distributions this leads to an external 
gravity field with a power spectrum (degree-variances) which tends too slowly 
to zero, i.e. implying gravity anomalies much less correlated than actually 
observed. I t  is proposed to use a stronger norm, equal to the integral of the 
square sum of the derivatives of the density distribution. As a consequence of 
this, base functions which are constant within blocks, are no  longer a natural 
choice when solving the inverse gravimetric problem. Instead a block with a 
linearly varying density may be used. A formula for the potential of such a 
block is derived. 

Key words: minimuin norm, inversion, mixed collocation 

1 Introduction 

The problem of finding the density distribution of the Earth ( p )  from gravity data is called 
the inverse gravimetric problem. I t  is well known that this problem has no unique solution. 
On the other hand, we frequently need a solution - or several solutions - in order to study 
possible density distributions consistent with the known external gravity field or other data. 

What we mean is that in principle it is not possible from purely gravimetric information 
to achieve a knowledge of the inner density p going beyond the claim that p has to belong 
to some equivalence class. The situation can be improved in no other way than by 
introducing more physical information. This notwithstanding it is sometimes desirable to 
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have an element of the mentioned equivalence class, with nice functional properties, maybe 
incorporating some statistical information consistent with ‘real world’ data. We shall address 
the problem of determining this representer of the equivalence class or of an approximation 
to it (when we have only a finite set of data) as an ‘estimation problem’, in agreement with 
the statistical terminology which allows for biased estimates: consequently our ‘estimates’ 
may happen to be very far away from the true density, though satisfying the required 
mathematical properties. 

Suppose we have given a reference density model, for example where the density depends 
only on the distance r from the Earth’s centre. The differences between this model and the 
actual density may be called the anomalous density. We will denote this by p or 6 p ,  when it 
is important to distinguish between the total density and the ‘density contrast’. The 
potential of the total density is denoted V and the potential of the anomalous density is the 
anomalous potential, T = 6u. 

The observations ( y i )  we have will be related to  T or to  p through linear functionals, 
Li, i = 1, . . . , n, yi = Li(p)  or yi = Li(Z‘). A model for the density ?, may be obtained in one 
of two different ways, either by supposing to  be an element of a linear vector space with 
dimension (m)  smaller than n or as an element of a space of dimension larger than n. In the 
first case a solution is found using a least squares principle, and in the second case by 
requiring the solution to have the least possible norm and being in agreement with the 
observations. In the first case a system of linear equations with m unknowns has to be solved 
in order to find F. In the second case a subspace of dimension n will be implicity given, and 
p is found as an element of this space by solving a linear system of equations with n 
unknowns. 

This, however, requires that the norm is derived from an inner product. If this is not the 
case (e.g. when the supremum norm L ,  is used, cf. Backus 1971; Parker 1975), a solution 
may be found using linear programming techniques. 

We will here only regard the situation where the norm is derived from an inner product 
and n < m. Here m may be infinite. If m is finite, then a solution is generally found in 
practice using the so-called Lanczos inverse or singular value decomposition. It is well known 
that this solution fulfils a minimum norm condition. If the solution space is spanned by m 
orthonormal base functions, fi, then 
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- 

m 

i ~ =  C X j f i  
j =  1 

and 

m 

11iJ112 = 1 
j =  1 

is minimum. 
If the L z  norm is used, then 

llpllZ = pZ dB, I 
and a set of indicator functions /j(P) for non-overlapping blocks of volume uj will be ortho- 
gonal, i.e. the functions 
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Density distribution of the Earth 125 

are orthonormal. A finite number of these functions span a reproducing kernel Hilbert space, 
with reproducing kernel 

m 

K(P, Q )  = 1 zj(P)Ij(Q)/uj- 
j =  1 

This kernel may also be interpreted as the covariance function of the density because all 
reproducing kernels are simultaneously covariance functions for the stochastic process 
spanning the Hilbert space (see Parzen 1959). It  then expresses that density values within the 
same block are correlated with correlation coefficient equal to 1, and the densities in two 
different blocks are uncorrelated. 

In a reproducing kernel Hilbert space, the collocation method may be used to  find an 
approximation agreeing with given data. The solution is identical to the one obtained using 
K(P, Q )  as a covariance function and it is also identical to the one obtained using Lanczos’ 
inverse (see Appendix). So even if some geophysicists do not think they use a priori 
information using the LZ-norm (see the discussion in Jackson 1979), in fact they d o  
implicitly. This may be a good starting point for asking, which norm should we then use? 
Here it may be helpful to go to the general continuous case, m --f 03. 

When the blocks become smaller and smaller, but still fill the same set B ,  the covariance 
function behaves in the limit as one associated with a noisy stochastic process. We will in the 
following show that this is a process too noisy for practical use, considering the power 
spectrum of the anomalous gravity potential, T. Mathematical preparations for this analysis 
are given in Section 2 and the result in Section 3 .  

Consequently we look for stronger norms, involving derivatives of the density. 
Reproducing kernels for such norms may be expressed explicitly for the spherical part of 
the Earth. This is treated in Section 4. 

Since these norms involve the derivatives of density anomalies, we cannot use the 
indicator functions Zi(P) as basic building blocks when m is fiiite. It is necessary to use 
blocks where, for example, the density may vary linearly with respect to the coordinates. An 
expression for the potential of such a linearly varying density is given in Section 5. 

We have in this introduction supposed that the reader is familiar with concepts like 
Hilbert spaces and linear functionals, In the following we will furthermore use the concept 
of a Sobolev space HiPi(B), generally with j = 2. B is a (bounded) set in Rn, the superscript i 
indicating that the derivatives up to and inclusive order i are elements ofL’(B). A subscript 
0 indicates that the functions and their derivatives up to and inclusive of order i are zero. 

The superscript i does not need to be an integer. A non-integer value derivative is 
obtained using the Fourier transform or the Fourier transform multiplied by an appropriate 
constant per frequency. 

2 General solution of the inverse problem 

Suppose S is the surface of the Earth, 52 the set outside the Earth and B the set inside the 
Earth. The inverse gravimetric problem then consists, for a given V on S (or in 52 via the 
Dirichlet problem), to fiid p in B so that 

(2.1) 

rpQ is the distance from P to Q. Inverse gravimetric problems which presupose the use of 
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other data types may be converted to this by first constructing an approximation to  V 
(using, e.g. least squares collocation). 

Before going into mathematical details it might be useful to recall the definition of 
Sobolef spaces. We define Hs*P (s an integer) as the space of functions h having distri- 
butional derivatives up to order s belonging to L p ,  h E H S 9 P  fr {h, ah, . . . ,as h ELP}: the 
norm in these spaces is given by 
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S 

(a  = multi-index of the derivative of order I a I). In particular when p = 2 we define the 
Hilbert spaces H ’+$ 2(B) (B  E R“)  for any real 0 < s < 1 (in this case we shall skip the 
exponent 2) as those subspaces ofH’,’(B) for which the functionals 

(aQh(x)  = derivative of h corresponding to  a multi-index cr of order la1 = I )  happen to be 
bounded. The norm in such spaces is defined as 

llhll:+s= Ilhll: + Ilaahll:. 
IQ I= 1 

The same definition carries over to subsets of manifolds of dimension n. 
Theorem 1. If S is endowed with the continuous differentiable normal n, and if 

E L 2 ( @  such that (2.1) is satisfied (see Sansb 

Theorem 2. If (2.1) has one solution 5 EL’(@, and if S has a continuous normal n, then 

V € H 3 / ’ ( S ) ,  then there exists at least one 
1980, appendix 3) .  

the class of all the solutions of (2.1) in L z ( B )  can be represented as 

p = 5 + A h  (A is the Laplacian), (2.2) 

where 

h E (B)  

(i.e. h E H Z 3 2 ( B )  and his = O ,  (ah/an)(s  = 0). In other words A h  [h €H,2*’(B)] represents 
the class of L z  distributions generating a null external field. 

(It is easy to prove that p = A h  generates no external field using Green’s third identity 
with P in 52. 

i.e. V E 0 on 52 and whence on S.) 
Given the non-uniqueness of the solution (2.2) we have to define some extra criterion in 

order to fix one solution. 
For purely geodetic purposes it seems that this criterion could be completely arbitrary, as 

the goal is a good interpolation of the external gravity field. Nevertheless knowledge of the 
internal density as derived from gravity data is of interest in itself, and even from the 
geodetic point of view the use of qualitatively reasonable densities has an impact on the 
behaviour of the approximating field at the boundary. The behaviour of the field generated 
by a bounded density is different from that generated by an L z  density and from the 
behaviour gf the field of a single layer, especially near a rough boundary. 
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Density distribution o,f the Earth 127 

Typical criteria are: 

the socalled minimum epergy solution; 
some minimum norm solution; 
the restriction of the solution space, 

or combinations of these criteria as, e g .  introduced in ‘mixed collocation’ (see Sansb & 
Tscherning 1982). 

In the following section we will discuss these possibilities in more detail. 

3 Uniqueness criteria 

3.1 M I N I M U M  E N E R G Y  S O L U T I O N  

The idea is to minimize the energy from 

associated with the field generated by some measure dpp with support in the closure of B ,  
1 

V(P) = Jb dcc(Q), (3.2) 

under the constraint that V(P) agrees with the given function G(P) on S. Thus we are led to 
the minimum principle, with Lagrange multiplier X(P), 

This gives (Fp: small change in p ) :  

[I--+ dP(P) J’ h o d s p ]  dFp(Q)=O for allFp, 
B rPQ S r P Q  

so that 

and 

Hence V(Q) in 3 is the potential of a single layer with density X(P) (i.e. it is harmonic in 
B) ,  and since dp has to have support in B a n d  p = 0 in B o  V is the potential of a single layer 
everywhere. 

The density A(P) is determined using the condition 

i.e. by solving the Dirichlet problem for u+ and u -  in B and in 52 (=B? with boundary values 
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i ( P )  on S and then putting 

F. Sans;, R. Barzaghi and C. C. Tscheming 

The minimum energy problem is a slight generalization of the so-called equilibrium 
distribution of a charge e on a conductor B.  The difference is that for electrical charges the 
potential is repulsive and not attractive as for masses. Indeed this has no impact on the form 
of the functional to be minimized, but it has a strong impact on its sign - in fact this is 
reversed. 

In geodesy we define the force F = VV, but in physics the definition F = - VV is used. So 
the potential energy of a mass distribution is in the physical sense negative. So what we have 
found is in fact a ‘maximum energy’ distribution. This can also be characterized by the 
following physical reasoning: a charge distribution of minimum energy on S is in equilibrium 
because it cannot be changed without supplying work from the exterior, whereas if a mass is 
in any way distributed on S it can supply work to the exterior by moving to an inner surface 
S‘ .  In conclusion: the so-called ‘minimum energy’ solution has no physical meaning. 

3.2 T H E  L~ M I N I M U M  N O R M  S O L U T I O N  

We first regard the L2 -norm, which has been discussed already in Krarup (1978) and Sansb 
(1980). We want to find a solution to (2.1) so that 

p2 d B = m i n  s 
In variational form 

so that 

p(Q) = 9 dSp 
rp  Q 

(3.5) 

which implies that 

Ap = O  inB. 

namely by putting (3.6) in (3.5) 
The solution of the problem is obtained by solving an integral equation of the first kind, 

I J G(P, P ’) A(P) dSp = u”<P ’) 

dBQ I G(P, P’) = 5- - 1 1  

‘PQ rP’Q 
(3.7) 

An explicit solution is easily obtained for the sphere. Suppose, with Y, ,  the surface 
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spherical functions, and U Q  the projection of Q on the unit sphere 

i(Q>= C C G r n  Ynm(OQ) 
n m  

Since 

with P on the sphere and Q inside, then 

and 

Hence 

(2n + 1) (211 + 3)  - 
R 2  

- 
V n m .  

The condition p E L  ( B )  implies 

llp1I2 = p2r2 drda 

Pnm - 

129 

or 

R 2 (2n + 1)2 (2n + 3 )  i~;,,, < 00, 

i.e. up E H3I2 ( S )  (cf. Theorem 1). 

with density anomalies. 

radial distances. We also suppose S is a sphere of radius R(u, the unit sphere). 

Since it is somewhat problematic to use harmonic densities, we will now explicitly work 

We assume we know not only the external potential, but also the average density at all 
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We may therefore go to variations 

F. Sand,  R. Barzaghi and C. C. Tscherning 

6 p = p - P  
- 

S;=;(P)- f  R ( w i t h i =  I," i r 2  d r ) ,  P E S .  

Note that we have the consistency condition 

Consequently we have the problem 

6p2 dBp = min 

6 p ( r ,  o)da=O, V r G R .  5 
Equation (3.15) is fulfilled by setting 

1. I 6 P  
= c 6prtrn(r) ynrn(o> 

6 p o o ( r ) = 0  OGrGR 

Then from (3.13), (3.14) we derive for all 6 p  of the form (3.16) 

(3.10) 

(3.1 1) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

which implies 

(whch we could avoid by stipulating hoo = 0) so that 

A6p = 0. 

From this we have for 6 p  the model expression 

and (3.8) holds for the variations 

- (2n+ 1)(2n+ 3) - 
6 U n r n -  

R 2  6Pnm - 

A trivial criticism against the L2 -norm approach is that by generating a harmonic density 
anomaly 6 p  we get a function attaining extremal values at the boundary. This property is 
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Density distribution of the Earth 131 

not acceptable for the total density p ;  it might be reasonable for the density anomaly 6 p  
since in the interior of the Earth with the increase of the pressure we expect a higher homo- 
geniety of the masses. Nevertheless, the criticism is still valid since if we go to the discrete 
version of the normal equations (3.7), namely (cf. Sansb & Tscherning 1982) 

(3.17) 

c hiG(P,, Pk) = &(Pk) 

(here we use only the evaluation functionals as examples) we accordingly fmd a density 
which becomes unbounded at the measure-points Pi and this is an odd feature. 

Fortunately the behaviour of 6 p  near the boundary or at the origin can be partly con- 
trolled by introducing a suitable weight function f ( r )  in the minimum principle, according to 

I B  f ( r )  ( 6 P ) z  dB = min, 

(see Tscherning & Sunkel 1981). 

3.3 STATISTICAL I N T E R P R E T A T I O N  

The minimum principle (3.13) with side conditions (3.14) and (3.15) has a statistcal 
interpretation. First note that, by defining the average on the sphere asM[.], we have 

and we see that the function minimized is 

I/ = rz l 6 p ’  du dr 

= I r z  M [ ( p  - F)’ I,] dr. 

This can be interpreted as a weighted (by the factor r 2 )  sum of variances on p on each 
sphere of radius r .  We stress that, due to the form of the above ‘least squares’ principle, an 
hypothesis of uncorrelation between p(r, o), p(r’,  0 ’ )  (white noise!) is implicitly assumed. It 
is because of the weakness of this topology that the drawback explained in (3.17) appears. 

We can find the covariance function of t i p ,  since it is identical to the reproducing kernel 
of the space of harmonic functions in L2(B) .  The internal solid spherical harmonics are 
orthogonal in L z  (B) ,  but not normalized: 

The reproducing kernel is then 

(3.1 8a) 

This function is bounded for rp,  rQ < R and unbounded when rp = rQ = R .  As our 6 p  has 
zero component 6 p o o  = 0, we can ignore the summation for the zero degree in (3.18a). 
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132 F. Sansb, R. Barzaghi and C. C. Tscherning 

Corresponding to this we get the kernel G(P, Q )  for the potential, namely 
R 2  ,+' 1 

(2n + 1)' (2n + 3) 
G(P, Q) = R CC ynm('P) ynm(uQ> (-) 

rP rQ 
(3.18b) 

n + i  R 

(2n + 1) (2n + 3) 

m = c  (&) pn (cos 

This covariance function has degree variances 

u, = 

tending to zero like n - 2 .  A statistical analysis of the Earth's gravity field (see Forsberg 1984; 
Schwarz 1985), shows that u, has to tend to zero like K 3  or n - 4 .  (The famous Kaula's rule 
corresponds to K3 .) So in order to have a more regular kernel for the potential, we must 
have a more regular one for 6 p .  This is achieved by strengthening the topology. 

R 

(2n + 1) (2n + 3) 

3.4 U S E  O F  T H E  H ' . ~ - N O R M  

We may require a linear combination of the density and of its derivatives to be minimized. 
We will therefore require that 6 p  is differentiable. Then 

j B  [a(&p)' + blV6pI2]  dB = min (3.19) 

6p(r, u )dr=O r < R ,  I 
(3.20) 

(3.21) 

where a and b are weight functions to be chosen at will. However we shall assume that a and 
b depend only on r. In this case the general variational equation for (3.19)-(3.21) is 

(3.22) 

where the two Lagrange multipliers are to be determined by the side conditions (3.20), 
(3.21) and 6 p  has to satisfy the Neumann condition 

(3.23) 

We shall not analyse (3.22) directly, because there is an argument against the use of (3.19) as 
it is. 

The layered structure of the Earth's interior makes radial differentiability unlikely. Even 
if the average radial model c(r) already accounts for most of the radial discontinuity there is 
no reason why a density anomaly should propagate across the boundary of such 
discontinuities. We therefore drop the radial derivative part of the gradient, and assume from 
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now on that B is a sphere. Then we get a modified minimum principle 

JB [a6pZ i- b 1 Vt6p  1 2 ]  dB = min 

where only the horizontal gradient 

133 

(3.24) 

(3.25) 

enters. 
This approach can have a kind of physical interpretation if we refer to a model of the 

earth behaving like a viscous fluid and disregarding the centrifugal force: in this case in fact a 
radially layered density model should constitute an equilibrium figure and we may expect 
that any lateral density variation generates forces tending to restore such equilibrium. These 
forces, if they are thought of as generated by some transport phenomenon, can be expected 
to be more intense where the lateral density variation is steeper, so that we could imagine a 
real situation where in mean square values the average density contrasts and its horizontal 
gradient are small. 

Coming back to  the mathematical treatment, if we now write the variational equation for 
the functional (3.24) we get 

where A ,  is the Laplace-Beltrami operator. 
Integrating (3.26) over do and taking into account that from (3.21) 

6 p  do = 0 I 
and from Green's identity applied to the sphere of radius r ,  
r r 1 A u 6 p d o =  6 p A , ( l ) d o = O  J 

we get 

0 = A00 + v(r) 

v(r)  = - xoo . 

or 

Subsequently (3.26) can be written as 

W> = ~ ( Q I  - xoo J 
where X(Q) should be determined from conditions (3.20). 

(3.26) 

(3.27) 
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Instead of going through a direct determination, we prefer first to fx a and b. A 
particularly simple choice is 

a = constant, 6 b = 4ar2 (3.28) 

where the reason for factor 4 will become clear later. 
Under these circumstances we have 

Since on the other hand 

A(Z - 4A,) = (Z - 4A,)A, 

we see that 

(Z - 4Au)A6p = 0. 

As, moreover (in the sense of positive operators) 
(Z - 4A,)> 1, 

(3.30) gives 

(3.29) 

(3.30) 

A6p = 0. (3.3 1) 

Thus the choice of (3.28) gives us a solution 6 p  which is again harmonic, and since it 
must satisfy 

6p is uniquely determined and coinciding with the solution found by the L 2  -norm. 
It might seem at this point that the use of the norm (3.24) is not a useful approach, but 

this is not so! 
The solution 6p when 6 i (P)  is given over the complete spherical surface S is the same as 

before, but we are making the hypothesis that 6; is so regular that 6p belongs to a restricted 
subspace of L2(B) ,  namely to the space of harmonic functions for which (2.24) is bounded. 

With the choice (3.28), the norm (3.24) is easily computed for a harmonic function, so 
that 

= a  5," 1, [6p2 - 46pA,6p] do r 2  dr 

= a R 3  c (2n + l)' 'pim 
n = O  2 n + 3  
m=O 

(6poo = 0 as a consequence of (3.27)). 
From (3.32) we see that the space with norm 1 1  1 1 ,  has the reproducing kernel 

(3.32) 

(3.33) 
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Density distribution of the Earth 135 

which is a well behaving even at  the boundary, contrary to K,(P,  Q) which was the kernel 
corresponding to the L z  -norm. 

As a consequence of the regularity of K 1  we have in the case of discrete data a more 
regular estimate of 6;. We can see this at  least in the case of the evaluation functionals 
(operating on 6u)  

min I l6 i l l  t (3.34) 

(3.35) 
1 

L , ( s ~ >  = 1 -+ s ~ ( Q )  ~ B Q  = ~ G ( P ~ ) ) ,  i = 1, . . . , n. 

We find 6 ;  as a linear combination of the Riez representers of the functionals Li which 
are obtained using (3.33) and (3.8) (and rpi = R )  

Since these functions are bounded, 6b is bounded. Nevertheless, if at Pi we had measured 
the gravity disturbance, we would have 

and this is not now bounded on S. 

potential, C(P, Q). On S it becomes, using (3.8) twice 
Note, finally, that to K (P, Q) corresponds a reproducing 

This entails 6u E H 5 I 2 ( S )  as was to be expected. 

4 General principles 

At this point it would have been possible to go to  higher-order 
differential operators, which in some cases would have involved additional side conditions 
(see e.g. Skorvanek 1981). Instead we will summarize what has been done in more general 
terms in a few principles. 

(1) We decide to work with harmonic density anomalies since these correspond to 
reasonable minimum principles with suitable choices of the free parameters. In this way the 
solution 6 p  for a given field 6 u  on S is futed and unique; indeed 6 p  will satisfy a certain 
minimum principle with a norm of order n (n denotes the number of derivatives of 6p 
implied) if 6u is accordingly suitably smooth. The fact that 6p is unique does not, however, 
fut the estimate 6 ;  when a discrete (fmite) number of observations is given. In fact we can 
have a family of 6 i  according to the norms chosen. 

(2) We classify the norms for the estimates 6 i  according to the reproducing kernels of the 
corresponding spaces We assume that these have the form 

kernel for the exterior 

norms, constructed with 
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where Fk(n) is a positive, never zero, rational function of n satisfying 

F. Sansb, R .  Barzaghi and C. C. Tscheming 

Fk(?Z)+ n - k .  
n-+- 

To the reproducing kernel (4.1) for 6 p  corresponds a reproducing kernel Gk(P, Q) for 6u, 
namely 

Moreover, always fixing Kk(P,  Q), we fx the representer of the evaluation of the anomalous 
potential 6u at the point P i ,  namely 

= < g p i ,  6 p  > k  (rpi = R *Pi ES), (4.4) 

where 

All the other functionals on 6u ,  Li(6u), have representers LpiCgpi), since 

LPi6U = u p i  gpi, 6p ) k .  (4.6) 

However for some functionals (e.g. (i3/i3r)lpi) it might be necessary to continue analytically 
gpi in rpi > R and then restore rpi = R .  

(3) The sought (collocation) solution is given by 

6 6  = C&(Li.igPi), (4.7) 

{(LigPi, LjgPi)k)  {xi> ={Li6u(p i )> ,  (4.8) 

where the constants Xi are determined from 

and ( L i g p i ,  Ljgpj)k = K k ( L i ,  L j ) .  Such expressions may in many cases be calculated using 
closed expressions (see Tscherning 1976). 

5 Mixed collocation and restriction of the solution space 

The general principles discussed in Section 4 can only be applied on a spherical earth model. 
However they may be combined with the method of restricting the solution space, which is 
the only technique widely used in practice to invert gravimetric data. This combined 
technique is called ‘mixed collocation’ (see Sansb & Tscherning 1982). 

The general idea of mixed collocation is to combine the ‘internal collocation’ method 
using a Hilbert space of density functions with the classical ‘external collocation’ for the 
anomalous potential using a ‘spherical’ covariance function. The difficulty is to apply the 
minimum norm principle to a body hke the Earth of a quite complicated form. This refers 
not only to  the shape of the topographic masses, but it might also include all the masses 
between the topographic surface and the Moho. 

For this reason it is convenient to treat the outer layers in discrete form, i.e. to restrict 
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the solution space for the contribution of these masses to the outer potential. However, we 
keep the analytic representation inside some sphere within the earth ( a Bjerhammar sphere). 

Outside this sphere we may use and combine the potential generated by a simple density 
distribution in a simple geometrical figure, such as rectangular boxes. Previously, mainly 
boxes with constant density have been used, but it has been proposed also to use densities 
varying linearly with the height (see, e.g. Murthy & Rao 1979). 

If we want to use one of the higher-order norms for the density inside the Bjerhammar 
sphere, we should also use the same type of norm for these boxes. We must therefore also 
use density distributions at least varying linearly with the (local) coordinates (x ,  y ,  z ) ,  
because otherwise the derivatives will not give any contribution to the norm. We will there- 
fore derive the expression for the potential of a density function depending linearly on one 
of the coordinates (z) .  

To this aim we can use an indefinite integral of l / r  (see MacMillan 1958, section 4.3), 
* 1 

i.e. a particular solution of the equation 

a 3 f o  - 1 ____  
ax ay az Jx' + y 2  + z 2 '  (5 .2)  

One such particular integral (as a matter of fact the only one symmetrical with respect to 
(x, Y ) ,  (x, z )  and (JJ, z ) )  is 

fo(x ,  y ,  z )  = xy  log (z + r )  + xz log 0, + r )  + y z  log (x + r )  

XY 
- - arctg - ~ - arctg - - - arctg - 

2 xr 2 Y r  2 zr (5.3) 
X 2  YZ Y 2  x z  z 2  

withr' = x 2  + y 2  + z 2 .  
The solution can be used to  compute the definite integral 

by evaluating the functionfo(x - x o ,  y - y o ,  z - z o )  with respect t o x o ,  yo ,  z o  between the 
given limits. 

Now we want to generalize (5.3), (5.4) slightly in order to compute 

@o - Z O P l )  dxo dY0 dzo 

( P o +  P l z ) + P , ( z - z o )  
dV0 

= s J (X  - X o ) 2  + ( y  + y0)2 + (z  - Z o ) 2  

= ( P  0 + P 1 z )  n 0 (x ,  Y > z 1 + P 1 n 1 (x, Y 3 z) .  ( 5  -5) 

It remains to compute II, and to this aim we must evaluate the indefinite integral 
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This is easily done, noting that 

dx dy - afoix, Y ,  z )  
aZ 

- II J X Z  + y z  + z 2  
> 

so that 

- 2 3  xy r 2 i x + y )  x z  Y 3  - '13 r xy - - arctg - + - - log (r - y )  - - log (r - x) 
3 zr 4 3 3 

x 2 )  log 0, + r)  + Y ( ~ ~  - y ' )  log (x + r). 
x(3z2 - + 

6 6 

The approximation ? to the anomalous potential will then consist of two parts 
,.4 

T = ? , +  Fs, (5.7) 

where Tt is the topographic part and Ts the spherical part. Tt is modelled in blocks Bk (with 
index k )  so that 

3 

(5.8) n Ft(P) = c POk nOk(P)  -b c Pjk nOk(P) + njk(P)l 
k II j =  1 

where x1 = x, x2 = y ,  x3 = z and nik is the potential of the density with xi varying linearly. 
Ts belongs to a space with given reproducing kernel K(P, Q). 
The variational principle giving the solution is then 

(observation equations) 

(5.10) 

where the weights A , ,  Bik, c j k  can be chosen as 

dB,  Bjk = LkX:dB,  c j k  = jBk X i  dB, 
A k =  Lk 
so that the first sum in (5.10) is the L2 -norm of the density P o k  + CPjk xi in the block B k .  
Constants corresponding to norms involving the derivatives with respect to xi are easily 
computed. 

6 Conclusions 

We have here seen how minimum principles different from the L 2  -norm can be introduced. 
The corresponding norms should involve the square sum of derivatives in order to produce a 
covariance function which is realistic. As a consequence of this, density models with boxes 
of constant density should not be used exclusively. Linearly varying densities may be 
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introducted, the potential of which are not more complicated than that of a usual 
rectangular box. 

Using the minimum principle (norm) (5.10) the densities in the individual blocks will still 
be uncorrelated, but the correlation of the densities within a block will vary. Correlations 
between blocks may be imposed, e.g. by letting the linear part extend to all neighbouring 
blocks. 

The effect of using such density models on the solution of inverse gravimetric problems 
remains to be seen. I t  should, however, give a possibility for a more simple and realistic 
density modelling, since the density frequently is not exactly horizontally stratified, but 
may have a considerable slope. 

The density models may be evaluated using seismic data. These should be used in order t o  
select the most realistic norm. This, on the other hand, could be used to find a norm, which 
the Earth’s density minimalizes. This again should give us information about elastic 
properties fulfilled by the Earth - if any are fulfilled. 
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Appendix: identity between collocation solution and solution obtained using Lanczos 
inverse (generalized inverse) 

Suppose 

m 

j =  1 
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where Zj is the indicator function for the jth block, which we suppose has unit volume. Let 
the observations y i  be related to the density through linear functionals Li, 

F. Sans;, R. Barzaghi and C. C. Tscherning 

m 

{ Y i >  = C x j L i ( I j ) .  
j =  1 

We put L i ( I j )  = A i j ,  and we will suppose that the matrix A = { A i , )  has full rank, n .  Let hi' 
be the eigenvalues and uj the eigenvectors for the m x m matrix A T A .  Suppose they are 
arranged so that the n first are the ones different from zero. They will be the eigenvalues for 
A A T ,  which has eigenvectors ui. Then 

A*AU,= X/ uj ,  

A A ~ U ~  = A,? ui ,  

j =  I , .  . . ,m 

i = 1 , .  . . , n .  

Let the matrices U and V be formed with the vectors ui and uj as columns, respectively, 
and let A be the n x n matrix with the hi in the diagonal. Then 

A = UAVT 

and 

AAT = UA2 UT. 

The Lanczos inverse is then 

H L  = VA-' UT. 

Hence 

and 

The collocation solution is obtained using the reproducing kernel 

m 

where { bi}  is determined from the coliocation condition 
n 

y j=Lj(hP)=Lj(h' i iC)= bk coV(.Yi,yk) 
k =  1 
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or 

=({-+I {Akj}T)-l { Y k ) .  

To show that 6& = ~ Z L ,  we must prove 

HE = ( A A y 4 .  

But 

AT(AAT)-' = VAUT(UA2 UT)-' = V A C J ~ U A - ~  CJT = VA-' UT =HL. 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/87/1/123/729186 by guest on 16 August 2022


