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Abstract

Background: Variant annotation is a crucial step in the analysis of genome sequencing data. Functional annotation

results can have a strong influence on the ultimate conclusions of disease studies. Incorrect or incomplete

annotations can cause researchers both to overlook potentially disease-relevant DNA variants and to dilute interesting

variants in a pool of false positives. Researchers are aware of these issues in general, but the extent of the dependency

of final results on the choice of transcripts and software used for annotation has not been quantified in detail.

Methods: This paper quantifies the extent of differences in annotation of 80 million variants from a whole-genome

sequencing study. We compare results using the REFSEQ and ENSEMBL transcript sets as the basis for variant

annotation with the software ANNOVAR, and also compare the results from two annotation software packages,

ANNOVAR and VEP (ENSEMBL’s Variant Effect Predictor), when using ENSEMBL transcripts.

Results: We found only 44% agreement in annotations for putative loss-of-function variants when using the REFSEQ

and ENSEMBL transcript sets as the basis for annotation with ANNOVAR. The rate of matching annotations for

loss-of-function and nonsynonymous variants combined was 79% and for all exonic variants it was 83%. When

comparing results from ANNOVAR and VEP using ENSEMBL transcripts, matching annotations were seen for only 65% of

loss-of-function variants and 87% of all exonic variants, with splicing variants revealed as the category with the

greatest discrepancy. Using these comparisons, we characterised the types of apparent errors made by ANNOVAR and

VEP and discuss their impact on the analysis of DNA variants in genome sequencing studies.

Conclusions: Variant annotation is not yet a solved problem. Choice of transcript set can have a large effect on the

ultimate variant annotations obtained in a whole-genome sequencing study. Choice of annotation software can also

have a substantial effect. The annotation step in the analysis of a genome sequencing study must therefore be

considered carefully, and a conscious choice made as to which transcript set and software are used for annotation.

Background
The advent of accessible and relatively inexpensive high-

throughput sequencing technology has resulted in exten-

sive sequencing of whole human genomes or exomes in

a research setting and seems likely to lead to an explo-

sion of genomic sequencing in a clinical context. While

there remain challenges in unambiguously determining

an individual’s genome or exome sequence [1,2], our

focus here is on the downstream interpretation of that

sequence. Let us take as a starting point a specified list of
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positions, assumed to be correct, at which the nucleotides

in the individual’s sequence differ from the human refer-

ence sequence. We will restrict our scope here to single

nucleotide variants (SNVs) and short indels. A crucial step

in linking sequence variants with changes in phenotype is

variant annotation.

Variant annotation is the process of assigning functional

information to DNA variants. There are many different

types of information that could be associated with vari-

ants, from measures of sequence conservation [3] to pre-

dictions about the effect of a variant on protein structure

and function [4-6]. Here we focus on the most fundamen-

tal level of variant annotation, which is categorising each

variant based on its relationship to coding sequences in

© 2014 McCarthy et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication
waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise
stated.

http://creativecommons.org/licenses/by/2.0
http://creativecommons.org/publicdomain/zero/1.0/


McCarthy et al. GenomeMedicine 2014, 6:26 Page 2 of 15

http://genomemedicine.com/content/6/3/26

the genome and how it may change the coding sequence

and affect the gene product.

The coding sequences of the genome are, broadly

speaking, the genes: ‘gene’ has come to refer princi-

pally to a genomic region producing (through transcrip-

tion) polyadenylated mRNAs that encode a protein [7].

We refer to these polyadenylated mRNAs as ‘transcripts’,

although the term transcript can refer to any RNAs pro-

duced from the transcription of a genomic DNA sequence.

Thus, there are non-coding transcripts that do not encode

a protein, but nevertheless can have a function, for

example in regulation. When considering transcripts in

the context of genomic DNA sequences, a transcript is

defined by its exons, introns andUTRs and their locations.

Many separate transcripts may overlap any given position

in the genome, and it is not uncommon for genes to have

many different transcripts (or ‘isoforms’), of which they

tend to express many simultaneously [8].

Our understanding of the protein-coding sequences in

the genome is summarised in the set of transcripts we

believe to exist. Thus, variant annotation depends on

the set of transcripts used as the basis for annotation.

The widely used annotation databases and browsers –

ENSEMBL [9], REFSEQ [10] and UCSC [11] – contain sets

of transcripts that can be used for variant annotation, as

well as a wealth of information of many other kinds as

well, such as ENCODE [12] data about the function of

non-coding regions of the genome. A transcript set may

therefore also contain information about regions of the

genome that regulate expression of transcripts.

To annotate DNA variants we therefore require a set

of transcripts that summarises our understanding of the

genome. For each variant, we use a software tool to

determine the likely effect of the variant based on the

transcripts (or other genomic features) that overlap the

variant’s position. One or more possible annotations for

the variant can then be reported.

Variant annotation can be straightforward, as for the

variant NC_000011.9:g.57983194A>G. Only two tran-

scripts in the ENSEMBL transcript set, a Consensus

Coding Sequence (CCDS) [13] transcript and a merged

ENSEMBL/Havana (GENCODE) transcript [14,15], over-

lap the variant and the annotation of the transcript is the

same regardless of which transcript is used (Figure 1A).

This variant is unambiguously a stop-loss variant, as the

final codon is changed from TGA (stop codon) to TGG

(tryptophan) [9,16], and both of the software tools that we

use for the present study correctly annotate this variant as

stop-loss.

Frequently, however, variant annotation is more com-

plex. Typical pipelines are not well suited for handling a

variant that could have one consequence for one tran-

script and a different consequence for a different tran-

script. Even where a gene is relatively well defined and

does not overlap other genes, we may have many tran-

scripts (isoforms of the gene) to choose from, often sup-

ported by varying levels of evidence for their existence

and structure. It is common for a gene to have multiple

transcripts overlapping a given position in the genome, so

given a set of transcripts a software tool has to choose

which one to use. If it provides an annotation for the

variant for each transcript, then the question becomes

what annotation to report. If the software reports all pos-

sible annotations from all possible transcripts then the

user must decide how to prioritise different, competing

annotations, or how to integrate them into downstream

analysis. This issue is further exacerbated in the uncom-

mon case of a single variant affecting multiple genes (each

of which likely has multiple transcripts). Current annota-

tion tools vary in approaches to reporting consequences

of a variant inmultiple genes at once. Choice of the under-

lying set of transcripts used for annotation can give the

user more control over transcript use. Transcript sets

from different sources can have different characteristics.

For example, both ENSEMBL and REFSEQ contain tran-

scripts established from experimental evidence utilising

automated annotation pipelines and manual curation, but

their precise requirements for inclusion of transcripts dif-

fer. The result is that the ENSEMBL transcript set is larger

than the REFSEQ set (see Additional file 1), but the REF-

SEQ transcript set is not simply a subset of the ENSEMBL

transcript set.

Related to this issue is the fact that any given vari-

ant can have several plausible annotations, even when

considering just a single transcript as the basis for

annotation. Choosing the ‘best’ annotation is frequently

not clear-cut, as in the case of the variant NC_000

006.11:g.30558477_30558478insA, a single-base insertion

at the end of an exon (Figure 1B). This variant could be

annotated as a frameshift insertion in a coding sequence

(which it is), or as a stop-loss variant (as it falls in a stop

codon). In fact, the correct annotation is that this is a syn-

onymous variant. In many cases we would be misled into

thinking that the variant is a frameshift or stop-loss vari-

ant, and therefore be likely to assume it has a functional

effect and include it in any list of variants of interest for

further investigation. Indeed, one of the software tools

used for this study reports a frameshift insertion annota-

tion and the other a stop-loss annotation for this variant,

when using ENSEMBL transcripts. In this example there

seems to be a single best annotation, but many cases are

more ambiguous, with several equally valid possible anno-

tations. The software tool must make some sort of choice

in such cases as to which annotation to report for the

variant (and transcript used). There are many other anno-

tation tools available (for example, Mutalyzer 2 [19], VAT

[20], VAAST 2.0 [21], GATK VariantAnnotator [22] and

SnpEff [23]), which will have better or worse performance
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Figure 1 Annotation examples. These screenshots from the ENSEMBLweb browser [40] show two examples of variant annotation. (A) The variant

NC_000011.9:g.57983194A>G(rs7103033) is relatively straightforward to annotate. It is the final base of the final exon in both transcripts at this

position (a CCDS transcript (green) and a ‘merged’ ENSEMBL/Havana (GENCODE) transcript (gold)). The final codon has changed from TGA (stop

codon) to TGG (tryptophan), so this is unambiguously a stop-loss variant. Using the ENSEMBL transcript set, both ANNOVAR and VEP correctly

annotate this variant as stop-loss. (B) The variant NC_000006.11:g.30558477_30558478insA (rs72545970) is more difficult to annotate. It is the

penultimate base of the exon for all but one of the transcripts shown. It is a single-base insertion, so could be annotated as a frameshift variant. Then

again, it is an insertion in a stop codon, so could be a stop-loss variant. In fact, the final codon, TGA (stop codon), remains TGA with this variant

(insertion of a single base A), so it is actually a synonymous variant. ANNOVAR annotates it as frameshift insertion and VEP as stop-loss, when using

ENSEMBL transcripts. Each browser image consists of several tracks, which provide base-resolution information about the DNA sequence. Two tracks,

‘Sequence (+)’ and ‘Sequence (−)’, show the DNA sequence on the forward and reverse strands, respectively. Above these, a track shows start and

stop codons, and above that, several tracks indicate the presence and structure of different transcripts (labelled as ‘Genes’ and ‘CCDS set’; transcripts

are read from left to right). The ‘hollowed-out’ parts of transcripts indicate non-coding sequences. Below the DNA sequence, the track ‘Sequence

variant’ shows known sequence variants from dbSNP [17] and the 1000 Genomes Project [18]. The ‘Variation Legend’ and ‘Gene Legend’ provide

more information about features shown in different colours in the browser. CCDS, Consensus Coding Sequence; UTR, untranslated region.

for certain variants, but here we want to make the more

general point using two very widely used annotation tools,

that there is a large degree of discrepancy between any two

annotation tools, and researchers need to be aware of this

when choosing a tool and conducting analysis.

A third major issue complicating variant annotation

is the question of how to deal with genes and pseu-

dogenes. We have widely varying levels of information

available for different genes. Should we treat variants in

well-characterised genes in the same way as those in pseu-

dogenes or non-genic regions of the genome? There is not

currently a clear solution to this issue, although distinc-

tions are usually made between annotations given from

coding and non-coding transcripts. Again, careful choice

of transcript set used for annotation can help.

Although there are many complications for variant

annotation, we identify two major components:

1. Transcript set: a summary of information about

genomic features, particularly the structure of

transcripts (sequence and locations of exons, introns,
UTRs and regulatory regions), used as the basis for

determining the likely functional consequence of a

variant.
2. Software tool: a piece of software that when given a

particular variant can query a transcript set and
return the functional annotation (or possibly

annotations) of that variant. An annotation tool uses

a particular algorithm applied to a given set of
transcripts for annotating variants.
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We examine the effects of fixing one and then the other

on a set of over 80 million SNVs and short indels from

a large clinical sequencing project (see Methods). ANNO-

VAR [24] is a popular annotation software tool, so we

compare the results from ANNOVAR when used with the

REFSEQ and ENSEMBL transcript sets. We also compare

the annotation results from ANNOVAR and another popu-

lar annotation tool, VEP [25], the Variant Effect Predictor

tool from ENSEMBL, when using the ENSEMBL transcript

set and characterise the sorts of differences in annota-

tion between the two tools and the apparent errors that

ANNOVAR and VEP tend to make in annotation. Beyond

issues specific to these particular transcript sets and soft-

ware tools, we consider good practice for whole-genome

annotation and problems that are yet to be solved.

Methods
Data generation

The data used in this paper come from the WGS500

Project, a collaboration between the University of Oxford,

Oxford Biomedical Research Centre and Illumina, Inc,

to sequence 500 genomes of clinical relevance. Samples

were accepted from patients where positive findings

would have immediate clinical translational relevance

in terms of clinical diagnosis, prognosis, genetics coun-

selling and reproductive options, or treatment selection.

As seen in some of the published studies that partici-

pated in the WGS500 project [26-32], this large umbrella

project consists of many smaller sub-projects, focus-

ing on particular diseases. All patients in this study

gave written informed consent. The relevant research

ethics committee (REC) reference numbers are: Central

Oxfordshire Research Ethics Committee (05/Q1605/88),

Hammersmith and Queen Charlotte’s and Chelsea REC

(06/Q0406/151), NRES Committee South Central—

Oxford B (12/SC/0381), NRES Committee South

Central—Southampton A (12/SC/0044), NRES Commit-

tee North West—Haydock (03/0/97 version 3), NRES

Committee Yorkshire & The Humber—South Yorkshire

(10/H1310/73), Oxfordshire Research Ethics Committee

(06/Q1605/3), Oxfordshire Research Ethics Committee

B (04.OXB.017; 09/H0605/3) and Oxfordshire Research

Ethics Committee C (09/H0606/74; 09/H0606/5), River-

side Research Ethics Committee (09/H0706/20) and

Southampton and South-West Hampshire REC A

(06/Q1702/99). The research conformed to the Helsinki

Declaration and to local legislation.

We focus here on whole genomes of 276 individuals

sequenced as part of the WGS500 project. The sam-

ples included 80 patients with immune disease, 151

individuals from Mendelian disease studies (primarily

parent–child trios) and 45 germ-line DNA samples from

cancer patients. The sequencing was conducted using

100-bp paired-end protocols on either the Illumina HiSeq

2000 instrument [33] or the Illumina HiSeq 2500 in

standard mode [34], with a mixture of v2.5 and v3.0

chemistries, to at least 25× average coverage. Sequence

reads were generated using the Illumina Off-Line Base-

caller (v1.9.3) [35] and mapped to the human reference

genome GRCh37d5/hg19d5 using Stampy, predominantly

versions 1.0.12_(r975) and 1.0.13_(r1160) [36]. Picard

(picard-tools v1.67) was used to merge data and de-

duplicate merged BAM files [37]. Variants were called

from the aligned sequence reads using Platypus, version

0.1.9 [38]. The raw data for annotation are VCF (variant

call format) files [39] containing information about the

called variants.

In total, 80,995,744 unique variant calls were obtained

from 276 individual genomes in the fifth freeze of the

project’s data, and merged into a preliminary union file.

We compare functional annotations for 80,981,575 vari-

ants from the preliminary union file using transcript sets

from different genome annotation databases and different

annotation software tools, restricting ourselves to the set

of variants for which an annotation was obtained using at

least one transcript set or software tool.

Variant annotations

Variant annotations were obtained using the software

tool ANNOVAR(version 2013Feb21), using both the REF-

SEQ (release 57, January 2013) and ENSEMBL (version 69,

October 2012) transcript sets [10,40].We used the default

transcript sets from REFSEQ and ENSEMBL. REFSEQ

records are selected and curated from public sequence

archives, so a REFSEQ record represents a synthesis, by a

person or group, reducing the redundancy in the database.

The REFSEQ database does not contain all possible (or

even all observed) transcripts or gene models, but those

that it does annotate feature strong evidence for their

existence, structure and (possibly) function. Of a total of

105,258 human transcripts in REFSEQ release 57, 41,501

were used by ANNOVAR in the reported annotations for

the variants in this study.

Similarly, ENSEMBL provides genome resources for

chordate genomes with a particular focus on human

genome data. ENSEMBL makes available substantial and

diverse transcript information, including the CCDS

[13,41], Human and Vertebrate Analysis and Annota-

tion (HAVANA) [42], Vertebrate Genome Annotation

(Vega) [43], ENCODE data [12] and the GENCODE gene

and transcript sets [15]. There are 208,677 transcripts

in ENSEMBL version 69, of which 115,901 were used in

reported annotations for this comparison.

A broad interpretation of splicing regions was used

for ANNOVAR annotations, so that all variants within six

bases of an intron/exon boundary would fall into ANNO-

VAR’s splicing annotation category. ANNOVAR returns a

single annotation for each variant. If there are several
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relevant transcripts for a particular variant, then ANNO-

VAR will return the annotation with the most severe

consequence according to its rules of precedence.

Variant annotations were also obtained using version

2.7 of ENSEMBL’s VEP, based on the ENSEMBL version

69 transcript set. As VEP returns all possible annotations

for each variant (given the transcripts present at each

variant’s location in the genome), we prioritised annota-

tions using a common-sense ranking of the ‘severity’ of

the consequence of the variant (Additional file 1: Table

S3) to make the VEP annotation results directly com-

parable with those from ANNOVAR. This prioritisation

for consequences from VEP is just one possible way to

prioritise variants and this subjectivity could affect the

extent of matching between annotations from ANNO-

VAR and VEP. The most severe consequence for each

variant was reported and compared to the ANNOVAR

results.

Comparisons of variant annotations

We compared results across all annotation categories for

the REFSEQ/ENSEMBL comparison. A comparison table

(union_rfs_ens_comparison.tab [44]), was pro-

duced with a custom Perl [45] script from VCF files

containing ANNOVAR annotations when using REFSEQ

and ENSEMBL transcripts and gene information for the

transcript(s) used for each annotation. ANNOVAR reports

only the ‘most damaging’ annotation, but can return tran-

script information for all transcripts that would give the

annotation reported. Subsequent statistical analysis was

done in R version 2.15.0 [46].

For the comparison of ANNOVAR and VEP we focused

on exonic variants (and especially loss-of-function (LoF)

and nonsynonymous variants) for the ANNOVAR/VEP

comparison as these are currently of the greatest

interest in the majority of annotation applications in

whole-genome sequencing (WGS) studies. A VCF file

containing all variants for comparison with annota-

tions from ANNOVAR was processed to obtain VEP

annotations, and the results were processed with a

custom Python [47] script to create a table of vari-

ants (ANV_VEP_ens_comparison_best_annos.tab

[44]). The table provides annotation results obtained

using ENSEMBL transcripts with ANNOVAR and VEP, and

information on transcripts used. The table was then anal-

ysed with R. We used the ENSEMBL Web Browser (archive

version of ENSEMBL 69) [40] and the UCSC Genome

Browser [48] to inspect sets of variants identified to be

of particular interest by comparing annotations using the

DNA sequence and other information available in the

browser. Source code for the analyses described here is

available in the repository containing the data, along with

a ‘README’ file that provides more details about the data

and source code files.

Categories of variant annotations

To present, explain and discuss the results of our compar-

isons we need to introduce the different types of anno-

tations produced by the different annotation tools. We

define four high-level categories of variants that are of

particular interest for many functional studies:

1. Putative LoF variants: variants that are likely to
cause a gene product to be subject to

nonsense-mediated decay and result in lost (or

impaired) function of the gene. We include in this
high-level category frameshift deletions, frameshift

insertions, and stop-gain, stop-loss and (most)

splicing variants. Where finer resolution splicing
categories are available (for example from VEP and

some other annotation tools), we classify variants in
splice acceptor and splice donor sites as LoF and

other splicing variants as generically exonic (defined

below). ANNOVAR does not provide subcategories of
splicing variants, so for our study we include all

splicing variants in the LoF high-level category.

2. Nonsynonymous and missense variants: variants
in exons that change the amino acid sequence

encoded by the gene (but are not LoF), including

single-base changes and nonframeshift indels. For
this study we include VEP’s ‘splice_region_variant’

annotation in the missense high-level category as this
reflects the fact that general splice region variants are

usually of a similar level of interest as canonical

missense variants.
3. Synonymous variants: variants located in exons that

do not change the translated amino acid sequence.

4. Exonic variants: variants that fall anywhere in exons
or splicing regions, so this includes all variants in the

LoF, nonsynonymous and synonymous high-level
categories above.

The exact terms used to denote annotation categories dif-

fer between ANNOVAR and VEP, but the correspondence

in terms is almost always clear (Additional file 1: Table S4).

There are three exonic categories used by VEP (initiator

codon variant, stop retained variant and other coding) for

which there is no direct equivalent among the ANNOVAR

categories.

Results and discussion
Same annotation tool, different transcript sets

The comparison of annotation results from ANNOVAR

using either the REFSEQ or ENSEMBL transcript sets shows

that the choice of transcript set has a large effect on

the ultimate variant annotations. Across all 80 million

variants there is an overall match rate of 85%. However,

the matching annotation rate is 44% for LoF variants,

the set of variants of most interest for biological and
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medical studies. The match rate is also substantially lower

than the overall match rate for variants in non-coding

RNA and UTR regions, but there is better agreement for

exonic and intronic variants. This observation accords

with what we would expect: in areas of the genome where

more is known about the protein-coding structure of the

sequence, the annotations when using the two transcript

sets agree more closely.

There are 590,893 variants given exonic annotations

by ANNOVAR using REFSEQ or ENSEMBL (or both), of

which 488,113 (83%) had precisely matching annotations

when using the two different transcript sets (Table 1). The

breakdown of matching variants by annotation reveals

annotation categories showing greater and lesser differ-

ence when using REFSEQ or ENSEMBL. The extent of

annotationmatching is also summarised by high-level cat-

egory: LoF, LoF and missense (nonsynonymous), exonic

and all annotated.

Visual comparison of transcript sets using REFSEQ- and

ENSEMBL-normalised counts of variants with each com-

bination of annotation terms from the two transcript sets

highlights patterns in the differences in annotations pro-

vided by REFSEQ and ENSEMBL (Figures 2 and 3). By

‘REFSEQ-normalised’, we mean that for each annotation

term we consider all of the variants given that annotation

using REFSEQ across all annotations using ENSEMBL and

then normalise the count for each ENSEMBL annotation

within the REFSEQ annotation by subtracting the mean

number of counts per ENSEMBL annotation and divid-

ing by the standard deviation. We do this independently

for each REFSEQ annotation term. To obtain ‘ENSEMBL-

normalised’ values we do precisely the same thing, but

exchange the roles of the ENSEMBL and REFSEQ anno-

tations. Thus, for a given annotation term for a given

transcript set, we can see the relative breakdown of anno-

tations obtained when using the other transcript set. The

REFSEQ-normalised values (Figure 2) show good agree-

ment for indels (frameshift and nonframeshift), stop-

gain, stop-loss and nonsynonymous variants, that is, a

large proportion of variants given a particular annota-

tion when using REFSEQ also get that annotation when

using ENSEMBL. The agreement is not as good for synony-

mous and splicing variants, but we observe that variants

given an exonic annotation when using REFSEQ usually

get the same annotation when using ENSEMBL. Look-

ing at ENSEMBL-normalised values (Figure 3), we see

generally lower matching rates. Agreement is good for

variants called stop-gain, nonframeshift, nonsynonymous

and synonymous by ENSEMBL, but variants annotated as

frameshift, stop-loss and splicing are frequently given a

different annotation when using REFSEQ.

The asymmetry in the differences in annotations

between REFSEQ and ENSEMBL is striking. We see many

more exonic annotations, across all LoF, nonsynonymous

and synonymous categories, when using ENSEMBL tran-

scripts (Table 1 and Additional file 1: Table S1). There

are several thousand variants that are called exonic by

ENSEMBL and yet are called as intergenic, intronic or

in a non-coding RNA by REFSEQ. Conversely, there are

only a few hundred exonic variants from REFSEQ that

are annotated as intergenic, intronic or in non-coding

RNA according to ENSEMBL. Using ENSEMBL here would

gain over 2,000 frameshift indels and over 1,000 stop-

gain/stop-loss variants compared with using REFSEQ,

which all LoF variants of substantial interest for follow-

up. This asymmetry is not surprising when we consider

the composition of the two transcript sets. The REFSEQ

set contains 105,258 human transcripts in release 57, for

which the protein-coding sequences cover approximately

1.07% of the genome (34 Mb). ANNOVAR actively used

41,501 of these transcripts for annotation of this set of

variants. The ENSEMBL version 69 set contains 208,677

transcripts (192,635 on chromosomes 1 to 22, X and Y,

excluding patches and alternate loci), covering approxi-

mately 28% of the genome (892 Mb), including introns.

The protein-coding sequences in the ENSEMBL transcript

set cover approximately 1.12% of the genome (35 Mb). Of

these transcripts, 115,091 were actively used for the anno-

tation of this set of variants, including the set of 92,776

transcripts containing protein-coding sequences.

This extent of discrepancy in annotations can be par-

tially explained by the fact that a high proportion of

REFSEQ transcripts have an equivalent or highly similar

transcript in ENSEMBL, but in the other direction there are

many transcripts in ENSEMBL that do not appear to have a

similar transcript in REFSEQ. ANNOVAR reports the most

severe consequence for a variant across all transcripts

present at that position in the genome, so with more tran-

scripts available when using ENSEMBL there is an elevated

chance of finding a more severe consequence for one of

the ENSEMBL transcripts. Examples of variants with strik-

ing differences in annotation help to characterise the sorts

of differences seen (Additional file 1: Figures S1 to S8).We

saw no significant differences in annotation agreement

rates across different variant frequencies (Additional file

1: Table S5a).

Same transcript set, different annotation tools

We also investigate the extent to which using different

software tools influences the final annotations. Here we

compare annotations from ANNOVAR and VEP using the

ENSEMBL transcript set, focusing on exonic annotation

categories. We look at the rate of ‘exactly matching’ anno-

tations and the rate of ‘category matching’ annotations.

We refer to an exact match when the annotations from

both software tools are exactly equivalent given the anno-

tation terms used by the two tools, for example both tools

annotate a variant as frameshift. By category match, we
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Table 1 Same software, different transcripts: REFSEQ vs ENSEMBL by ANNOVAR annotation category

REF+ENS REF ENS Match REF match ENS match Overall match

rate (%) rate (%) rate (%)

stopgain_SNV 15,835 14,183 14,960 13,308 93.83 88.96 84.04

frameshift_insertion 6,980 5,298 6,495 4,813 90.85 74.10 68.95

frameshift_deletion 7,491 4,547 7,380 4,436 97.56 60.11 59.22

stoploss_SNV 946 503 906 463 92.05 51.10 48.94

splicing 47,878 14,154 45,839 12,115 85.59 26.43 25.30

frameshift_substitution 1,960 195 1,947 182 93.33 9.35 9.29

nonsynonymous_SNV 321,669 291,898 315,592 285,821 97.92 90.57 88.86

nonframeshift_insertion 3,506 2,888 2,844 2,226 77.08 78.27 63.49

nonframeshift_deletion 5,136 3,321 4,963 3,148 94.79 63.43 61.29

nonframeshift_substitution 933 226 843 136 60.18 16.13 14.58

synonymous_SNV 178,559 167,561 172,463 161,465 96.36 93.62 90.43

UTR3 724,802 574,255 622,441 471,894 82.17 75.81 65.11

UTR5 177,832 94,545 162,684 79,397 83.98 48.80 44.65

UTR5_UTR3 2,183 292 2,092 201 68.84 9.61 9.21

ncRNA_intronic 8,992,009 2,113,428 8,244,441 1,365,860 64.63 16.57 15.19

ncRNA_exonic 654,098 140,303 597,947 84,152 59.98 14.07 12.87

ncRNA_UTR3 53,379 10,712 47,133 4,466 41.69 9.48 8.37

ncRNA_UTR5 10,683 1,989 9,444 750 37.71 7.94 7.02

ncRNA_splicing 13,931 1,051 13,562 682 64.89 5.03 4.90

ncRNA_UTR5_ncRNA_UTR3 107 1 106 0 0.00 0.00 0.00

intronic 29,289,037 26,805,864 27,743,749 25,260,576 94.24 91.05 86.25

intergenic 50,305,202 49,797,113 41,307,708 40,799,619 81.93 98.77 81.10

downstream 991,811 474,684 840,376 323,249 68.10 38.46 32.59

upstream 910,818 440,728 762,664 292,574 66.38 38.36 32.12

upstream_downstream 53,608 15,621 47,293 9,306 59.57 19.68 17.36

unknown 11,205 6,215 5,703 713 11.47 12.50 6.36

ALL LOF 81,090 38,880 77,527 35,317 90.84 45.55 43.55

ALL LOF and MISSENSE 412,334 337,213 401,769 326,648 96.87 81.30 79.22

ALL EXONIC 590,893 504,774 574,232 488,113 96.70 85.00 82.61

ALL 80,981,575 80,981,575 80,981,575 69,181,552 85.43 85.43 85.43

This table summarises the number of annotations that match between the REFSEQ and ENSEMBL results for each category of annotation. It shows the number of

variants given each type of annotation when using (i) either REFSEQ or ENSEMBL (‘REF+ENS’; union), (ii) REFSEQ (‘REF’) and (iii) ENSEMBL (‘ENS’). It also shows the number

of variants that have matching annotations (i.e. the same annotation when using both transcript sets; intersection) and the match rate for each transcript set, which

expresses the proportion of matching annotations for an annotation term relative to the total number of annotations in the category from the particular transcript set,

as a percentage. The final column shows the ‘Overall match rate’, which is the percentage of the variants with a given annotation when using either REFSEQ or

ENSEMBL (‘REF+ENS’) that have a matching annotation when using the two transcript sets. Categories are loosely ordered by the severity of effect, with LoF

annotations listed before nonsynonymous, synonymous, non-exonic categories and so on. Within each loose group, categories are sorted in descending order of

overall matching rate. The bottom four rows show the total degree of matching across all putative loss-of-function (LoF) categories, all LoF and missense categories,

all exonic categories and, finally, all categories.

mean that annotations from both software tools are in

the same high-level category of LoF, missense or synony-

mous and other coding (with high-level categories defined

in Additional file 1: Table S4). So if a variant received

an annotation of frameshift from one tool and stop-gain

from the other we would designate this as a category

match as both are LoF annotations. Overall, we see only

a small difference in matching rates when we consider

category matches as opposed to exact matches, with cat-

egory matching rates approximately 1% higher than exact

matching rates (Table 2).

In total, 637,841 variants were given exonic annotations

by either ANNOVAR or VEP (Table 2). Of these, 551,983

(86.5%) had exactly matching annotations from the two
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Figure 2 REFSEQ-normalised heatmap of annotation comparison. This heatmap shows scaled numbers of variants (log10 transformation with

offset of 1 applied) for all different combinations of ANNOVAR categories of annotations when using the ENSEMBL transcript set (columns) and

REFSEQ transcript set (rows). Values are Z-scaled (mean-centred, divided by standard deviation) by row (each row is scaled separately; contrast with

Figure 3). The key above the heatmap shows the values indicated by different colours. This row-normalised heatmap allows us to see which

categories of annotation are over-represented (relative to the total number of variants in the column/category) in the ENSEMBL annotations for each

category (i.e. row) of REFSEQ annotation. Ideally, all of the dark red squares would lie on the diagonal, with white squares on the off-diagonals,

indicating complete agreement in the annotations from the two transcript sets. Compare with Additional file 1: Table S1, which provides the

numbers used for this heatmap. Categories are ordered as per Table 1.

tools and 556,387 (87.2%) have category matching anno-

tations. However, the match rate is substantially lower

(65% for exact matches, 66% for category matches) for

LoF annotations (Table 2). We observe that 89% of exonic

variants from VEP get an exactly matching annotation

from ANNOVAR and 96% of exonic variants according to

ANNOVAR get an exactly matching annotation from VEP.

These percentages of agreement should not be taken to

show that ANNOVAR is ‘more accurate’ than VEP – the

difference between the tools for exonic variants is driven

by the larger number of splicing annotations from VEP,

which is due to a difference in the definition of a splicing

variant used by the two tools.

Considering all annotation categories for VEP and

ANNOVAR annotations shows a substantial amount of dis-

agreement in annotations from the two tools, even when

using the same transcripts (Additional file 1: Figures S1

and S2). We observe relatively lower concordance for

intergenic, intronic, miRNA and splicing variants. Even

in well-defined categories such as nonsynonymous (mis-

sense) and frameshift, we see a large amount of dis-

agreement in annotations between the two tools. We
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Figure 3 ENSEMBL-normalisedheatmap of annotation comparisons. This heatmap shows scaled numbers of variants (log10 transformation with

offset of 1 applied) for all different combinations of ANNOVAR categories of annotations when using the ENSEMBL transcript set (columns) and

REFSEQ transcript set (rows). Values are Z-scaled (mean-centred, divided by standard deviation) by column (each column is scaled separately;

contrast with Figure 2). The key above the heatmap shows the values indicated by different colours. The column-normalised heatmap allows us to

see which categories of annotation are over-represented (relative to the total number of variants in the column/category) in the REFSEQ annotations

for each category (i.e. column) of ENSEMBL annotation. Ideally, all of the dark red squares would lie on the diagonal, with white squares on the

off-diagonals, indicating complete agreement in the annotations when using the two transcript sets. Compare with Additional file 1: Table S1, which

provides the numbers used for this heatmap. Categories are ordered as per Table 1.

saw no significant differences in annotation agreement

rates across different variant frequencies (Additional file

1: Table S5b).

To characterise the sorts of apparent errors or inconsis-

tencies that commonly emerge in annotation by ANNO-

VAR and VEP, we investigated cases for which annotations

fromANNOVAR and VEP disagree. Although it is counter-

intuitive (since the annotations were based on the same

set of transcripts), ANNOVAR and VEP do not always

use the same transcript for the annotation of a variant.

This is a result of the interaction of different annotation

categories, different precedence rules and the fact (for this

study) of reporting only one consequence for each vari-

ant. When characterising differences and apparent errors

in annotation, we looked at variants for which we know

ANNOVAR and VEP did indeed use the same transcript as

the basis for annotation. We focused on LoF variants –

frameshift, stop-gain, stop-loss and splicing – as they are

currently of most interest in disease studies, and we saw

better than 90% agreement between ANNOVAR and VEP

annotations for nonsynonymous and synonymous vari-

ant categories (Table 2). Where possible (as in the case
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Table 2 Same transcripts, different software: ANNOVAR and VEP annotations for exonic variants

ANV+VEP ANV VEP Exact Category ANV match VEPmatch Overall Overall

match match rate (%) rate (%) category match exact match

rate (%) rate (%)

LOF total 104,915 77,527 96,761 68,284 69,373 88.08 70.57 66.12 65.09

Frameshift 19,021 15,822 16,685 13,486 - 85.24 80.83 - 70.90

Stop gained 16,758 14,960 16,146 14,348 - 95.91 88.86 - 85.62

Stop lost 1,113 906 1,077 870 - 96.03 80.78 - 78.17

All splicing 69,112 45,839 62,853 39,580 - 86.35 62.97 - 57.27

MISSENSE total 350,806 324,242 347,752 318,056 321,188 98.09 91.46 91.56 90.66

Inframe indel 9,455 8,650 6,600 5,795 - 66.99 87.80 - 61.29

Missense 343,284 315,592 339,953 312,261 - 98.94 91.85 - 90.96

Initiator codon 1,199 0 1,199 0 - - 0.00 - 0.00

SYNONYMOUS and

OTHER CODING total 182,120 172,463 175,483 165,643 165,826 96.05 94.39 91.05 90.95

Synonymous 181,873 172,463 175,053 165,643 - 96.05 94.62 - 91.08

Stop retained 203 0 203 0 - - 0.00 - 0.00

Other coding 227 0 227 0 - - 0.00 - 0.00

ALL LOF 104,915 77,527 96,761 68,284 69,373 88.08 70.57 66.12 65.09

ALL LOF and MISSENSE 455,721 401,769 444,513 386,340 390,561 96.16 86.91 85.70 84.78

ALL EXONIC 637,841 574,232 619,996 551,983 556,387 96.13 89.03 87.23 86.54

This table summarises the number of annotations that match between the ANNOVAR and VEP results (when using ENSEMBL transcripts) for each exonic category of

annotation. It shows the number of variants given each type of annotation by when using (i) either ANNOVAR or VEP (‘ANV+VEP’; union), (ii) ANNOVAR (‘ANV’) and (iii)

VEP (‘VEP’). It also shows the number of variants that have exact matching annotations (i.e. exactly the same annotation from both tools; intersection), and

category-matching annotations (i.e. annotations from the two tools in the same high-level category – LoF, missense, synonymous and other coding – even if not an

exact match). Columns six and seven show the match rate for each tool, which gives the percentage of matching annotations for an annotation term from ANNOVAR

and VEP, respectively, relative to the total number of annotations in the category from the particular software tool. Column eight gives the percentage of variants with

annotations from ANNOVAR and VEP in the same high-level category (overall category match rate). Column nine shows the overall exact match rate, which is the

percentage of variants with an annotation from either ANNOVAR or VEP (‘ANV+VEP’) that have an exactly matching annotation from the two tools. Here, the specific

annotations from equivalent terms for ANNOVAR and VEP have been aggregated to enable the comparison (see Additional file 1: Table S4). The final three rows of the

table show aggregate counts and match rates for all loss-of-function categories, all LoF and missense categories and all exonic categories, respectively. Note that the

all splicing category for VEP comprises 5,011 splice acceptor variants, 8,544 splice donor variants and 49,298 more general splice region variants. ANNOVAR, in contrast,

only has one general splicing category, and does not distinguish between acceptor, donor and other splicing variants.

of splicing annotations), we discuss differences in anno-

tation algorithms that are likely causes of differences in

annotation, but detailed information on annotation algo-

rithms is not available for ANNOVAR or VEP, even in

online documentation [49,50].

Frameshift variants

We observed over 2,000 variants that are annotated as

frameshift by either ANNOVAR or VEP but not the other

(Additional file 1: Table S6). Among these, we found

that ANNOVAR annotates over 300 variants as frameshift

despite them being SNVs, so the ANNOVAR annotation is

unequivocally incorrect for these variants. For the major-

ity of these variants, however, it is not possible to say con-

clusively from manual inspection whether the ANNOVAR

or VEP annotation is correct.

All of the variants that are annotated as frameshift by

VEP but not by ANNOVAR are genuine indels and none

are a multiple of three bases, so VEP looks to be correctly

identifying these variants as frameshift indels. Several

hundred variants get nonframeshift, nonsynonymous and

synonymous annotations from ANNOVAR, which are

incompatible with the frameshift annotations from VEP.

The frameshift annotations seem reasonable, so ANNO-

VAR looks to give incorrect annotations for these variants.

Several hundred other variants are annotated as stop-gain

by ANNOVAR and frameshift by VEP. A stop-gain anno-

tation is not necessarily incompatible with a frameshift

annotation from VEP, as ANNOVAR inspects the tran-

script produced by the insertion/deletion and sometimes

finds that a stop codon is introduced by the indel. Fol-
lowing its precedence rules, it then returns an annotation
of stop-gain rather than frameshift. The disagreement
between annotations for such variants is thus reason-

able once we take into account how the two tools report
annotations. From looking at specific examples it appears

that only a small fraction of variants get an incorrect
annotation from both software tools.
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Stop-gain variants

When we look at the variants annotated as stop-gain by

ANNOVAR, but not by VEP (when the same transcripts are

used), we see that the majority (437 of the 570) are given

frameshift annotations by VEP (Additional file 1: Table

S7). We saw above that ANNOVAR’s precedence rules can

lead it to give a stop-gain annotation to an indel for which

frameshift would otherwise be a reasonable annotation.

Here too, all of the variants annotated as frameshift by

VEP seem to be genuine frameshift variants (as they are

indels that are not a multiple of 3 bp in size). These dis-

crepancies, therefore, reflect a difference in precedence

for reporting annotations, rather than a true difference

between the annotation algorithms, and the ANNOVAR

annotation (assuming it correctly identifies introduced

stop codons) adds information of interest. There is a

much smaller number of variants given missense (77) and

synonymous (39) annotations by VEP (Additional file 1:

Table S7a).

Manual inspection in the ENSEMBL Genome Browser

of ten of those discrepant variants on chromosome 1

shows that for eight of the ten missense (from VEP) vari-

ants, the VEP annotation looks correct (for two variants

neither annotation looks correct; see Additional file 1:

Table S10 for details of these variants). For other dis-

crepant variants, manual inspection reveals that the VEP

annotation looks correct more often than the ANNO-

VAR annotation (see Additional file 1: ‘Supplementary

Results’ for more details). When we look at variants anno-

tated as stop-gain by VEP and either frameshift or non-

frameshift by ANNOVAR, we see that approximately 20%

(30 variants) of these are SNVs, which cannot be cor-

rectly annotated as frameshift or nonframeshift (as these

terms only apply to an insertion or deletion). Thus, the

ANNOVAR annotations for these particular variants can-

not be correct, and must simply be a result of a software

bug. For the remaining variants it is difficult to assess

whether the ANNOVAR or VEP annotation is better. Even

after taking into account the differences in annotation

caused by different precedence rules, the stop-gain anno-

tations from VEP look more reliable than those from

ANNOVAR.

Stop-loss variants

There are only small numbers of variants that are anno-

tated as stop-loss by ANNOVAR and not by VEP, but

almost all of these are annotated as frameshift by VEP.

Inspection reveals that all of these variants are indeed

indels that are not a multiple of three bases, therefore

annotations of frameshift from VEP are reasonable. Look-

ing closely at the variants reveals that there is a roughly

even split between when the ANNOVAR or the VEP anno-

tation look better. There are only 16 variants that are

annotated as stop-loss by VEP and as something else by

ANNOVAR when the two tools use the same transcript for

annotation (Additional file 1: Table S8).

Splicing variants

The category (or categories) of splicing variants is a source

of many differences in annotations from different annota-

tion software tools. Unlike most other categories of anno-

tation, in the field there are still multiple notions of what

entails a splicing variant. ANNOVAR defines just one broad

category, splicing, for these variants: any variant within x

bp of a splicing junction receives the annotation splicing.

The value of x can be specified by the user of ANNOVAR,

and for our annotations here we used a broad definition

of splicing by setting x = 6. In contrast, VEP uses three

categories of splicing variant: (1) splice donor variant, a

splice variant that changes the two-base region at the 5′

end of an intron; (2) splice acceptor variant, a splice vari-

ant that changes the two-base region at the 3′ end of an

intron and (3) splice region variant, a sequence variant

in which a change has occurred within the region of the

splice site, either within one to three bases of the exon or

three to eight bases of the intron. VEP thus gives more

useful information, through its subcategories of splicing

variants, about the likely function of a variant. We also see

that differences in annotation can arise simply as a result

of differing definitions of what a splicing variant is, rather

than any truly substantial differences in the algorithms

producing the annotations. We investigated these differ-

ences in annotation on variants where both tools used the

same transcript for annotation, and annotations did not

match, that is, a variant with a splicing annotation from

ANNOVAR did not get an annotation of one of splice donor

variant, splice acceptor variant or splice region variant, or

the inverse.

The major source of difference in splicing annotations

is that the overwhelming proportion of ANNOVAR splic-

ing variants that receive non-splicing annotations from

VEP actually receive one of VEP’s three splicing annota-

tions, but reported as being in a non-coding transcript

(Additional file 1: Table S9). This result suggests that VEP

does a better job at reporting when the transcript it uses

for annotation is non-coding, but that there may actually

not be such a large degree of difference between splic-

ing annotations as appears initially. We also see here the

combined effect of different definitions of splicing vari-

ants and precedence rules that result in a splicing variant

found in one transcript being reported instead of a less

‘serious’ variant seen in another transcript. We see a large

number of variants annotated as synonymous by ANNO-

VAR and as splice region variant by VEP, and all are in

an exon, either in the first three bases (5′ end) or last

three bases (3′ end) of the exon. Thus, these annotation

differences seem to be a systematic result of differences

in the annotation algorithms used by ANNOVAR and
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VEP, and for these variants the VEP annotations look to

be better.

Discussion

The results of our comparison of annotations obtained

using REFSEQ and ENSEMBL transcript sets emphasise

the importance of the choice of transcript set used for

annotation. Applying the same annotation software with

different transcript sets saw a matching rate of 44% for

putative LoF annotations. Though not done here, tran-

script sets from REFSEQ and ENSEMBL (or other sources)

can be restricted to a subset of transcripts to exclude

low confidence annotations. Where a specific tissue of

interest is known, annotation could be restricted to use

only the set of transcripts known to be expressed in

that tissue. Defining a targeted set of transcripts will not

always be easy, but for sequencing studies where the cost

of false positives (e.g. through follow-up experiments) is

high, and where information on the expression of spe-

cific transcripts exists, a set of high-confidence transcripts

tailored to the study at hand may be preferable. Projects

like GENCODE aim to provide a carefully curated tran-

script set supported by experimental evidence [15,51-53],

so through efforts such as these we may see annotation

results converge as (ideally tissue-specific) transcript sets

align across different repositories. For the time being,

though, large differences remain.

Variant annotation remains challenging for current soft-

ware tools: differing choices made in annotation packages

on how to analyse, categorise and prioritise annotations

for a variant lead to differing annotations from different

tools, even when using the same set of transcripts as the

basis for annotation. Differences in annotations from dif-

ferent software tools (e.g. 64% overall agreement for LoF

annotations) are not as large as those seen when using

different transcript sets (44% overall agreement for LoF

annotations), and are often caused by differences in the

annotation categories defined by different tools. Never-

theless, the extent of the differences seen show that, again,

careful consideration must be given when choosing a soft-

ware tool to make sure that it is well suited to the goals of

the scientific investigation.

Standardising definitions of variants across the field,

to reduce the scope for apparent differences in annota-

tions returned by different software tools and to crystallise

the (epistemic) meaning of terms used for annotations,

could be of value. In our results here, for example, dif-

fering definitions of splicing variants cause tens of thou-

sands of annotation differences. The Sequence Ontology

Project [54] may help with this. It would be beneficial

for phase information to be used in annotating variants

in close proximity, given, for example, the extent of ‘res-

cue’ of LoF variants by nearby variants [55]. Currently,

annotation tools typically do not associate any measure

of uncertainty with reported variant annotations. Such

information could be useful for downstream analysis,

especially for consideration when allocating resources for

follow-up experiments on variants of interest. When a

high level of certainty about the validity of an annotation

is required, variants could be annotated with two software

tools and variants with differing annotations flagged to be

treated with caution.

In the comparison of annotation tools here, we

restricted each tool to report just the most severe conse-

quence annotation for each variant, to avoid comparisons

becoming too unwieldy. However, VEP and other anno-

tation tools can (and often by default do) report annota-

tions for all transcripts, providing extra information that

is often valuable. Adding this extra information, as with

utilising phase information or tissue-specific transcripts,

increases the challenges for data processing and interpre-

tation by adding complexity to the treatment of variant

annotation, but with good reason: this added complexity

reflects the underlying biology, so taking this information

into account potentially adds significant value to analyses

of DNA variants.

Our understanding of the human genome continues

to improve rapidly even as we gain a better apprecia-

tion of the genome’s complexity. As a result, at some

point we may see the variant annotations from different

approaches converge. For the time being, though, we con-

front an epistemic challenge (determining the meaning

or function of variants observed) because our ontologi-

cal foundations (knowledge and understanding of what all

sequences in the genome actually do) remain unresolved

or unclear. Thus, the choices of transcript set and software

tool can have substantial effects on the annotation results

obtained, and from there, large effects on all downstream

aspects of the analysis of WGS data. Variant annotation

is not yet a plug-and-play procedure and should not be

treated as such.

In addition to different variant annotation approaches

(of which there are more than we have compared here),

there are different sequencing technologies, read map-

pers and variant callers. Each of these can potentially have

substantial impact on the final variants and annotations

obtained, but comparison of other sources of variation

is beyond the scope of this paper. We refer interested

readers to systematic comparisons of other aspects of the

next-generation sequencing pipeline, for example com-

parisons of benchtop high-throughput sequencing tech-

nologies [56], short-readmappers [57], variant callers [58]

and variant-calling pipelines as a whole [59,60].

We have aimed to highlight the effect on final annota-

tion results that can arise from two aspects of analyses of

whole genome (or whole exome) sequence data, namely,

choice of transcript and choice of annotation software.

While we are not advocating any particular software or
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transcript set, we suggest researchers be aware of the

impact of these choices, and hope our comparisons may

inform such decisions.

Conclusions
We have quantified the extent of disparity in variant anno-

tation when different transcript sets and different software

tools are used. This comparison of annotations for 80

million human DNA variants revealed many substantial

differences between annotations based on different tran-

script sets and different software tools. The extent of

differences in annotations was particularly large in anno-

tation categories of most interest, namely, putative LoF

and nonsynonymous variants. We found many more vari-

ants with annotations in interesting categories when using

ENSEMBL transcripts compared with REFSEQ transcripts

only. If it is important not to miss potential LoF variants,

then there are advantages to using ENSEMBL transcripts.

If it is important to reduce false positives, then a care-

fully curated set of transcripts tailored to the study at hand

may be preferred. Even when using the same transcript

set, different annotation software packages can provide

substantially different annotations.

There are variants with potentially severe effects that are

identified with one method and not another. We require

consistent, accurate and reliable annotation of variants to

support the use of WGS in making diagnostic and treat-

ment decisions. The dependence of current annotation

results on the set of transcripts and software used can

be managed, with sufficient care, in the research context.

However, more work is required to improve variant anno-

tation for clinical use. The differences in annotation due

to choice of transcript set and software package quantified

here should be given due consideration when undertak-

ing variant annotation in practice. Careful thought needs

to be given to the choice of transcript sets and software

packages for variant annotation in sequencing studies.

Additional file

Additional file 1: Supplementarymaterial for ‘Choice of transcripts

and software has a large effect on variant annotation’. This PDF file

contains supplementary figures, supplementary tables and further details

of the results of the annotation comparisons for which there was

insufficient space in the main text.
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