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ABSTRACT   

The linear canonical transform (LCT) is used in modeling a coherent light field propagation through first-order optical 

systems. Recently, a generic optical system, known as the Quadratic Phase Encoding System (QPES), for encrypting a 

two-dimensional (2D) image has been reported. In such systems, two random phase keys and the individual LCT 

parameters (α, β, γ) serve as secret keys of the cryptosystem. It is important that such encryption systems also satisfies 

some dynamic security properties. In this work, we therefore examine such systems using two cryptographic evaluation 

methods, the avalanche effect and bit independence criterion, which indicate the degree of security of the cryptographic 

algorithms using QPES. We compared our simulation results with the conventional Fourier and the Fresnel transform 

based DRPE systems. The results show that the LCT based DRPE has an excellent avalanche and bit independence 

characteristics compared to the conventional Fourier and Fresnel based encryption systems.  

 

Keywords: Quadratic Phase Encoding system, linear canonical transform, Double Random Phase Encryption, 

Avalanche effect and bit independence criterion. 

  

1. INTRODUCTION  

 
The ubiquitous use of multimedia communication systems, the risk of attacks thereon and the resulting theft of private 

data from secured systems have led to the demand for ever improving information security techniques [1-3].  Techniques 

such as steganography and watermarking have been proposed in which data is hidden; on the other hand, data may be 

encrypted making it difficult to access without some key or keys [4-6]. Often both processes, i.e., hiding and encryption, 

are simultaneously employed. Among them, a technique proposed by Refregier et al [7], known as Double Random 

Phase Encryption (DRPE), using the 4f optical processor has received particular attention. Principally, this algorithm 
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turns an intensity image into an unreadable format by using two randomly distributed phase keys that are employed at 

the spatial and the Fourier domains, respectively. The resulting encrypted data is complex and it cannot disclose any 

information without decrypting the information using the correct phase keys [7]. In addition to this conventional 

technique, some of its extensions have also been examined in the fractional Fourier domain [8], the Fresnel transform 

domain [9], the Hartley transform [10], and the Arnold transform based encoding systems [11]. Furthermore, optical 

encryption techniques can also be implemented as a cryptographic algorithm (i.e., numerical approximations) and such 

implementations were shown to be vulnerable to some organized attacks [12-15].  

The linear canonical transform (LCT) is a three parameter (α, β, γ) group of linear integral transform, which can be used 

to model the propagation of the coherent wave field through the paraxial optical systems [16]. Among its special cases 

are the Fourier transform (FT), the Fractional Fourier transform (FRT), the Fresnel transform (FST), and the Gyrator 

transform (GT) [17]. Since the conventional encryption technique has shown to be vulnerable for phase retrieval based 

attacks [18, 19] such as Chosen Ciphertext Attack (CCA), Ciphertext Only Attacks (COA) and Known Plaintext-

Ciphertext Attack (KPCA), Unnikrishnan et al have proposed a generalized cryptosystem using Quadratic Phase 

Encoding System [20]. It has been reported that the data is encrypted, in the canonical transformation domain, with the 

help of two random phase masks, six transformation parameters (or four propagation distances) and two focal lengths 

[20].  

In principle, the cryptographic algorithms should satisfy some dynamic properties such as the Avalanche Effect (AE), 

and Bit Independence Criterion (BIC) which tell us the relationship between the plaintext and ciphertext [21-23]. 

Recently, Moon et al have demonstrated Avalanche and bit independence characteristics of DRPE in the classical 

Fourier and Fresnel domains. As noted, the generalized LCT constitute a parameterized continuum of the classical 

transforms that includes the Laplace, the Fourier transform (FT), the fractional Fourier transform (FRT), the Fresnel 

transform (FST), in this paper, we present an analysis of AE and BIC for the generalized LCT based DRPE. Furthermore, 

a comparison is made with the existing systems that are based on the classical Fourier, Fresnel transforms based DRPE 

systems. Result shows that the LCT based DRPE system augments the key space and thus enhances the data security.  

This paper is structured as follows: In Section 2, we briefly review the Fourier, the Fresnel and the LCT based DRPE 

systems, respectively. The concepts of the avalanche effect and bit independence are discussed in Section 3. In Section 4, 

we show our computer simulation results. Finally, we conclude our discussions in Section 5. 
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2. DOUBLE RANDOM PHASE ENCODING (DRPE) 

The rapid development of communication systems indicates the need for both higher levels of data security and 

intellectual property protection. Data protection techniques, include steganography, watermarking, copy-move forgery 

detection, encryption are in increasing demand [24-31]. The simplicity and elegance of the classical Fourier based 

Double Random Phase Encryption system (DRPE), has led to proposals for numerous techniques over the past two 

decades [4]. The reason for plenty of optically inspired encryption system proposed in the literature was that it can offer 

the possibility of high-speed parallel processing of data.  In addition to this, the ability to conceal information using 

multiple degrees of freedom such as the amplitude, phase, wavelength, polarization, fractional orders, and propagation 

distances available when using linear lossless paraxial optical systems makes DRPE in the limelight [4-6]. It is known 

that in optical encryption system, diffracted light from the object passes through one another and thus can additionally be 

combined in novel passive multiplexing schemes. Typically, such optical security systems require the modulation and 

capture of the full complex encrypted field information, i.e., both the intensity and the phase, involving for example 

digital holographic (DH) and interferometric techniques [32-35]. In following, we briefly review the fundamental optical 

encryption methods. 

2.1. The classical Fourier transform based DRPE 

The classical encryption system, proposed by Refregier et al., uses the 4f optical system to encode the information [7]. 

Figure 1 shows the schematic setup of classical amplitude encoding DRPE system in the Fourier domain. As it can be 

seen, it involves multiplication of the diffracted input light field by random phase masks or keys (RPMs) placed both in 

the input (space) and the Fourier (spatial frequency) domains. We note that RPMs can be implemented using, for 

example, ground glass, optical diffusers or suitable modulated spatial light modulator (SLM) [35].  

 

Fig. 1. A possible optical implementation of DRPE in the Fourier domain. L1, L2 refers the Fourier lens and the primary 

optical axis is shown in Red color dotted line. 
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Let,    ,  ), represent the spatial coordinates of a two dimensional (2D) signal or an image. The random phase masks 

(RPMs) of spatial and frequency domain,     ,  )             ,  )  and      ,   )              ,   )  respectively, 

are used to encrypt the 2D image. Here, the phase keys     ,  ),      ,   ) are statistically independent and uniformly 

distributed in      ,     . First, the input image is multiplied by the spatial phase mask, RPM1, and then the Fourier 

transform ( ) is performed. Later, the resulting image is modulated by the second phase mask, RPM2, in the frequency 

domain.  Finally, by taking an inverse Fourier transform     ) we get the encrypted image,     ,   ). Mathematically 

this process is defined as follows,   

                                                              ,   )           ,  )      ,  )       ,   ) ,                                                   (1) 

The encrypted image      ,   ) is complex and due to the statistical properties of the two random phase 

masks,     ,  ),          ,   ), it is unreadable. The decryption process is said to be an inverse procedure of encryption 

process, thus the original intensity image can be retrieved by using the secret phase keys [5].  

2.2. The Fresnel transform based DRPE 

In this section, we briefly analyze the concept of a lens-less optical DRPE encryption system proposed by Situ et al [9]. 

It is reported that this system is more flexible and the simplest way of encryption, in which the illuminated light 

wavelength can also be regarded as a secret key. The encryption system shown in Fig. 2, is illuminated by a plane wave 

with the operational wavelength  .  

 

Fig. 2. Optical schematic setup for DRPE in the Fresnel domain: λ operational wavelength, z1, z2 are the propagation distances. 

 

First, the primary amplitude image,    ,  ), is modulated with the first random phase mask (RPM1), which is kept at the 

input plane and represented as          ,  ) . Then, the Fresnel propagated object wave field is further modulated by 

the second random phase mask (RPM2), given by           ,   )  in the transformed domain. Here, the random phase 
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keys     ,  )and      ,   )are statistically independent. Finally, the synthesized image produces the final encrypted data 

at the output plane. Under the Fresnel approximation [36], the encrypted image is given as follows:  

                                                                      ,   )         ,   )           ,   )     ,                                                      (2) 

where     ,   )        ,  )         ,  )       The symbol    stands for the Fresnel transform with respect to the 

operational wavelength λ at the propagation distances    and   . As it can be seen in Eq. (2) that the security of an 

encrypted image     ,   ) in Fresnel based system depends not only on the random phase masks (i.e., RPM1, RPM2) but 

also on the wavelength λ and the positions of the masks    ,   )[9].  

 

2.3. The Linear Canonical Transform based DRPE 

Owing to the inherent capabilities of optical signal processing, various extensions to the classical DRPE have been 

proposed and implemented. For instance, FT-based DRPE is replaced by the fractional Fourier Transform (FRT) [8], 

Fresnel Transform (FST) [9], or Hartley Transform (GT) [10], to mention a few. Since the FT, FRT, FST are the special 

cases (or the subsets) of the linear canonical transform (LCT), the use of the LCT has also been proposed for optical 

encryption using quadratic phase systems [20]. In this case, the three independent QPS transformation parameters 

provide further extra keys for the encryption system and thus augments the security. The LCT is a three-parameter class 

of linear integral transform and 2D separable LCT is defined as [16]: 

                                , ,     ,  )      ,  )              )          )         )         ,                (3) 

Where  ,  ,   represents the real canonical transform parameters. We briefly describe the LCT-based DRPE system [19, 

20]. At first, the primary amplitude image,    ,  ), is modulated by the first random phase mask (RPM1), which is kept 

at the input plane, given as     ,  )             ,  ) . Subsequently, the propagated object wave is further modulated 

by the second random phase mask (RPM2), given as     ,  )              ,   )  in the canonical domain. Again, the 

random phase keys      ,  )  and      ,   )  are statistically independent. The final encrypted image      ,   )   is 

expressed as follows [19]:  

                                                      ,   )     ,  ,      ,  ,      ,  )    ,  )       ,   ) ,                                              (4)                       

The process of LCT based encryption (i.e., multiplying input image with the first phase mask) can be regarded as scaled 

FT with additional chirp multiplication                 )  [19]. Thus, Eq. (4) can be rewritten as, 
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                                                    ,   )                           ,  )     )                                                       (5)               

A schematic diagram of an optical implementation of the LCT based DRPE system is given in Fig. 3. 

 

 

Fig. 3. Optical schematic setup for DRPE in the linear Canonical domain. 

The encrypted image is complex-valued and resembles a noisy signal. The decryption process involved, when using this 

LCT based DRPE system, is given by [19]: 

                                                        ,  )              , )                            ,                                   (6) 

Where     represents an inverse Fourier transform. As it can be seen in Fig. 3, in the LCT based DRPE system, together 

with the random phase masks (RPMs) also the individual LCT parameters (  ,   ,   ,   ,   ,   ), which are defined by 

the system parameters, serve as keys of the cryptosystem.  We note that the constants    ,   ,   ) associated with the 

LCT can be related to the propagation distances   ,    and focal length    by [16, 19]:  

                  )       ,                 )       ,                   )         
                                             (7) 

Similarly, the relation between the second set of LCT parameters    ,   ,   ) and   ,   ,    follows those in Eq. 7. In the 

symmetric 2D separable case, the same parameter values   ,  ,  ) are applied in both the horizontal   ) and vertical   ) directions [16].  

3. SECURITY ANALYSIS 

3.1. Avalanche Criterion (AVAC) 

H. Feistel et al., first defined the Avalanche Criterion (AVAC) as a desirable property for the Substitution and 

Permutation Networks (SPNs) [37]. AVAC is considered an important cryptographic property, which says that even a 
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tiny amount of changes in the plaintext (or key) leads to an “unpredictable avalanche” of changes (i.e., drastic changes) 

in the ciphertext. Briefly, a function      ,      ,    satisfies AVAC, when a flipped single input bit changes, on 

average, half of the output bits [37-39]. For instance, the conventional encryption method ( ) can be described as:      ,  ) where   represents the ciphertext  ,   denotes the plaintext and the key, respectively. Suppose that, 

perturbation is made in the input texts such that     or     , then the ciphertext will be changed (i.e.,  ) drastically. 

Then, the avalanche changes (also known as avalanche effect (AE)) can be measured using (two different strings of 

equal length) Hamming distance ( ), which gives the number of changed bits. Let us consider an example of a binary 

string value for ciphertext                and perturbed ciphertext as                , then the avalanche 

effect is measured using Hamming distance between  ,    as:    ,   )                ,           )      
Similarly, in order to measure AVAC that occurs in the encrypted image and when the input image bits are inverted, we 

use the following equation [23]: 

                                                                                                ,   )     ),                                                                                    ) 

where      ) represents the total number of binary bits in the Ciphertext ( ) and    denotes obtained ciphertext when 

perturbed input texts (i.e.,    or   ) are used. We note that, if the value of    is      (meaning that approximately 

half of the bits in the ciphertext are changed when only few bit changed in either the plaintext or the keys) this usually 

means that it is a satisfactory avalanche effect. 

3.2. Bit Independence Criterion (BIC) 

A. F. Webster et al defined the Bit Independence Criterion (BIC) for S-boxes [40]. Briefly, a function      ,      ,    said to be satisfying to BIC, when a bit   in the input text (i.e., plaintext or key) is changed, it changes the output 

bits   and   in the ciphertext, independently. Let’s suppose that there are   bits in the plaintext and thus it can be changed   times (just by inverting one bit at a time). As a consequence,   ciphertexts can be obtained. Then, the bit 

independence (BI) between bit   and   in the ciphertext is defined using the absolute correlation coefficient value as [40]: 

                                                                 ),     )                     ,              ) ,                                        (9) 

where     ) and       represent the  th
 and  th

 bit in the ciphertext and    and     denote the values of the  th
 and  th

 bits 

in the ciphertext when the  th
 bit in the plaintext is changed. We note that, if the value of         ),     )  is close to 1 
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i.e., the compared bits are strongly correlated (i.e., very similar), else it is uncorrelated (i.e., independent).  To measure 

the BIC on the encrypted image, we used the following expression: 

                                                                                       ,  )        ,          ),       ,                            

(10) 

Where     and we note that when        ,  )  is much lesser than 1 (i.e.,      ), the encryption satisfies the bit 

independence criterion.  

4. SIMULATION RESULTS 

Simulation results obtained using the security analysis described in the previous section, are now presented. We used 

52×52 pixels image (see Fig. 4(a)) in order to measure the avalanche effect and the bit independence criterion. In order to 

analyze the proposed encryption methods (i.e., FT, FST, LCT-based DRPE) in bit units, each pixel intensity value in the 

input plaintext and the phase keys were converted into a binary representation. We used the standard IEEE 754 double-

precision floating-point format (see Fig. 4(b)) to represent our pixel intensity values into the binary numbers [41]. This 

uses 64 bits (i.e., 1 sign bit, 11 bits for exponent width, and 52 bits for significant digits) as shown in Fig. 4 (b). We note 

that the sign, exponent bits are same for almost all amplitude values and therefore perturbation was considered only on 

the last 52 significant bits, without loss of generality.  

  

 

Fig. 4: (a) Grayscale test image used in our simulations and (b) IEEE 754 double-precision binary floating-point format.  

 

We note that except the classical Fourier transform (single transform) based encryption, all the other transform-based 

encryption systems (considered in this work) uses additional security keys. Therefore, in our simulations, for the Fresnel 

z1 = 24 mm, z2 = 32 mm and λ = 0.632 μm, and the LCT has six additional parameters α1 = 613.51, β1 = 1932.49, γ1 

=927.27, α2 = 496.43, β2 = 0.44, γ2 =835.49 are considered.  Figure 5 shows the measured avalanche effect, using Eq. (8), 

plotted against the varying number of flipped bits (i.e., both the bit, pixel units) in the plaintext of the DRPE system in 

the FT, FST, and LCT domains, respectively. It can be seen from Fig. 5 that the avalanche effect for the LCT based 

(a) 
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DRPE is better than that of in the Fourier and Fresnel domains. The AE value is 50% for DRPE in the LCT domain, 

while it is little lower than 50% in the Fresnel domain and when only fewer than 10 bits are flipped in the plaintext, 

DRPE in the Fourier domain, on average, achieves lower AE values.  

 

 

Fig. 5. AVAC with varying number of perturbed bits in the plaintext. Bit unit refers that the encrypted image is compared in 

binary units, the Pixel unit represents the encrypted image is compared in pixel values. 

 

We interpret these results as the fact that when just 1 bit is inverted in the plaintext, almost all of the ciphertext values 

will be changed in the LCT, and FST (note that few bits remain the same) based DRPE, while some of the pixel values 

would remain the same for DRPE in the Fourier domain. Especially, for the case when less than five bits are flipped in 

the plaintext we get AE value less than 40%. We note that the reason for this result is the chirp function [17]. In the FST 

based DRPE, we use one chirp function while in the LCT based DRPE we use two chirp functions and that helps the 

LCT and FST domain to achieve a satisfactory avalanche effect [13]. Whereas, the chirp function becomes unity in the 

Fourier domain. As a consequence, the conventional FT based DRPE system did not achieve a satisfactory avalanche 

effect for the lower bit perturbation.  
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Fig. 6. Simulated results for the Avalanche effect with varying number of bits in the perturbed phase keys. (a) Avalanche effect 

with bits changed in the first phase key (RPM1) (b) Avalanche effect with bits changed in the second phase key (RPM2). 

Figure 6 shows the calculated AVAC values plotted against the varying number of flipped bits in the first and second 

phase keys (RPMs) of the DRPE system in the FT, FST, and LCT domains, respectively.  As it can be seen, when only 

one bit was flipped either of the input phase keys (i.e., first or second phase key) we get similar values as we achieved in 

Fig. 5.  Also, we note that the avalanche value for DRPE in the Fourier domain gets 50% only when more than 15 bits in 

the key for the first or second phase keys were flipped. Similarly, in the pixel values, DRPE in LCT, FST domains stay 

at 100% while that in the FT based system increases to be 100% after about five bits in the phase keys are changed.  

 

Fig. 7. Avalanche effect with some bits in the wavelength (λ) and two distance values (z1, z2) are perturbed. 

 

In contrast to the DRPE in the Fourier domain, the DRPE in the Fresnel domain considers the wavelength and the two 

propagation distance values as additional security keys. Thus, the avalanche effects for these additional keys were also 

examined. The corresponding results are depicted in Fig. 7. The results demonstrate that the avalanche effect for the 
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FST-based DRPE with bits flipped in λ, z1, and z2 are performing good since the values are close to 50%. Also, we note 

that, each of the pixel values are altered when a slight change is made to a bit in λ, z1, or z2. Similarly, as noted, LCT-

based DRPE introduces at least 6 additional parameters (keys) to the encryption system. The results of avalanche effects 

for these additional keys are analyzed and shown in Fig. 8. As it can be seen, the avalanche effect for the DRPE in the 

LCT domain with perturbed bits in α1, β1, γ1 and α2, β2, γ2 are very sensitive as the values are 50%. From these simulation 

results, we may, therefore, conclude that the DRPE in the LCT domain has a better avalanche effect than the DRPE in 

the Fresnel and Fourier domains. This result validates the fact that each of the key parameters in an encryption system is 

a significant contributor to the security of DRPE in the LCT domain.  

 
 

Fig. 8. Avalanche effect with some bits in α1, β1, γ1 and α2, β2, γ2 are flipped. 

 

 

 

 

 

 

 

 

 

 

 

 

DRPE system Perturbed texts in Bit Independence 

Criterion 

FT based DRPE 

 

Plaintext 0.46 

First Phase Key 0.49 

Second Phase Key 0.43 

FST based DRPE Plaintext 0.43 

First Phase Key 0.46 

Second Phase Key 0.42 

LCT based DRPE  Plaintext 0.39 

First Phase Key 0.43 

Second Phase Key 0.35 
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Table 1.  Bit Independence Criterion (BIC) for the DRPE in the FT, the FST and the LCT based domains.   

 

For bit independence measurements, we selected 100 bit pairs (at random) from the encrypted amplitude image and 

calculated BIC for each of the pairs using Eq. 10. Table 1 shows the bit independence results for the FT, FST, and LCT 

based DRPE system. As it can be seen from  Table 1, the bit independence values for the DRPE systems, employed in 

this study, are far away from 1, in other words correlation lesser than 1, meaning that the DRPE possess a satisfactory bit 

independence property. Furthermore, these results also prove the fact that when an input image is encrypted using the 

amplitude-encoding DRPE system, knowledge of the first phase key, i.e., RPM1 is not necessary (in other words not 

significant) during the decryption process [18]. We note that the computed avalanche effect and bit independence values 

are calculated by averaging 100 consecutive simulation results.  

 

 

5. CONCLUSION 

 

We presented a method for calculating the avalanche effect and the bit independence criterion (which are common 

metrics used in evaluating the block cipher algorithms) on optical 4f based double random phase encryption (DRPE) 

system in the Fourier (FT), the Fresnel (FST) and the linear canonical transformation (LCT) domains. Simulation results 

show that LCT based DRPE system achieves excellent performance in the sense of better avalanche effect and bit 

independence properties than that both of the Fourier and Fresnel transform based DRPE system. To be more precise, the 

avalanche effect values in the DRPE in the linear canonical and Fresnel domains achieve superior results than that in the 

DRPE in the Fourier domain. These results validate the fact that each of the keys in an encryption system is a significant 

contributor to the security of encryption system. Thus, a slight change either in the plaintext or the phase keys fail to 

realize a satisfactory avalanche effect or bit independence criterion. 
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