
Mascorro et al. Carbon Balance Manage  (2015) 10:30 

DOI 10.1186/s13021-015-0041-6

RESEARCH

Choice of satellite imagery 
and attribution of changes to disturbance type 
strongly a�ects forest carbon balance estimates
Vanessa S. Mascorro1*, Nicholas C. Coops1, Werner A. Kurz2 and Marcela Olguín3

Abstract 

Background: Remote sensing products can provide regular and consistent observations of the Earth´s surface to 
monitor and understand the condition and change of forest ecosystems and to inform estimates of terrestrial carbon 
dynamics. Yet, challenges remain to select the appropriate satellite data source for ecosystem carbon monitoring. In 
this study we examine the impacts of three attributes of four remote sensing products derived from Landsat, Landsat-
SPOT, and MODIS satellite imagery on estimates of greenhouse gas emissions and removals: (1) the spatial resolution 
(30 vs. 250 m), (2) the temporal resolution (annual vs. multi-year observations), and (3) the attribution of forest cover 
changes to disturbance types using supplementary data.

Results: With a spatially-explicit version of the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3), we 
produced annual estimates of carbon fluxes from 2002 to 2010 over a 3.2 million ha forested region in the Yucatan 
Peninsula, Mexico. The cumulative carbon balance for the 9-year period differed by 30.7 million MgC (112.5 million Mg 
CO2e) among the four remote sensing products used. The cumulative difference between scenarios with and without 
attribution of disturbance types was over 5 million Mg C for a single Landsat scene.

Conclusions: Uncertainty arising from activity data (rates of land-cover changes) can be reduced by, in order of 
priority, increasing spatial resolution from 250 to 30 m, obtaining annual observations of forest disturbances, and by 
attributing land-cover changes by disturbance type. Even missing a single year in the land-cover observations can 
lead to substantial errors in ecosystems with rapid forest regrowth, such as the Yucatan Peninsula.
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Background
Monitoring forest cover and change is essential to 

quantify the amount of carbon that is stored in the veg-

etation and soils, and the corresponding greenhouse gas 

(GHG) emissions and removals [1, 2]. Forest ecosystems 

can mitigate the impacts of climate change by absorb-

ing significant amounts of atmospheric carbon through 

plant photosynthesis [3, 4]. However, degradation of for-

ests and conversion to non-forested lands is the second 

largest anthropogenic cause of carbon dioxide (CO2) 

emissions into the atmosphere [5–8] which has led to ini-

tiatives such as Reducing Emissions from Deforestation 

and Forest Degradation (REDD+) [9].

Natural and anthropogenic disturbances are one of 

the main drivers that alter the forest structure over time, 

and understanding their impacts is therefore critical for 

quantifying carbon stock changes and associated emis-

sions into and removals from the atmosphere [10–13]. 

Disturbances can range from fire, hurricane, insects 

and diseases, to timber harvesting, settlement expan-

sion and other human activities. Since each disturbance 

type impacts the terrestrial carbon cycle in unique 

ways, annual observations of forest changes by distur-

bance type are necessary to accurately estimate carbon 
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dynamics in the year of disturbance and the years after 

the disturbance [5, 10, 14].

Given the complexity of measuring and monitoring 

the terrestrial carbon cycle, a number of approaches 

have been developed [7]. Some techniques utilize data 

collected from ground-plot measurements and allomet-

ric equations that relate the physical attributes of trees 

to aboveground biomass in order to quantify forest car-

bon stocks (e.g., [15–17]). Other approaches use carbon 

budget models (e.g., [18]), remote sensing data (e.g. [19, 

20]), or a combination of both with field measurements 

(e.g., [21–24]). Carbon budget modelling is a well-estab-

lished approach to estimate carbon fluxes at regional to 

national-scales by integrating data from different spatial 

and temporal scales [25]. For example, Canada’s National 

Forest Carbon Monitoring Accounting and Reporting 

System (NFCMARS) uses the Carbon Budget Model of 

the Canadian Forest Sector (CBM-CFS3) as the frame-

work that integrates data from many sources [22, 26]. �e 

CBM-CFS3 is also used as a decision support tool for for-

ests managers to quantify the ecosystem carbon dynam-

ics at the landscape level.

In compliance with the Intergovernmental Panel on 

Climate Change (IPCC) guidelines, the CBM-CFS3 quan-

tifies carbon transfers among the five terrestrial carbon 

pools: above and belowground biomass, litter, dead wood 

and soil organic carbon, including atmospheric releases 

of CO2 and non-CO2 greenhouse gasses and transfers to 

the forest product sector [10]. �e CBM-CFS3 offers the 

advantage of modeling the extent to which tree biomass 

and dead organic matter are affected by different distur-

bance types [27]. Following disturbance, it simulates sub-

sequent forest transitions and successional dynamics and 

represents vegetation transfers to litter, coarse woody 

debris and soil organic carbon pools, and the decompo-

sition of these pools. Based on the stage of stand devel-

opment and ecological characteristics of the forest, the 

model accounts for growth and mortality using yield 

curves.

Carbon models, such as CBM-CFS3 require detailed 

spatio-temporal information about forest dynamics, 

including forest disturbance events, to accurately simu-

late carbon transfers, emissions and removals. Remote 

sensing (RS) is the primary source of land-cover data for 

forest monitoring due to its ability to monitor the Earth’s 

surface on a regular and continuous basis, including 

areas otherwise difficult to access [28–30]. Recently, an 

increasing number of regional and global-scale RS studies 

and products have been developed specifically for forest 

carbon monitoring and REDD+ at different spatial and 

temporal scales [20, 31–33]. In a global study, Potter et al. 

[23] integrated large-scale Moderate Resolution Imaging 

Spectroradiometer (MODIS) satellite observations with 

the Carnegie Ames Stanford Approach (CASA), pre-

dicting a total of 0.51 Pg C year−1 emissions from forest 

disturbance and biomass burning from 2000 to 2009. At 

a regional-scale, Masek and Collatz [21] integrated the 

CASA model with forest inventory data and higher spa-

tial resolution satellite imagery to predict C fluxes from 

1973 to 1999. �ey used Landsat time-series analysis to 

assess the effects of land-clearing disturbances (such as 

logging, harvesting and urbanization) on ecosystem pro-

ductivity and quantified carbon emissions from biomass 

losses, decomposition and decay.

Significant variability among carbon stock estimates 

contributes to uncertainty in estimates of emissions and 

removals. Such variability is potentially due to differences 

inherent to the methods used, the spatial and temporal 

scales involved, and the definition of the components 

included [34]. A recent study by Achard et  al. [33] esti-

mated carbon emissions from deforestation in tropical 

countries for two decades (1990–2000, 2000–2010) by 

combining forest cover change maps derived from Land-

sat imagery and pan-tropical biomass maps. Contrast-

ing their results with those obtained by Hansen et  al. 

[35], they found discrepancies that can be explained by 

different approaches used in the satellite image analysis 

and their definitions of forest. A global study for tropical 

countries by Saatchi et al. [31] integrated inventory data 

and satellite light detection and ranging (LiDAR) data to 

quantify the carbon stored in the living biomass (247 Pg 

C) circa 2000. In a similar study, Baccini et al. [32] esti-

mated carbon emissions from pan-tropical deforestation 

and land-use from 2000 to 2010, combining aboveground 

biomass with regional deforestation rates derived from 

LiDAR and MODIS, respectively. Comparing their 

results with the Forest Resource Assessment (FRA), 

they found their estimates (228.7 Pg C) were 21 % higher 

[32]. Likewise, Mitchard et  al. [36] compared estimates 

from Saatchi et al. [31] and Baccini et al. [32] across the 

Amazon forest to a unique dataset of ground-plot data, 

and found that the regional differences over or under-

estimated the forest carbon estimates obtained from the 

ground data by >25 %.

It is critical to understand the potential role and impli-

cations of different RS observations for estimating eco-

system carbon dynamics following disturbance, in order 

to reduce uncertainties in measuring and monitoring 

carbon emissions and removals [37, 38]. In REDD+ stud-

ies, land-cover change observations are one of the main 

components (also called activity data) required for Moni-

toring Reporting and Verification (MRV) systems [39]. 

�ese activity data can be observations of changes in 

forest areas or land conversions between categories [40]. 

�e design of efficient MRV systems requires an under-

standing of the implications of different attributes of 
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remote sensing products on estimates of GHG emissions 

and removals.

�is study assesses the impacts of using different RS 

products on estimates of terrestrial carbon dynamics. 

We examined the impacts of three attributes of RS prod-

ucts on the estimates of GHG emissions and removals: 

(1) the spatial resolution (30 vs. 250 m), (2) the tempo-

ral resolution (annual observations vs. multi-year obser-

vations), and (3) the attribution of forest cover changes 

to disturbance types. To do so we utilize four contrast-

ing RS datasets—two land-cover change maps and two 

thematic maps—to compile activity data that we then 

use as spatially-explicit inputs of annual disturbance 

events to the CBM-CFS3. �e RS data were derived from 

MODIS, Landsat, and a combination of Landsat-SPOT 

satellite imagery developed using different approaches, 

spatial and temporal resolutions. We derived two spa-

tially-explicit layers for each of the RS products, one 

with land-cover change area, and the second attributing 

the observed change to its underlying disturbance cause. 

We then provided these activity data as inputs to CBM-

CFS3 and estimated annual and cumulative greenhouse 

gas fluxes from 2002 to 2010 in the tropical dry forests 

of the Yucatan Peninsula, Mexico. We conclude with a 

discussion of key findings and implications of different 

activity data sources for future carbon budget analysis.

Methods and data
Study area

Our study focused on a ~3.2 million ha area located in 

the northwest side of the Yucatan Peninsula (YP), Mexico, 

covering parts mainly from Yucatan and Campeche states 

and a small area of Quintana Roo (see Fig. 1). �e region’s 

vegetation is dominated by secondary lowland dry tropi-

cal forests [41] of mixed ages that have regenerated after 

cycles of shifting agriculture and land abandonment. �e 

region has a tropical climate, with rainy summers from 

June to October and dry winters from November to May. 

�e mean average temperature is 26  °C with precipita-

tion levels ranging from 900 to 1400 mm year−1 [42]. �e 

regional topography is characterized by flat limestone 

areas and low moderate hills, with an average slope of 7 % 

and a mean elevation of 116 m [18]. �e main soil types are 

well-drained rendzinas and shallow rocky lithosols [43].

Remote sensing data

Remote sensing observations are essential to track forest 

disturbance impacts and changes in land cover and forest 

Fig. 1 Study area: the Yucatan Peninsula, Mexico
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carbon at a range of spatial scales [44, 45]. Land-cover 

changes are those remotely sensed observations of the 

Earth’s surface that changed from one point in time over 

two or more time periods because of any disturbance 

[7], including both natural and human-induced causes. 

We compiled four remote sensing disturbance products 

from Landsat, MODIS and a combination of Landsat-

SPOT imagery—two classification and two pixel-based 

maps—derived using a range of approaches to compare 

their impacts on carbon budget estimates (see Table 1). 

We use the term pixel-based approach to differentiate 

the two maps that are labeled pixel by pixel as change/no 

change, from the thematic or classification maps that are 

comprised by various pixels grouped together into larger 

areas sharing similar characteristics (land cover class).

Landsat: VCT

�e vegetation change tracker (VCT) is an automated 

algorithm that implements a disturbance index (DI, [46]) 

to reconstruct the history of the landscape disturbance 

on an annual or bi-annual basis (depending on data qual-

ity and availability) using Landsat 30 m time-series analysis 

[47]. �is layer was generated and provided by the NASA 

Goddard Space Flight Center Biospheric Sciences Research 

branch. Each pixel of the spatial dataset was labeled accord-

ing to the year in which the forest cover change was identi-

fied, from 1985 to 2010 (represented by 16 classes). From 

this map, we extracted disturbed areas for the years 2003, 

2004, 2005, 2007, 2008 and 2010. Change data were una-

vailable due to cloud cover in 2002, 2006 and 2009.

Landsat: Hansen

Annual land-cover change data from a global forest cover 

change map derived from Landsat imagery at 30 m spa-

tial resolution were also available from Hansen et  al. 

[35]. �e coverage provided direct estimates of forest 

cover loss and gain from 2000 to 2012, including detailed 

information of annual forest loss. Assessments of for-

est cover loss included pixels that completely lost tree 

canopy cover from a stand-replacing disturbance. Here, 

we obtained annual cover loss areas for our study period 

(2002–2010).

Landsat-SPOT: INEGI

We also retrieved three classification maps from the 

National Institute of Statistics and Geography of Mexico 

(in Spanish: INEGI): the vegetation and land-use car-

tography series developed for 2002, 2007 and 2011 at a 

scale 1:250,000 with approximately 70 classes (INEGI, 

SIII, SIV, and SV). �e vegetation maps were generated 

using manual interpretation of Landsat and SPOT sat-

ellite images, validated with ground-plot data. In addi-

tion, a digital elevation model and ancillary datasets that 

describe the climate, geology, hydrology and topography 

of the Mexican ecosystems were used in their construc-

tion. �ese maps are a conventional source of informa-

tion in Mexico for assessing the status and condition of 

the forested land base. �e minimum mapping unit in all 

three vegetation and land-use cartography series is 25 ha 

[48]. We used the INEGI maps to generate two land-

cover change maps: (1) changes detected from period 

observation one to two (2002–2007); and 2) changes 

detected between observation two and three (2007–2011; 

[49–51]). To simplify this process, we grouped the INEGI 

vegetation classes into twelve classes established by the 

National Commission for Knowledge and Use of Biodi-

versity of Mexico (CONABIO) in the Monitoring Activ-

ity Data for the Mexican REDD+ program (MAD-MEX; 

[48]) and assessed the change from one class to another.

Modis

Finally, we retrieved six classification maps developed by 

CONABIO in the North American Land Change Moni-

toring System (NALCMS) project using MODIS satellite 

imagery at 250  m spatial resolution [52]. Annual spa-

tially-explicit maps were developed from 2005 to 2011, 

using monthly composites of MODIS, multiple classifica-

tions (ensemble classifier) with decision trees and attrib-

utes from auxiliary datasets to characterize 15 land-cover 

classes in Mexico [53]. �ese attributes include a digital 

elevation map, aspect, slope, mean temperature, maxi-

mum precipitation, sampling data, and aerial photog-

raphy at high-spatial resolution. From these maps, we 

assessed the annual transition from one land-cover class 

to another from 2005 to 2010.

Table 1 Remote sensing products used as  activity data inputs for  carbon modeling with  the CBM-CFS3 in  the Yucatan 

Peninsula from 2002 to 2010

MMU minimum mapping unit

Map alias Source Type Satellite Spatial resolution Temporality

VCT NASA Vegetation Change Tracker map LANDSAT 30 m 2003, 2004, 2005, 2007, 2008 and 2010

Hansen University of Maryland Forest cover loss map LANDSAT 30 m 2002, 2003… 2010

INEGI INEGI Classification map LANDSAT-SPOT 30 m (25 ha MMU) 2002–2005, 2005–2007, 2007–2011

MODIS NALCMS/CONABIO Classification map MODIS 250 m 2005, 2006… 2011
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Accuracy assessment of forest cover change estimates

We performed an independent assessment of the remote 

sensing disturbance datasets using ground-plot data 

obtained from the Mexican National Forest Inventory 

(NFI). �e NFI is the primary data source of informa-

tion for forest and ecosystem studies in Mexico [54]. Data 

are collected in a two-stage sampling scheme comprised 

of primary plots of one-hectare size and four sub-sam-

pling sites of 400  m2 each. More than 150 variables are 

measured on a 5-year cycle, including attributes of the 

overstory and understory vegetation, the soil, and envi-

ronmental characteristics of the landscape. For more 

details concerning the variables, methods and sampling 

design, readers are referred to the NFI sampling man-

ual [54].We obtained forest change data over the period 

2004–2012 of basal area loss/no-loss per hectare com-

puted by Mascorro et  al. [55] for 647 plots that were 

located across the study area. We intersected these plots 

with the RS derived land-cover change areas to identify 

and compare the number of plots with forest loss to the 

proportion of changed areas detected by each RS prod-

uct using a standard error matrix. �e matrix performs 

a cross-tabulation between the numbers of observations 

mapped with RS that agree with what is observed on 

the ground to assess the level of accuracy of the mapped 

products [56, 57].

Disturbance attribution

We attributed the land-cover change estimates obtained 

from the RS products using a Multi-Scale, Multi-Source 

Disturbance (MS-D) approach developed by Mascorro 

et al. [55]. �is approach integrates RS data, forest inven-

tory and ancillary datasets to attribute the land-cover 

change observations to the most likely disturbance type 

(natural or anthropogenic). Using NFI data and his-

torical records of forest disturbances in tabular format 

(both considered ground-truth data), Mascorro et  al. 

[55] derived annual spatially-explicit layers of major for-

est disturbance types, and obtained the forest change 

observed in the ground-plots. A regression tree analy-

sis was undertaken to identify which of the constrain-

ing variables (forest disturbance types) best explained 

the observed forest loss in the field. Once the most likely 

cause of change was identified, remote sensing maps were 

used to obtain pixels with land-cover change and over-

laid these with the spatially-explicit layers of disturbances 

characterized by type. Finally, the change was attributed 

to the most likely disturbance cause according to the rel-

evance resulting from the regression tree analysis.

We retrieved ancillary forest disturbance layers com-

piled by Mascorro et  al. [55] and overlaid them with 

the VCT, Hansen, MODIS and INEGI RS observations. 

�e disturbance datasets retrieved included annual, 

spatially-explicit, natural and anthropogenic disturbances 

from 2005 to 2010: fires, hurricanes, and forest manage-

ment areas. To characterize the permanent conversion 

of forestland to non-forestland caused by settlement, we 

used road coverages retrieved from INEGI [58]. In addi-

tion, land-cover classes that changed to urban areas in 

the classification maps were attributed as settlement.

Pre-processing data

To prepare the input data and provide the parameters 

required by the CBM-CFS3 for each of the simulation 

runs, we used a software tool called “Recliner” devel-

oped and provided by the carbon accounting team of the 

Canadian Forest Service. �e tool facilitates the process-

ing of large volumes of spatially-explicit data and assists 

users with the preparation of required input data for each 

simulation. We customized Recliner and matched the RS 

disturbance types with pre-defined disturbance matrices 

stored in the CBM-CFS3. Disturbance matrices define the 

impacts on the carbon pools for each disturbance type and 

specify the amount of carbon that is transferred from the 

biomass to the dead organic matter pools or is released 

into the atmosphere during a particular disturbance type 

[10, 27]. Disturbance matrices also define the amount of 

carbon transferred from forest ecosystems to the forest 

product sector by harvesting activities, and the amount 

of carbon released to the atmosphere as methane (CH4), 

carbon monoxide (CO) and carbon dioxide (CO2). Fire 

disturbances were matched to “wildfires”, settlement to 

“deforestation” and harvest to “clear-cut with slash-burn”.

�e CBM-CFS3 can simulate stand-replacing distur-

bance by restoring the stand age to the initiation stage, 

or simulate partial mortality. “Generic mortality” dis-

turbance matrices ranging from 5 to 95 % of impact are 

among the default choices [27]. Since the CBM-CFS3 

does not contain a specific matrix for hurricanes, we 

matched these events with a generic disturbance matrix 

of “10 % mortality”, estimated by dividing the mean basal 

area loss explained by hurricanes in Mascorro et al. [55] 

studies, over the mean basal area estimated across the 

Yucatan Peninsula (1.71  m2ha−1/15.54  m2ha−1). With 

Recliner, we assigned the year of disturbance impact to 

the corresponding land-cover change detection year. In 

cases where annual data were not available, we distrib-

uted equally the disturbance events among the number of 

years contained in the period of detection (e.g. VCT dis-

turbances detected in 2007 where assigned in equal pro-

portions to 2006 and 2007, since no observations were 

available for 2006).

Carbon budget modeling

We provided annual disturbance events to the CBM-

CFS3 to quantify carbon exchange from tree biomass 



Page 6 of 15Mascorro et al. Carbon Balance Manage  (2015) 10:30 

mortality, plant detritus decay, soil organic carbon and 

forest regrowth after disturbance. Additional parameters 

and data required by the CBM-CFS3 for the simulations 

were provided by the carbon accounting team of the 

Canadian Forest Service, and researchers from the Mexi-

can Forest Service. �ese parameters were kept constant 

in all simulations so that only the activity data differed 

among the eight scenarios.

Ancillary datasets included detailed information on 

forest inventory, forest type, forest status, ecological 

boundaries, age-class structure, and yield curves [59]. 

Stand age and yield curve data, in combination with 

the ecological characteristics of the site, are used by the 

CBM-CFS3 to simulate forest growth and carbon accu-

mulation [10]. �e stage of stand development is also 

used to simulate litterfall and decomposition rates for 

dead organic matter and soil carbon. For forest status, 

we used protected and non-protected conservations 

areas, which the model employs as a classifier to differ-

entiate the conditions on the landscape. We also used 

as a classifier the ecoregions level-I retrieved from the 

Commission for Environmental Cooperation (CEC) [60]: 

tropical humid forests and tropical dry forests. Estimates 

of carbon sinks and sources were then generated with the 

CBM-CFS3 for each of the two spatially-explicit layers of 

the four RS products, i.e. with and without attribution of 

cover loss to disturbance types. For simulations without 

attribution to specific disturbance types we assumed that 

all forest cover changes were caused by stand-replacing 

harvest with slash-burning.

Results
Forest change detection

�e spatial variation in the location and extent of changes 

in forest area detected by the VCT, Hansen, MODIS and 

INEGI maps can be observed in Figs.  2 and 3. Overall, 

MODIS products detected much less changes across 

the landscape than the Landsat products, likely due to 

its lower spatial resolution. As can be seen in Fig. 2b, d, 

landscape changes between the VCT and Hansen prod-

ucts exhibited similar patterns. With a 30 m spatial reso-

lution, these products detected finer disturbance events 

throughout the study area. Undisturbed forest areas were 

primarily located in the center of the region, expanding 

to the northwest and southeast of the area. In contrast, 

the INEGI maps generated with a classification approach 

detected larger contiguous areas of change from land-

cover class transitions, due to the various 25 ha MMU’s 

of similar characteristics grouped together into a class 

(Fig. 3e, f ).

�e cumulative area of change detected in the study 

area by each RS product across the analysis period is 

shown in Fig. 4. It is apparent that the Landsat products 

detected the most change in all of the remote sensing 

approaches. However, the amount detected was less in 

the pixel-based approach than that derived from the clas-

sification maps (INEGI).

�e range between the maximum (13  % by INEGI) 

and minimum (1 % by MODIS) cumulative percentages 

of area change detected, highlights the uncertainties 

resulting from the differences in spatial and tempo-

ral characteristics inherent in each RS product. Tem-

poral trajectories of the land-cover changes detected 

in annual time-steps provided additional information 

on the inter-annual variation of disturbance events as 

shown in Fig. 5.

Forest change accuracy assessment

Table  2, summarizes the results of intersecting the 

NFI plots describing forest cover loss, with the VCT, 

Hansen, and INEGI land-cover change products in an 

error matrix. Of the 647 NFI plots located in the study 

area, 119 showed a forest cover loss, and 528 had no 

evidence of any basal area reduction in the plot. �e 

first row of each table contains the number of mapping 

units that each RS product detected as forest cover loss 

compared to what was observed on the ground with the 

NFI plots (the total sum of the first column). As can be 

seen in Table 2a and b, the overall accuracy of the non-

classification maps, the VCT (83 %) and Hansen (82 %), 

maps produced using pixel-based image processing 

approaches was similar, whereas the INEGI accuracy was 

79 % (Table 2c). However, we can observe that all three 

maps presented a low producer’s accuracy, detecting only 

a small fraction of the changes observed in the NFI plots 

likely due to forest degradation. �e largest uncertainties 

were found in the MODIS maps, as there was no corre-

spondence between the MODIS changed pixels and the 

NFI plots.

The impact of activity data on estimates of carbon �uxes

We used the CBM-CFS3 model to simulate the effects of 

activity data on emission and removal estimates during, 

and following disturbances from 2002 to 2010 (Fig.  6). 

Results show the annual net changes in ecosystem carbon 

stocks, with negative numbers indicating a decrease in 

carbon stocks (an emission of carbon to the atmosphere) 

and positive numbers an increase in carbon stocks (car-

bon uptake from the atmosphere). �e estimates show 

both differences in the magnitude of changes and differ-

ences in trends due to differences in activity data.

�e values from these simulations should not be con-

sidered as absolute values as research continues to 

improve yield curves and other ecological and model-

ling parameters that will likely affect future estimates of 

fluxes. What matters here is the impact of the activity 
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data on the differences in the annual and cumulative esti-

mates of carbon fluxes (Fig. 6).

�e cumulative difference in the carbon balance esti-

mates resulting from the four RS products for the 9-year 

period (2002–2010) was over 30.7  million Mg C (112.5 

million Mg CO2e) see Fig.  7, with MODIS-derived esti-

mates suggesting a large sink while INEGI-derived esti-

mates remained a source for the whole period (Fig. 6).

Since the ecological parameters and additional data 

inputs used in each of the simulations were kept con-

stant, the observed differences in the estimates reflect 

only the effects of the spatial and temporal resolutions 

inherent to each of the RS observations, and the impacts 

of attributing cover changes to disturbance types with 

different impacts on carbon stocks.

Over the simulation period we observe the overrid-

ing trend of the MODIS disturbance detection underes-

timating cover changes and the associated carbon losses 

compared to the Landsat RS products. MODIS-based 

simulations shifted from a source to a sink in 2005 and 

remained a sink for the remainder of the simulations. Land-

sat-derived estimates in the other hand, followed a simi-

lar trend in 2002 and 2003, and began diverging in 2004. 

From 2005 to 2007, simulations based on VCT and Hansen 

predicted increasing carbon stocks. Consistent with the 

amount of land-cover change detected by each product 

Fig. 2 Land-cover change maps derived from the different remote sensing products. VCT map: (a, b); Hansen map: (c, d). Left side maps show 
annual non-attributed disturbances; right side maps show attributed disturbances: green harvest, pink settlement, blue hurricane, orange fire
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(Fig.  5), the rate of increase in carbon uptake estimated 

with VCT from 2005 to 2007 was higher than that simu-

lated with Hansen. In 2007, Hansen removals were 234,188 

Mg C, whereas the VCT estimates were 1,033,608 Mg C 

(Fig.  6). While some disturbance events were detected in 

2005–2007, the amount of area affected was not enough 

to bring the sink back to a source (e.g., estimates in 2009 

from Hansen). Fewer disturbances were observed by VCT 

in this period, which translated to fewer carbon emissions 

and more carbon accumulation due to forest growth with-

out disturbance. Nevertheless, in 2008 estimates from these 

two data sources went in opposite directions.

In the Hansen simulation, the forest continued to 

sequester carbon in 2008 as the amount of affected area 

decreased by 37 % compared to 2007 (Fig. 5). �is was 

translated by the CBM-CFS as less carbon emissions 

and more living biomass accumulation, sequestering 3 

times more carbon than in 2007 (234,188 Mg C in 2007 

vs 729,215 Mg C in 2008). Conversely, with the VCT, 

the amount of change area detected in 2008 was more 

than double compared to 2007 (10,409 vs 28,278  ha), 

releasing considerable amounts of carbon (1,033,964 

Mg C) to the atmosphere from forest disturbance 

events that killed the vegetation and redistributed the 

Fig. 3 Land-cover change maps derived from the different remote sensing products (thematic). INEGI maps: (a, b); and the MODIS maps: (c, d). Left 

side maps show annual non-attributed disturbances; right side maps show attributed disturbances: green harvest, pink settlement, blue hurricane, 
orange fire
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carbon in the dead organic matter pools during that 

year.

Moreover, Mascorro et  al. [55] found that 2009 was 

an intense year of disturbances in the Yucatan Penin-

sula. Accordingly, the impact of the disturbance events 

detected by Hansen, resulted in significant amounts of 

carbon emissions into the atmosphere (stocks dropped 

by 2,774,453 Mg C; Fig.  6). MODIS-derived estimates 

also showed a decrease in carbon content in 2009, but 

by much smaller amount due to its limited capacity to 

detect changes in the landscape. However, with the VCT 

no land-cover change observations were included in 2009 

due to limitations of image acquisition and cloud cov-

erage, and therefore the simulations show no decrease 

in carbon emissions in 2009, despite the fact that the 

change observed in 2010 was equally distributed to 2009 

and 2010. It is likely that some of the 2009 disturbance 

events were not detected by the VCT in 2010 due to the 

fast regrowth rate of the tropical forests of the Yucatan 

Peninsula.

Overall, estimates from non-attributed changes pre-

sented more carbon emissions than the attributed esti-

mates in all the simulations. In the INEGI simulations 

this difference was more evident. In the second period, 

emissions from the non-attributed disturbances (7  mil-

lion Mg C) were more than double than the attributed 

ones (3.2 million Mg C). When converting the additional 

non-CO2 GHG emissions from fires (see Fig.  8a–c) in 

the form of carbon monoxide (CO), methane (CH4) and 

nitrous oxide (N2O) with their global warming potential 

(GWP) to 100 years (1, 25 and 298 respectively), we can 

see the additional CO2 equivalent (CO2e) emissions con-

tributed by non-CO2 greenhouse gases (i.e. 3 million Mg 

CO2e more; see Fig. 8d).

Discussion
�is study analyzed the contribution of three main attrib-

utes from RS activity data on estimates of forest carbon 

dynamics: (1) the spatial resolution (30 vs. 250 m), (2) the 

temporal resolution (annual vs. multi-year observations), 

and (3) the attribution of forest cover changes to distur-

bance types. Annual carbon fluxes were simulated with 

the CBM-CFS3 from 2002 to 2010 over a 180 × 180 km 

study area of dry tropical forests in the Yucatan Penin-

sula, Mexico.

Spatial resolution

�e large difference in annual and cumulative carbon 

estimates generated with MODIS and Landsat-derived 

disturbance observations suggests that increased spa-

tial resolution should be the first priority when deriving 

Fig. 4 Cumulative area with change (as percentage of total area) 
detected in the study area from 2002 to 2010 with Landsat (VCT, 
Hansen and INEGI) and MODIS satellite imagery

Fig. 5 Annual area changed by disturbance type derived from Landsat (VCT, Hansen and INEGI) and MODIS remote sensing land-cover change 
products
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activity data for carbon modeling. Carbon flux estimates 

derived from Landsat at higher spatial resolution reflected 

the impacts of more accurate activity data. In contrast, 

the coarse spatial resolution of MODIS-derived products 

results in a substantial underestimate of change events 

and thus overestimates forest carbon sinks over the obser-

vation period. �e latter occurred despite having MODIS 

observations on an annual basis from 2005 to 2010. While 

Mascorro et  al. [55] were able to characterize major 

stand-replacing disturbances for the entire Yucatan Pen-

insula with MODIS, results from this study showed that 

this 250 m resolution satellite imagery has limitations for 

providing activity data for carbon modeling at finer spa-

tial scales. Typically, satellite imagery from MODIS has 

focused on broad scale studies (e.g., [23, 29]).

Moreover, we found that the pixel-based image pro-

cessing approach using VCT and Hansen was more accu-

rate than change inferred from classification maps (i.e., 

INEGI, MODIS) (see Table 2). While the INEGI simula-

tions of the first period observations (2002–2006) show 

a similar trend to VCT and Hansen, change observations 

for the period 2007–2011 are much higher than any of 

the others. �is is likely due to the fact that INEGI maps 

were generated with a classification approach, detecting 

larger areas of change formed by clusters of pixels that 

share similar characteristics and attributes. �erefore 

the larger disturbances observed over the second period, 

resulted in higher estimates of change likely due to larger 

areas that transitioned from one class to another (as 

opposed to single-pixel changes). Some of the predicted 

changes using thematic maps can also result from inac-

curacies inherent to the classification method [61, 62], 

and omission and commission errors [63]. Nevertheless, 

post-classification analysis—a change detection tech-

nique that compares the initial and final class condition 

between two classification maps in time- has become a 

popular method for change detection [64], that helped 

to better identify settlement expansion embedded in the 

land-cover classification approach as urban areas. Yet, 

RS products generated with a pixel-based approach pre-

sented some limitations in attributing the changes to the 

underlying disturbance type due to the lack of spatially-

explicit ancillary datasets. Further research would be 

required to increase the accuracy of land-cover changes 

Table 2 Error matrix of landsat maps VCT (a), Hansen (b) and INEGI (c) identi�cation of change and no change areas com-

pared to the ground-plot data

(a) VCT

Change No change Sum Producer’s

NFI plots

 Change 18 101 119 15 %

 No change 11 517 528 98 %

 Sum 29 618 647

 User’s 62 % 84 %

 Overall accuracy = 83 %

(b) Hansen

Change No change Sum Producer’s

NFI plots

 Change 27 92 119 23 %

 No change 22 506 528 96 %

 Sum 49 598 647

 User’s 55 % 85 %

 Overall accuracy = 82 %

(c) INEGI

Change No change Sum Producer’s

NFI plots

 Change 26 93 119 22 %

 No change 44 484 528 92 %

 Sum 70 577 647

 User’s 37 % 84 %

 Overall accuracy = 79 %
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characterized by disturbance type using additional 

datasets.

Temporal resolution

Reliable estimates of carbon dynamics require detailed 

observations of drivers of change on annual basis [14]. 

Our results showed that higher temporal resolution RS 

products improved the carbon dynamics estimates and 

captured the inter-annual variability in the forest. Con-

sistent with the large disturbances detected in 2009, 

carbon fluxes predicted with the Hansen and MODIS 

products showed a decrease in total ecosystem carbon 

content. However, due to the lack of disturbance events 

detected with the VCT in 2009, corresponding decreases 

in the carbon stocks from the disturbance events were 

not reflected in the CBM-CFS3 estimates. �is occurred 

despite the fact that the disturbance events observed over 

the period 2009–2010 were equally distributed in 2009 

and 2010. �is result showed that even missing a single 

year in the land-cover observations can lead to substan-

tial errors; especially in ecosystems with rapid-regrowth 

forests, such as the Yucatan Peninsula.

Attribution of land-cover changes by disturbance type

Natural and human-induced disturbances modify the 

stand age and succession dynamics of the landscape in a 

unique way, changing the live biomass and dead organic 

matter stocks and subsequent turnover [65, 66]. Results 

from this study showed the relevance of identifying the 

cause of change in the landscape. �e cumulative dif-

ference between scenarios with and without attribution 

of disturbance types was over 5 million Mg C for a sin-

gle Landsat scene over the 9-year-period. INEGI esti-

mates over the second period (2007–2011) from the 

Fig. 6 Annual carbon fluxes estimated with different sources of activity data in the Yucatan Peninsula from 2002 to 2010; a attributed, na no-
attributed

Fig. 7 Cumulative carbon fluxes, estimated with different sources of 
activity data in the Yucatan Peninsula from 2002 to 2010; a attributed, 
na no-attributed



Page 12 of 15Mascorro et al. Carbon Balance Manage  (2015) 10:30 

non-attributed disturbances, for example, dropped 84 % 

more than the attributed ones yielding higher emissions 

(3.2 million Mg C more). Since the default disturbance 

type associated with harvesting was clear-cut with slash-

burn, it generated more emissions because it involved 

burning. Depending on the disturbance type, the CBM-

CFS3 disturbance matrices determines how much bio-

mass gets killed, re-distributing the carbon in the litter 

and dead organic matter pools accordingly; affecting 

the carbon changes more adequately. �ese differences 

between with and without attribution were even more 

pronounced when reported as CO2 equivalent emissions 

(as required in REDD+ projects, see Fig. 8a–c), because 

fires cause additional non-CO2 GHG emissions (in the 

form of CH4 and N2O), with higher global warming 

potentials than CO2 (see Fig. 8d).

�e carbon balance estimates obtained for this study 

are based on CBM-CFS3 simulations using preliminary 

inventory, age distribution and yield data for the study 

area [59]. Ongoing research as part of bigger collabora-

tion of members from CONAFOR´s project “Reinforc-

ing REDD+ and South–South Cooperation”, SilvaCarbon 

program, Colegio de Postgraduados, and research sup-

ported by the CEC will refine and improve the CBM-

CFS3 input data. �e absolute values of the numerical 

estimates obtained in this study may thus change in the 

future, but the general conclusions about the impacts on 

carbon balance estimates of the spatial and temporal res-

olution of RS products, and the attribution of land-cover 

change to causes of disturbance will not be affected by 

future changes to other input data of the model.

Conclusions
Systematic forest monitoring, reporting and verifica-

tion (MRV) systems are required to aid in the success-

ful development of national and regional strategies for 

REDD+, and to ensure long-term commitments to pre-

serve forests [25, 40, 67]. �is can only be achieved by 

implementing RS observations that will allow monitor-

ing of large areas of land in a regular, consistent, and 

cost-efficient way and by developing modelling tools 

that can translate activity data derived from RS products 

into policy-relevant estimates of GHG emissions and 

removals. Results from this study provide an improved 

Fig. 8 CO2 equivalent GHG emissions from carbon monoxide CO (a), methane (CH4) (b) and nitrous oxide N2O (c) with a Global Warming Potential 
(GWP) time horizon of 100 years, and their cumulative-additional CO2e emissions from attributed disturbance types (d)
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understanding of the role of RS disturbance observations 

on ecosystem carbon dynamics and the range of variabil-

ity of carbon flux estimates following disturbance. Devel-

oping climate change mitigation scenarios, priorities, and 

initiatives requires further knowledge of the drivers of 

deforestation and forest degradation that can have a sig-

nificant impact in the reduction of GHG emissions [7, 25, 

68].

We conclude that spatial scale represents a serious 

mapping constraint when attempting to encompass large 

forest areas for ecosystem carbon accounting. �ere-

fore, carbon monitoring decisions should consider direct 

trade-offs between the spatial detail of finer resolution 

products (e.g., Landsat, LiDAR, RapidEye) with more 

precision and less area covered per scene, versus moder-

ate and broad spatial resolution observations derived at 

larger scales (e.g., MODIS). Our results support findings 

from the Global Forest Observations Initiative (GFOI) 

regarding MODIS imagery as “too large to be used for 

generating REDD+ activity data”, suggesting it could be 

used in complimentary applications (e.g., monitoring 

near-real time forest change indicators) [69].

�is research documents cumulative differences from 

four different RS products in estimates of carbon emis-

sions of 30.7 million Mg C (112.5 million Mg CO2e) over 

a 9-year period in a single Landsat scene in Mexico. While 

we did not attempt to extrapolate this to the national-scale 

implications, it is evident that with 135 Landsat scenes 

required to cover all of Mexico [48], the choice of satellite 

data sources to derive activity data can have a large impact 

on uncertainties in national estimates of forest carbon 

budgets. �e magnitude of these differences highlights that 

efforts to improve the activity data can yield substantial 

reductions in uncertainty of GHG estimates at the regional 

or national scale. Uncertainties arising from activity data 

can be reduced by, in order of priority, increasing spatial 

resolution from 250 to 30  m, obtaining annual observa-

tions of forest disturbances, and by attributing land-cover 

changes by disturbance type. Results from this study can 

help justify the monitoring expenses required to reduce 

uncertainties in GHG emissions and removals estimates 

for countries like Mexico, with a variety of small scale-low 

impact disturbances and a strong interest in participat-

ing in REDD+ initiatives. Improved estimates also help 

meet the requirements of the Intergovernmental Panel on 

Climate Change (IPCC) to identify, quantify and reduce 

sources of uncertainty in estimates of GHG emissions and 

removals as far as is practicable.
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