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In large-scale quantum-chemical calculations the electron-repulsion integral (ERI) tensor rapidly becomes the bottle-
neck in terms of memory and disk space. When an external finite magnetic field is employed, this problem becomes
even more pronounced because of the reduced permutational symmetry and the need to work with complex integrals
and wave-function parameters. One way to alleviate the problem is to employ a Cholesky decomposition (CD) to the
complex ERIs over gauge-including atomic orbitals. The CD scheme establishes favourable compression rates by selec-
tively discarding linearly dependent product densities from the chosen basis set while maintaining a rigorous and robust
error control. This error control constitutes the main advantage over conceptually similar methods such as density fit-
ting which rely on employing pre-defined auxiliary basis sets. We implemented the use of the CD in the framework of
finite-field (ff) Hartree-Fock and ff second-order Møller Plesset perturbation theory. Our work demonstrates that the
CD compression rates are particularly beneficial in calculations in the presence of a finite magnetic field. The ff-CD-
MP2 scheme enables the correlated treatment of systems with more than 2000 basis functions in strong magnetic fields
within a reasonable time span.

I. INTRODUCTION

When going towards larger systems in quantum-chemical
ab-initio calculations, the standard formulations of the respec-
tive methods quickly become computationally too expensive.
One of the most common bottlenecks is the evaluation and
handling of the electron-repulsion integrals (ERIs) over one-
electron basis functions due to their formal quartic scaling
with the number of atomic orbitals. Therefore, various meth-
ods have been developed to approximate the two-electron in-
tegral tensor or make its calculation more efficient.
For example, integral prescreening1–3 methods drastically re-
duce the number of relevant integrals by discarding elements
of the ERI tensor which are smaller than a chosen threshold.
This is achieved without their explicit evaluation by utilising
Schwarz’s inequality. For large systems, the number of sig-
nificant integrals then scales quadratically with the number of
basis functions.4,5

The computational effort can be reduced further by linear-
scaling techniques such as the fast multipole moment6,7

(FMM) method which exploits the classical electrostatic char-
acter of the electron repulsion for well separated charges and
enables the description of the Coulomb interaction with linear
scaling. However, linear-scaling techniques (and prescreen-
ing) solely lead to a reduction in computational cost for very
large systems with more than several thousand basis functions,
since the scaling behaviour is dominated by a large prefactor.8

A further approach which shows a beneficial scaling be-
haviour also for small and medium-sized molecules is den-
sity fitting, also called resolution-of-identity approximation
(RI).9–15 Additionally, any tensor such as the full ERI or like-
wise the associated RI representation can be further factorised
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through the use of tensor hypercontractions.16–20 The perfor-
mance of the RI approach is tied to the quality of an exter-
nally optimized auxiliary basis set. A more general approach
which does not require an auxiliary basis, is the Cholesky de-
composition (CD).21–23 The use of CD in quantum chemistry
was first suggested by Beebe & Linderberg21 and used several
years later together with an efficient implementation of a par-
tial pivoting Cholesky algorithm by Koch et al.22 Recently,
a yet more sophisticated decomposition algorithm has been
proposed.23 After initial use in ground-state methods such as
Hartree-Fock (HF)24,25 and second order Møller-Plesset per-
turbation theory (MP2),26 the use of CD was expanded for a
whole toolbox of methods which enabled a plethora of studies
on molecules with thousands of basis functions: The spectrum
ranges from ground-state scaled opposite-spin MP2 (SOS-
MP2)12 to excited state equation-of-motion coupled cluster
(EOM-CCSD).27 The single-reference methods were comple-
mented by Cholesky decomposed complete active space self-
consistent field CASSCF28 and second-order perturbation the-
ory CASPT229 as well as the quadratically convergent imple-
mentations of SCF30 and CASSCF.31 Besides developments
that enable the efficient calculation of single-point energies,
developments also include the calculation of properties via
the implementation of CD for nuclear gradients32–35 at vari-
ous levels of theory as well as CD for MP2 nuclear magnetic
resonance shieldings.36 Thus, using CD, studies for systems
with more than thousand basis functions are these days read-
ily available.
The situation is still somewhat different when turning to
quantum-chemical predictions for molecules in finite mag-
netic fields. Quite a significant amount of finite-field (ff)
quantum-chemical methodologies have been developed over
the last years37–59 which are applicable to small to medium-
sized molecules. Finite magnetic-field calculations are asso-
ciated with a high computational cost since in the general case
the integrals and wave function parameters become complex-
valued. As a result the hard disk and/or memory require-
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ments increase by a factor of at least two and the computa-
tional cost of the multiplication formally increases fourfold.
Furthermore, the two-electron integrals have only fourfold in-
stead of eightfold permutational symmetry and hence twice as
many two-electron integrals have to be stored as compared to
the field-free case. Additionally, the number of integrals that
vanish due to symmetry decreases, since the point-group sym-
metry of a molecule is usually reduced by the axial magnetic-
field vector.60 A further important point is that for molecules
in a magnetic field of arbitrary orientation, gauge-origin in-
variance has to be ensured. In general the phase factor of the
exact wave function changes under the gauge-origin transfor-
mation so that the properties of the observables remain in-
dependent of the choice of the gauge origin of the magnetic
field. However, approximated wave functions do not naturally
exhibit this transformation behaviour. Hence, there the results
may depend on the selected gauge origin. To ensure gauge-
origin independence for calculations with arbitrarily oriented
finite magnetic field London orbitals61 are used, which are
also referred to as gauge-including atomic orbitals (GIAOs).37

As a consequence of these challenges a reduction in the com-
putational cost when dealing with larger systems (or large ba-
sis sets) becomes indispensable. Irons et al.45 have worked
on ways to improve the performance of the integral evalua-
tion by a careful choice of the underlying algorithm based on
the angular momentum of the basis functions. Reynolds &
Shiozaki41 and Klopper & Pausch56 have employed the RI
approach in the context of finite-magnetic field developments.
An advantage is here that the auxiliary basis set can be chosen
real, leading to lower storage requirements and higher per-
mutational symmetry of the 3-index integrals. With these de-
velopments, calculations with more than 1000 basis functions
have become feasible. As mentioned earlier, RI methods need
pre-defined auxiliary basis sets. These sets have to date only
been optimized for field-free calculations. While the accuracy
seems quite decent for energies when uncontracted auxiliary
sets are employed (under 0.5 kJ/mol for field strengths lower
than 1 B0 ≈ 235000T ), a systematic error control and im-
provement of accuracy is not trivial.56 It is hence desirable to
be able to rigorously control the error in the energies, in partic-
ular when the energy is studied as a function of the magnetic
field. In order to address these issues and to offer an alterna-
tive route for finite-field computations for larger systems, in
this work we present the Cholesky decomposition of the two-
electron integrals over London orbitals. Our work reveals that
compression rates are particularly beneficial in calculations
with an external finite magnetic field and significantly depend
on field strength and orientation. First, a short overview of
the theoretical background of CD for ERIs is given in section
II A. Our implementation is presented in section II B. Valida-
tion of the implementation and an investigation of the errors
in integrals and total energies are discussed in section III B. In
section III C the influence of the magnetic field on the struc-
ture of the ERI tensor and the respective consequences for the
decomposition are discussed. In section III D the break-even-
point of the algorithm using CD as compared to the canonical
implementation is investigated. Finally, we conclude in sec-
tion III E and III F with a discussion of the treatment of sym-

metry and representative parallelized calculations on extended
systems with more than 2000 basis functions.

II. CD OVER LONDON ORBITALS

A. Theory

An element of the ERI matrix V over London orbitals

ωµ = e−ikr
χµ (1)

composed of a standard Gaussian χµ centered at Kµ and a
complex phase factor (in which k = 1

2 B× (Kµ −G), B is the
magnetic field and G is the gauge origin) can be approximated
by the CD12,21–23,27–36 as

Vµνσρ = (µν |σρ)≈ (µν |σρ)CD =
NCH

∑
J=1

LJ
µν LJ∗

ρσ (2)

where NCH is the number of Cholesky vectors (CVs) and
corresponds to the numerical rank of the decomposition and
µ,ν ,σ ,ρ correspond to the indices of the corresponding Lon-
don orbitals. LJ

µν is an element of the CV `J , such that
V = ∑

J
`J`J†. In the field-free case and in the case of lin-

ear molecules in a parallel magnetic field, the maximum di-
mension corresponds to N(N+1)

2 with N as the number of basis
functions. For all other molecules and orientations relative to
the external magnetic field the maximal dimension increases
to N2 because of the reduced permutational symmetry of the
ERIs

(µν |σρ) = (σρ|µν) = (νµ|ρσ)∗ = (ρσ |νµ)∗.

Note that this implies that LJ
µν 6= LJ∗

νµ . The elements of the
CVs can be determined iteratively by

LJ
σρ =

1√
DJ

µν

[
(σρ|µν)−

J−1

∑
K=1

LK
σρ LK∗

νµ

]
(3)

and the corresponding diagonal elements by

DJ
µν = (µν |νµ)−

J−1

∑
K=1

LK
µν LK∗

µν . (4)

Note that the diagonal of the ERI in an external magnetic field
is defined as (µν |νµ) to ensure positive semi-definiteness.
In the field-free case because of the equivalence (µν |νµ) =
(µν |µν) the latter form is typically used. The CD follows
a (partial) pivoting procedure22 in which in each iteration a
new CD vector with index J is assigned to the largest of all
updated diagonal elements of the ERI matrix with indices
µ and ν . By truncating the decomposition at the iteration
where all remaining updated diagonal elements are smaller
than a chosen threshold τ = 10−δ , where δ is the Cholesky
parameter, the CD removes (approximate) linear dependen-
cies among the columns of the ERI matrix and leads to a com-
pact representation.21
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Thus the number of required vectors is significantly smaller
than the number of vectors for the full decomposition and
the storage of the full integral matrix reduces from O(N4)
to O(N2NCH) for the Cholesky decomposition.21 The error
for a given ERI vanishes if the numerical rank corresponds to
the maximum dimension. In all other cases the error is de-
termined by the choice of the threshold since all remaining
diagonal elements are smaller than the tolerance criterion τ .
According to the Cauchy-Schwarz inequality

(µν |σρ)CD ≤
√
(µν |νµ)CD

√
(σρ|ρσ)CD ≤ τ (5)

this upper bound holds for all remaining integrals as well and
thus the error of the approximated ERI is strictly below the
threshold. By choosing δ a reduction in the computational
requirements together with a rigorous control of the error is
hence possible.
For the iterative solution of the HF equations, the Fock matrix
is built by substituting the two-electron integrals with the ex-
pression in Eq. (2) leading to a scaling of O(NCHN2O) with
O as the number of occupied orbitals.22 For correlated calcu-
lations a sequential transformation of the CVs into the basis
of molecular orbitals (MOs)

LJ
pq = ∑

µν

C∗µ pLJ
µνCνq (6)

is performed which replaces the four-index integral transfor-
mation by a two-index transformation of a limited set of vec-
tors reducing the formal scaling to O(N3NCH).21,27 The cor-
responding MO integrals are expressed analogously as

(pq|rs)≈
NCH

∑
J

LJ
pqLJ∗

sr (7)

and may be used in a subsequent post HF theories. In open-
shell systems the MO integrals that do not vanish after spin
integration can be represented by two sets of MO-CVs that
occur exclusively for the spin pairs αα and ββ .

B. Implementation

A complex CD routine which employs a partial pivoting
algorithm22,23 has been implemented within the Mainz INTe-
gral (MINT) package62 of the program package CFOUR63,64

which uses the McMurchie–Davidson scheme37,65 for com-
puting integrals. The realization of ff-CD-HF follows the
strategies described in reference 30. Additionally, ff-MP2 has
been implemented. Both a closed-shell as well as an open-
shell implementation based on unrestricted HF has been car-
ried out. Summarizing the essential points of the implementa-
tion of CD with ff-HF and -MP2 methods we note:

• The algorithms use complex data types.

• For the CD, the diagonal in Eq. (3) should be defined
as (µν |νµ).

• To increase computational efficiency a Cauchy-
Schwarz-screening1 has been implemented for the in-
tegral evaluation during the CD.

• Point-group symmetry is exploited in the implementa-
tion.

• Due to the fourfold permutational symmetry in the
general case, the CVs are calculated and stored in
symmetry-blocked fashion with N2 values per vector.
More concretely, for the handling and storage of the
CVs, it is used that the irreducible representation of a
vector ΓJ is determined by the symmetry of the direct
product of the index pair µν of the maximum diago-
nal element. This means that the vector of the corre-
sponding integral column (σρ|µν) has a non zero en-
try if ΓJ = Γµ̄ ⊗Γν̄∗ = Γρ ⊗Γσ∗. Hence, for totally-
symmetric CVs (ΓJ = Γρ ⊗Γσ∗ = Γ1) a square matrix
for each irreducible representation is stored while for
non-totally symmetric CVs, a rectangular matrix with
NΓσ ×NΓρ values is stored. Note that in the field-free
case, the storage of the blocks with Γσ < Γρ is suffi-
cient.

• Special cases, like B = 0 or the case of linear molecules
in a parallel magnetic field are handled separately as
they allow to exploit the symmetries present in standard
field-free calculations.

• An out-of-core algorithm was implemented which is
used when not all CVs can be kept in memory. In such a
case, the excess vectors that do not fit into the memory
are written on disk and read when needed.

• For a faster convergence of the SCF wave function a
DIIS66,67 scheme was employed.

• In the matrix multiplications for the build of the CVs,
their transformation to the MO basis, and the assembly
of the MO integrals, calls to efficient BLAS routines
(ZGEMM) have been employed. With their use, multi
threading via OpenMP68 can be employed in a simple
manner by using respective threaded BLAS libraries.

• In the calculation of the MP2 energy, the integrals of
the type (ov|ov) are needed where o denotes indices of
occupied and v indices of virtual orbitals. LJ

ov and LJ
vo

are calculated to reconstruct the integrals in the MP2
energy expression. The reconstruction is performed in
such a manner that there is only one symmetry block in
memory at a time.

III. RESULTS AND DISCUSSIONS

A. Computational Details

If not stated otherwise all calculations have been performed
with the CFOUR63 program package using the uncontracted
(unc) augmented (aug) versions of the correlation consistent
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Cholesky-Threshold δ

10−10
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FIG. 1: Mean error of the ff-CD-HF (blue) and ff-CD-MP2
(green) energy for the systems listed in table I as a function
of the Cholesky parameter δ . The SCF convergence was set

to 10−7.

Dunning69,70 or the Karlsruhe71 basis sets. In calculations
for the methylidyne radical (CH), water (H2O), and ethylene
(C2H4) Cartesian Gaussians were employed, the other calcu-
lations were performed with spherical Gaussians. The calcu-
lations have been carried out on an Intel(R) Xeon(R) E5-2643
node running at 3.40GHz. In section III F a Intel(R) Xeon(R)
Gold 5215M node running at 2.50GHz was used. Parallel cal-
culations used a total of 12 CPUs.

B. Validation and Accuracy

We validated the decomposition by reproducing the origi-
nal ERIs from the CVs according to Eq. (2). If the tolerance
criterion is chosen to be very tight, the original ERI can be
restored. This is possible for thresholds up to 10−12, as dis-
cussed in Ref. 72. The HF-SCF and MP2 codes were val-
idated by comparing the energies with those of the existing
program codes in CFOUR63 and LONDON.37,73 Additionally,
we verified the gauge-origin independence of the results.
To investigate the remaining error in the energy for truncated
CDs, the closed-shell systems water (H2O), ethylene (C2H4),
and the open-shell methylidyne radical (CH) were calculated
for various Cholesky thresholds. The systems were placed in a
magnetic field with a strength of 1 B0 (1 B0 ≈ 235000T) with
three relative orientations that for simplicity we label as par-
allel (||), perpendicular (⊥) and ’arbitrary’ (/) with respect to
the magnetic-field vector. An overview of the calculated struc-
tures with respective orientations with respect to the magnetic
field is given in table I. The mean error at the ff-CD-HF and ff-
CD-MP2 levels for different Cholesky parameters compared
to reference calculations without Cholesky decomposition is
depicted in figure 1. For small Cholesky thresholds the mean
error in the HF (blue) and the MP2 (green) energies decreases
nearly linearly with the Cholesky parameter up to a value of
δ = 7. The magnitude of the mean errors is strictly below

the chosen Cholesky threshold - depicted by the black line
(∆EHF < 10−δ ). These findings are in line with the observa-
tions for field-free HF calculations, i.e., the accuracy of the in-
tegrals, fixed rigorously via the Cholesky threshold, translates
also to the SCF energy.22 For large thresholds the ff-HF error
plateaus and eventually becomes larger than the threshold of
the decomposition. This finding is explained simply by the
fact that the SCF convergence of the orbital coefficients was
chosen to be only 10−7. This choice limits the accuracy of
the orbitals and hence also of the total energy. We tested this
conclusion by increasing the SCF convergence for these cases
which indeed leads to errors below the black line. For MP2, a
similar trend is encountered (for the same reasons) except that
the error introduced by setting the SCF convergence is more
pronounced due to the linear dependence of the energy on the
error in the orbital energies in the MP2 energy denominator.22

For a comparison reference 56 reports errors of the magnitude
of 10−4 Hartree for finite-field generalized HF48,49 energies
when employing an RI scheme using an uncontracted def2
auxiliary basis set which was optimised for calculations with-
out magnetic fields. This accuracy can already be reproduced
by using a Cholesky parameter of δ = 4 which is consistent
with the benchmark study for field-free calculations done in
reference 12. Important advantages of the CD are that the ac-
curacy of the CD can be chosen a priori and that the CD is
system-specific such that the errors of the CD are independent
of the magnetic-field strength (see SI for details).

TABLE I: Calculated systems, employed basis sets, and
orientations of the molecules and the magnetic-field vector

(of strength B=1.0 B0) in the chosen coordinate system. The
field-free geometries for ethylene and the methylidyne

radical were employed which were calculated at the
CCSD/unc-pVTZ and unc-aug-pVDZ levels of theory,

respectively. For water, the experimental geometry
(ROH=0.958 Å, HOH=104.45◦) from Ref. 74 was used.

Molecule Basis Orientation

Water (xy) unc-cc-pVQZ
y ( || )
z (⊥)

45◦yz ( / )

Ethylene (xy) unc-aug-cc-pVTZ

x ( || )
y (⊥)
z (⊥)

45◦xz ( / )

Methylidyne (z) unc-aug-cc-pVXZ
X=D,T,Q,5

z ( || )
x (⊥)

45◦xz ( / )

C. Dependence on magnetic-field strength and orientation

It is well-known that the compression rate, i.e., the quotient
between the full and the numerical rank of the decomposition,
depends on the following factors:

1. It increases for large or uncontracted and diffuse basis
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sets, since the number of linear dependencies within the
basis set grows with the number of basis functions.15,75

This is of relevance here because uncontracted and
diffuse basis sets are typically needed in ff quantum-
chemical calculations in order to adequately describe
the anisotropy of the orbitals.

2. It increases with the system size. For large systems
the compression rates grow because of the increased
sparsity in the ERIs where the latter is a result of the
decay with the inverse of the separation of the charge
distributions.2–4

3. It depends in a non-trivial manner on the molecular
geometry.15

In this section, we investigate how the compression rate
changes when varying the strength of the magnetic field and
its orientation with respect to the molecule. Here, we study the
methylidyne radical (CH) calculated at the ff-CD-MP2/unc-
aug-cc-pVQZ with a fixed bond length (see table II for de-
tails).

Figure 2 shows the dependence of the MP2 energy and
the number of CVs of the methylidyne radical (CH) on
the magnetic-field strength B and the angle θ between the
magnetic-field vector and C-H bond axis. The edges of the
potential surface define a magnetic field of strength B = 0 B0
or a parallel magnetic field of strength B = 0− 1.0 B0. At
these edges, the ERIs exhibit eightfold permutational symme-
try and the number of CVs is constant due to the definition of
the London orbitals in Eq. (1).

Trivially, the exponent of the phase factor k and thus the de-
pendence on the magnetic field vanishes for molecules in the
field-free case B = 0 B0. This also applies to linear molecules
in parallel magnetic fields, i.e., with the bond and the field
oriented along the z-axis, because

k =
1
2

B× (Kµ −G) =
1
2

 0
0
Bz

×
 0

0
Kµ,z−Gz

= 0. (8)

In these cases the London orbital corresponds to the field-free
Gaussian orbital and the ERIs are real and independent of the
magnetic field.76 As a result the ERIs do not change with the
magnetic field and the numerical rank of the decomposition
remains constant. For all other orientations of the molecule
in a magnetic field, the permutational symmetry is reduced
from eight to four. Figure 2b shows the increase in the num-
ber of CVs with the magnetic-field strength B and the angle
θ , with a maximum at an angle of 90° and a magnetic-field
strength of 1 B0. Considering the following properties of the
CD that:15,21,32,72

1. the CD is equivalent to a modified Gram-Schmidt or-
thonormalization of the product densities |µν),

2. the CD eliminates the linear dependencies in the ba-
sis set up to a tolerance criterion of 10−δ . The func-
tions |µν) chosen by the decomposition in each itera-
tion span a linearly independent, orthonormal Cholesky
basis,

3. the Cholesky basis and the given AO basis span the
same space,

4. the Cholesky basis is the best possible auxiliary basis in
an RI context,

the increase in the numerical rank of the decomposition with
the magnetic-field strength and angle can be understood as
a decrease in linear dependencies in the space of the atomic
orbital densities. For example, due to the permutational sym-
metry in the ERIs two columns are linearly dependent in the
sense of the Cholesky decomposition if

(µν |σρ)− (µν |ρσ)< 10−δ . (9)

Since this difference vanishes for integrals over GTOs it is en-
tirely determined by the phase factors of the London orbitals.
Another look at the wave vector k in Eq. (8) shows that first
of all the difference scales with the magnetic-field strength B.
Second, the cross product of two vectors (a×b = |a||b|sinθ )
maximises for an angle of 90° and equally the difference in
Eq. (9) scales with the angle between magnetic field and
bond axis. As a result, product densities in the ERI that are
linearly dependent in the field-free case become more and
more clearly linearly independent with increasing angle and
magnetic-field strength. Since the CD removes linearly de-
pendent product densities below the Cholesky threshold and
keeps orthonormal ones this trend causes the Cholesky basis
to grow, i.e., the number of CVs to increase. In our example,
the number of basis functions is 175 and hence the theoreti-
cal maximum dimension would be 15400 and 30625 for the
field-free and field-dependent CVs, respectively. In the calcu-
lations, for δ = 9, in the field-free or parallel orientation, the
number of CVs is 1756. The largest numbers of CVs is 2315,
encountered at a perpendicular magnetic-field orientation and
the largest considered field strength of 1 B0. The largest
compression rates are hence found for small field strengths
and near-parallel orientations. Here, the compression rate is
17.44 for a close-to-parallel and near-field-free configuration
as compared to 13.22 for the perpendicular orientation at 1
B0. For the field-free case the compression rate here is 8.77.
This is because when transitioning from a field-free case or
a linear system in a parallel magnetic field to a different ori-
entation, the formal maximum dimension is nearly doubled.
For the slightly tilted orientations with respect to the magnetic
field, it holds that elements of the ERI tensor that are exactly
equal by symmetry in the field-free or parallel orientation are
no longer equal - but still very similar numerically in the sense
of the difference in Eq. (9). The CD now removes all contribu-
tions that are linearly dependent numerically, leading to large
compression rates and a small number of CVs. Note that in
our example, the Cholesky threshold is much larger (δ = 9)
than what would be used in normal calculations and hence
much larger compression rates would be observed there.

Due to the innate connection between RI and CD21,22 in-
formation about the Cholesky basis may support the genera-
tion of magnetic field-dependent auxiliary basis sets for an RI
treatment. We note that the number of required Cholesky vec-
tors changes quite significantly not only with the strength but
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(a) Total MP2 energy (b) Number of CD vectors

FIG. 2: Potential hypersurface 2a of the methylidyne radical (CH) calculated at the ff-CD-MP2/unc-aug-cc-pVQZ level of
theory and the respective numerical rank 2b of the CD with a constant Cholesky parameter of δ = 9 as a function of the

magnetic-field strength B and the angle θ between C-H bond axis and magnetic-field vector.

also with the orientation of the magnetic field, which should
then probably be taken into account. As the Cholesky algo-
rithm automatically and in a black-box manner generates the
required number of CVs to retain a certain accuracy, without
having to rely on a fixed pre-defined auxiliary basis set, CD is
particularly useful in the context of finite magnetic-field cal-
culations with varying field strengths and orientations.

D. Break-even point

An important motivation in using CD is the reduction of
memory requirements and the speed-up of quantum-chemical
calculations. When using CD, the theoretical scaling is a
function of the number of CVs, the latter being significantly
smaller in actual calculations than the maximum dimension of
the full decomposition. For a given molecule, the number of
CVs generally depends on the chosen Cholesky threshold and
the basis-set size. To assess the break-even point between the
implementations using the full and the decomposed ERI, the
timings of calculations on the methylidyne radical are plotted
in figure 3 as a function of the Cholesky parameter δ and the
size of the basis set. All calculations were performed with
CFOUR for a field strength of 1 B0 and an angle of 45◦ be-
tween the bond axis and the magnetic field. The application
of the CD results first of all in an acceleration for parameters
δ ≤ 5 independent of the basis-set size. Those thresholds are
already able to reproduce the energies to an accuracy of up to
≈ 10−7 Hartree. This error margin is even smaller than the
typical basis-set error.77 Secondly, the CD computations are
faster than their respective standard ff counterparts for basis
sets with more than 175 basis functions since here generally
higher compression rates are observed.

In table II a detailed comparison of the timings is listed
for computations on the methylidyne radical CH, benzene,
boric acid and the cyclopentadienyl anion CP−. While the

integral evaluation is the bottleneck of the conventional cal-
culations for small systems, the MO transformation starts to
govern the computing time for larger systems due to the for-
mal N5 scaling with the basis-set size. For the CD the tim-
ings for the integral evaluation may increase due to the re-
calculation of integral batches which is a consequence of the
partial-pivoting algorithm which makes the integral evalua-
tion the time-determining factor. Nonetheless, the decompo-
sition leads to a speed-up of the SCF procedure and the MO
transformation which scale with O(NCHN2O) and O(NCHN3),
respectively.22 Using the Cholesky decomposed ERIs com-
pared to the full ERI tensor is slower only for very small basis
sets and tight thresholds which would not be used in actual
calculations. For all other cases the Cholesky scheme pro-
vides a significant speed-up while at the same time maintain-
ing a reasonable and controllable accuracy.

E. Point-Group Symmetry

Additional computational speed-up can be achieved by the
treatment of the point-group symmetry. In an external mag-
netic field, all axes of rotation perpendicular to the magnetic-
field vector and all mirror planes that contain the magnetic-
field vector no longer constitute valid symmetry elements. As
a result, the axis of rotation parallel to the magnetic-field vec-
tor becomes the main axis and only mirror planes perpendic-
ular to the magnetic-field vector are retained. Thus the point-
group symmetry is typically reduced.60 The achieved relative
speed-up through the exploitation of point-group symmetry
in calculations using CD is shown in figure 4 for benzene in
a finite magnetic field. The corresponding absolute timings
are listed in table III. In the field-free case the point-group
symmetry is D6h. In a magnetic-field vector oriented perpen-
dicular to the molecular plane the symmetry is reduced and
the largest real Abelian subgroup of the full molecular point
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TABLE II: Detailed comparison of timingsa between calculations with and without the use of CD (δ = 5). The table shows
timings for a) the methylidyne radical at the ff-MP2/unc-aug-cc-pVXZ (X=D,T,Q,5) levels with the magnetic-field vector of

1.0 B0 being tilted at a 45◦ angle to the C-H bond axis and b) the molecules benzene, boric acid, cyclopentadienyl anion (CP−),
and staggered ethane at the ff-MP2/cc-pVTZ level. For the first three molecules the magnetic-field vector is oriented

perpendicular to the molecular plane. For ethane, the magnetic-field vector is oriented along the C-C bond axis. The geometries
were obtained from respective field-free optimizations at the CCSD/cc-pVTZ level.

a) X tint/s tchol/sb tHF/sc tao2mo/s tMP2/s ttot/s b) Molecule tint/s tchol/sb tHF/sc tao2mo/s tMP2/s ttot/s

Ref.

D 0.34 - 0.49 (0.03) 0.26 0.001 1.24

Ref.

Benzene 1929 - 434 (20) 236 0.49 2735
T 6.63 - 7.48 (0.42) 5.20 0.003 21 Boric acid 219 - 48 (2.83) 23 0.10 310
Q 100 - 90 (5.02) 93 0.01 300 CP− 916 - 173 (9.60) 96 0.24 1251
5 1576 - 864 (48) 1466 0.04 4069 Ethane 89 - 23 (1.80) 13 0.02 138

CD

D 0.95 0.09 0.21 (0.01) 0.02 0.01 1.48

CD

Benzene 848 98 40 (2.49) 8.20 9.27 1010
T 16.09 1.29 1.81 (0.11) 0.23 0.06 20 Boric acid 218 16 7.74 (0.52) 1.29 1.28 247
Q 248 228 13 (0.75) 2.26 0.35 265 CP− 499 49 22 (1.29) 3.90 3.91 613
5 2005 177 72 (4) 19 1.84 2285 Ethane 68 7.69 3.74 (0.31) 0.76 0.28 81

a The discrepancy between the sum of all timings and the total timings are due to not listed setup and I/O timings.
b For the timings of tchol only the build of the CVs as in equation (3) is considered which is the most expensive step of the Choleksy procedure scaling

O(N2N2
CH).c Timings ’per iteration’ are given in parentheses.

group is C2h. It is always possible to treat the system in a
subgroup of C2h, namely C2 and Cs, at the cost of the order
of the point group which decreases from 4 to 2. The timings
of the calculation clearly show a faster performance relative
to the reference calculations in C1 that scales with the order
of the point group. Thereby the wall time for C2h is roughly
70% faster for the build of the CVs, the average time per HF
iteration, the transformation of the integrals in the MO basis
and the calculation of the MP2 energy. For the integral eval-
uation a smaller speed-up of only 28% is achieved. This is
also reflected in the total timings which are dominated by the
integral-evaluation step as discussed in section III D resulting
in a net reduction of the total wall-clock time from 1010 sec-
onds for C1 to 653 seconds for C2h. A further acceleration can
be achieved by increasing the order of the point group which
is possible by employing a complex Abelian point group.78 In
this example the point group C3h (h = 6) results in a speed-up
of all steps except the integral evaluation79 of about 95% rel-
ative to a calculation in C1. For example the build of the CD
decreases from 98 seconds down to 5 seconds.

F. Representative Calculations

In reference 80 the paramagnetic-to-diamagnetic transition
from closed-shell molecules with an extended π-system in a
strong magnetic field has been studied. The largest calcula-
tion reported there was a ff-HF calculation performed on the
corannulene dianion using a cc-pVDZ basis with 590 primi-
tive basis functions. The authors pointed out that for larger
systems, a paramagnetic-to-diamagnetic transition might oc-
cur for a relatively small critical field strengths that could be
reproduced experimentally. Notably, in a magnetic field such
a closed-shell paramagnetic state would quickly become an
excited state while an open-shell state of higher multiplicity
would likely become the ground state of the system. At the

TABLE III: Detailed list of timingsa (integral evaluation
(int), the build of the CVs (chol), the average time per

Hartree-Fock iteration (HF), the MO transformation (ao2mo)
and the computation of the MP2 energy as well as the total

time (tot)) for calculations on benzene at the
ff-CD-MP2/cc-pVTZ level using spherical Gaussians with
δ = 5 as a function of the order of the computational point

group. The computational point groups are the real C1,
C2/Cs, C2h and the complex C3h.

h Point Group tint/s tchol/sb tHF/sc tao2mo/s tMP2/s ttot/s

1 C1 848 98 40 (2.49) 8.20 9.27 1010
2 C2 632 50 14 (1.06) 2.46 5.12 708
2 Cs 819 87 19 (1.16) 2.58 5.45 936
4 C2h 611 27 10 (0.50) 0.87 1.76 653
6 C3h 670 5.35 11 (0.19) 0.28 0.54 689

a The discrepancy between the sum of all timings and the total timings are
due to not listed setup and I/O timings.

b For the timings of tchol only the build of the CVs as in equation (3) is
considered which is the most expensive step of the Choleksy procedure
scaling O(N2N2

CH).c Timings ’per iteration’ are given in parentheses.

time, calculations on larger systems were out of reach. But re-
cent developments in the field45,56 as well as the implementa-
tion reported here have made it possible to treat larger systems
in a finite magnetic field. While attempting a full study of
the electronic structure and the paramagnetic-to-diamagnetic
transition of such systems in a magnetic field is certainly an
interesting topic for future studies, here we demonstrate the
applicability of the present development to systems with up
to 2000 basis functions. In figure 5 the calculated molecules
are listed starting from the corannulene dianion C20H 2 –

10 ,
hexabenzocoronene C42H18 (HBC), the buckminsterfullerene
C60, and retinal C20H28O. The field-free structures for HBC
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FIG. 3: Total wall clock timings for calculations on the
methylidyne radical (CH) at the ff-MP2/unc-aug-cc-pVXZ
(X=D,T,Q,5) level. Green: Conventional ff-MP2 reference
calculations, green: ff-CD-MP2 calculations performed at a

magnetic-field strength of 1.0 B0 and an angle of 45◦

between the C-H bond axis and the magnetic field and
δ = 1−10.

and C60 were taken from Refs. 81 and 82, respectively. For
corannulene and the retinal molecule, a field-free density-
functional theory/B3LYP83,84 geometry was calculated with
Turbomole85,86 using a 6-31G∗ basis (in D5h) and with Q-
Chem87 using a STO-3G basis, respectively.

In table IV the number of CVs and their respective com-
pression rate relative to the used basis set is listed together
with the total wall-clock timings. Overall, the calculations fin-
ish in between two hours and two days, except for the largest
system HBC calculated with an unc-cc-pVTZ basis with 2052
basis functions which took approximately four days. For all
systems the numerical rank of the decomposition is just a frac-
tion of the rank of a full decomposition and the compression
rates are very large. For the buckminsterfullerene molecule
with δ = 5 a compression rate of up to 277 is found which
almost doubles the rates in comparison to a similar but field-
free study performed in reference 36. This should not be mis-
taken to mean that the ff-CD is more efficient than its field-
free counterpart. Instead, the reason for the discrepancy is
because the full rank of the field-free CD is simply lower (see
section II A). The high compression rate shows that the CD
offers significant computational advantages compared to stan-
dard ff calculations.

When loosening the Cholesky parameter to δ = 4, compres-
sion rates of up to 339 are observed. The computational sav-
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FIG. 4: Relative (mean) timings for the integral evaluation
(int), the build of the CVs (chol), the average time per

Hartree-Fock iteration (HF), the MO transformation (ao2mo)
and the computation of the MP2 energy as well as the total

time (tot) for a calculation on benzene in a magnetic field of
the strength 0.1 B0 perpendicular to the molecular plane with
the cc-pVTZ basis and δ=5 as a function of the order of the
computational point group. The corresponding point groups

are the real C1, C2/Cs, C2h and the complex C3h.

ings are large enough to be in the order of a reduction of the
cardinal number of the basis set, e.g., buckminsterfullerene
calculated using a unc-dzp basis and δ = 5 is comparable in
compuational time to a calculation using a unc-tzp basis and a
threshold of δ = 4. While for δ = 4 the error in total energies
is in the mHartree region, the error might be smaller for exci-
tation energies: Reference 27 suggest that due to a systematic
error cancellation, a parameter of δ = 2− 3 together with an
underlying HF calculation using the full ERI yields a suffi-
cient accuracy. This will likely also be the case of excitation
energies computed in a magnetic field but this hypothesis will
need to be tested in future developments.

A detailed report of the timings for computations on HBC
is found in table II. As seen by comparing serial with par-
allel calculations, the build of the CVs and following com-
putational steps are parallelized. We note that parallelization
is crucial in order to reduce the overall computational cost.
So far, we only used threaded complex matrix-matrix multi-
plication routines (ZGEMM) from an appropriate BLAS li-
brary without any further attempts on efficient parallelization.
The integral evaluation and the I/O for the CVs is currently
only implemented in serial. Accordingly, the overall speed-
up due to parallelization is not yet particularly convincing. In
particular, it is observed that calculations that employ point-
group symmetry gain very little speed-up through paralleliza-
tion. For example, while without symmetry the speed-up of
using 1 vs. 12 CPUs is 2.5, the serial implementation using
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TABLE IV: Computational details for ff-CD-MP2 calculations on the systems corannulene, hexabenzocoronene (HBC),
buckminsterfullerene, and retinal (see figure 5). The number of basis functions N, the Cholesky parameter δ , the number of

CVs NCH, the compression rate, and the total wall time ttot are reported. All calculations were performed on 12 CPUs with the
listed basis sets.

Molecule Basis N Symmetry δ NCH Compression rate ttot [h:m:s]

Corannulen
unc-cc-pVDZ 590 C1

5 3835 90.77 1:59:53
4 2931 118.76 1:20:03

unc-cc-pVTZ 1000 C1
5 7916 126.33 14:51:43
4 6293 158.91 10:58:52

HBC
unc-cc-pVDZ 1218 C1 5 7985 185.79 15:49:25

C2h 5 8766 169.24 7:44:26

unc-cc-pVTZ 2052 C1 5 16372 257.19 111:28:26
C2h 5 17683 238.12 97:14:34

Fullerene
unc-dzp 1500 C1

5 9997 225.07 30:55:22
4 7792 288.76 20:00:35

unc-tzp 1740 C1
5 10898 277.81 44:43:57
4 8918 339.49 31:18:59

Retinal
unc-cc-pVDZ 742 C1

5 4739 116.18 2:09:15
4 3631 151.63 1:27:05

unc-cc-pVTZ 1330 C1
5 10467 169 41:33:25
4 8132 217.52 16:58:34

symmetry is actually faster by a factor of 4.3. Performing the
same calculation in parallel though only gives a factor of 5.0.
Obviously, the parallelization might be improved drastically
outside of the BLAS routines which is however outside of the
scope of the present paper.

While for small systems the integral evaluation is the bot-
tleneck of the calculation, for larger systems this shifts to the
SCF iterations. This is also partly due to the fact that for such
large systems and basis sets convergence is more difficult re-
quiring need methods like DIIS and damping as well as more
iterations in general. It will hence be useful to adapt second-
order methods for finite-field calculations to accelerate and
ensure SCF convergence in the future.30,88,89

IV. CONCLUSION

In this work, we report on a CD scheme for the calculation
of large molecules in finite magnetic fields at the MP2 level of
theory. The scheme expands the range of applicability to sys-
tems with more than 2000 basis functions. A complex-valued
implementation that exploits point-group symmetry was pre-
sented which performs a CD of the two-electron integrals over
GIAOs and uses the CVs in subsequent finite-field HF and
MP2 computations. We showed that the accuracy of the en-
ergy scales with the Cholesky parameter δ which results in a
rigorous error control via a user-defined Cholesky parameter.
We also showed that the compression rate which is achieved
by the CD depends strongly on the strength and orientation
of the magnetic field. In particular, the number of required
CVs increases with the strength of the magnetic field while at

TABLE V: Detailed wall clock timings in minutes for a
ff-CD-MP2/unc-cc-pVDZ calculation (N=1218) on

hexabenzocoronene in a homogeneous magnetic field
perpendicular to the molecular plane of the strength 0.1 B0

and a Cholesky parameter of δ = 5.

C1 C2h

time in min serial parallel serial parallel

tint 153.4 152.4 191.3 191.2
tchol

a 709.6 217.3 186.8 185.1
ti/o 2 x 1.5 2 x 1.9 2 x 0.6 2 x 0.6

tHF
b 877.4 (15.7) 408.5 (8.7) 55.4 (2.6) 50.9 (2.4)

tao2mo 55.9 15.2 6.1 1.8
tMP2 529.5 144.8 102.9 29.4
ttot 2336.4 949.4 548.6 464.4

a For the timings of tchol only the build of the CVs as in equation (3) is
considered which is the most expensive step of the Choleksy procedure
scaling O(N2N2

CH).
b Timings ’per iteration’ are given in parentheses.

the same time still yielding very high compression rates. Fur-
thermore, for linear molecules the number of CVs is maximal
in the perpendicular orientation with respect to the magnetic
field. Due to the fact that in the general case the ERIs only
exhibit fourfold permutational symmetry the possible savings
in terms of compression rate are particularly high in finite-
field calculations. Noting that the CD retrieves the neces-
sary CVs in a black-box manner with a pre-definable accu-
racy makes it very well suited for the computations in vary-
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(a) Corannulene (b) Hexabenzocoronene (c) Fullerene

(d) Retinal

FIG. 5: Molecular structure of calculated molecules. The colours scheme of the atoms correspond to: black = carbon, white =
hydrogen, and red = oxygen.

ing magnetic-field strengths and orientations. This is a clear
advantage over the use of RI methods for which auxiliary ba-
sis sets need to be employed which lack rigorous error con-
trol. So far, only magnetic-field independent auxiliary basis
sets have been used in ff calculations. Because of the well-
known connection between CD and RI, ff-CD results might
be employed in the generation of field-dependent auxiliary
basis sets for the use within RI calculations. The fact that
the number of CVs changes so drastically with field-strength
and orientation indicates that such a task, i.e., generating aux-
iliary sets with a solid and reliable accuracy for different field
strengths and orientations, may be challenging. Quantum-
chemical calculations in strong magnetic fields typically ex-
plore unknown terrains, making the reliability of the predic-
tions even more important. This work also constitutes a first
step towards a highly accurate treatment of larger systems in
strong magnetic fields. It enables studies on -for example-
the paramagnetic-to-diamagnetic transition of large paramag-
netic closed-shell molecules which may occur at much lower
and hence experimentally accessible magnetic-field strengths
than what is predicted for small systems.80 In addition, the use
of CD allows moving to larger basis sets and hence towards
higher accuracy which is particularly important for spectro-
scopic predictions. Following the work of Ref. 27, the CD

can also successfully be applied in more sophisticated post-
HF methods. As the basis-set error is often the limiting factor
in terms of accuracy in high-level ff calculations, the combi-
nation of CD with ff ground-state and excited-state coupled-
cluster methods

42,43,50,54,90
will be a beneficial future direc-

tion of development.
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