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CHOLINE TRANSPORTER-LIKE1 is required for
sieve plate development to mediate long-distance
cell-to-cell communication
Jan Dettmer1,*, Robertas Ursache2,*, Ana Campilho3,*, Shunsuke Miyashima2, Ilya Belevich2, Seana O’Regan4,
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Phloem, a plant tissue responsible for long-distance molecular transport, harbours specific

junctions, sieve areas, between the conducting cells. To date, little is known about the

molecular framework related to the biogenesis of these sieve areas. Here we identify

mutations at the CHER1/AtCTL1 locus of Arabidopsis thaliana. The mutations cause several

phenotypic abnormalities, including reduced pore density and altered pore structure in the

sieve areas associated with impaired phloem function. CHER1 encodes a member of a poorly

characterized choline transporter-like protein family in plants and animals. We show that

CHER1 facilitates choline transport, localizes to the trans-Golgi network, and during

cytokinesis is associated with the phragmoplast. Consistent with its function in the

elaboration of the sieve areas, CHER1 has a sustained, polar localization in the forming

sieve plates. Our results indicate that the regulation of choline levels is crucial for phloem

development and conductivity in plants.
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M
ulticellular organisms have diverse cellular structures to
facilitate cell communication, such as receptors, chan-
nels and junction structures. Choline metabolism and

transport has been known for a long time as a major factor for
cell communication in animals. Choline is classified as an
essential nutrient for humans and serves as a precursor for the
synthesis of both signalling and major membrane phospholipids,
as well as (glycine) betaine and the neurotransmitter acetylcho-
line. Interference with choline uptake, transport or metabolism
has been implicated in severe developmental defects and
neurological disorders like Alzheimer and Parkinson’s1. Inter-
and intracellular choline transport are mediated by different
transporter systems such as the polyspecific organic cation
transporters, the high-affinity choline transporters (CHTs) and
the intermediate-affinity choline transporter-like proteins
(CTLs)2,3. CHT1 is almost exclusively expressed in cholinergic
neurons and is required for the reuptake of choline from the
synaptic cleft into presynaptic neurons4–7, whereas the ubiquitous
expression of CTL1/SLC44A1 in mammalian tissues suggest that
choline transport is also required for more general cellular
functions like phospholipid biosynthesis3,8–12. Interestingly, it has
recently been suggested that CTL4/SLC44A4 may have a specific
role in the synthesis of non-neuronal acetylcholine13.

Little is known about choline transport in plants. Early studies
using isotope-labelled choline indicated that the compound can
be transported by carriers into plant cells. Also phosphocholine, a
compound derived from choline, is found in xylem exudate. This
organic phosphate ester might serve for phosphate and nitrogen
storage and is distributed by the vascular system throughout the
plant14,15. The idea that choline can be taken up from the media
and distributed within the plant is further supported by the
observation that externally supplied choline can rescue the
developmental defects of xipotl, a phosphocholine biosynthesis
mutant16. Choline might also be transported by the proline
transporter BvBet/ProT1, which is expressed in phloem and
xylem parenchyma cells of sugar beet17. Furthermore,
observations made in bean (Phaseolus vulgaris) and soybean
(Glycine max) suggest that extracellular choline is important for
plant–pathogen interactions18.

The conducting tissues for long-distance transport in plants are
xylem and phloem (Fig. 1a). Phloem is required for the
distribution of photosynthetic products, hormones, RNA,
peptides and other molecules from source to sink tissues. The
phloem tissue consists of phloem parenchyma cells, sieve tube
elements and companion cells (CCs). Transport occurs through
sieve tube elements, narrow elongated cylindrical cells, adjusted to
each other and forming a network spanning the entire length of
the plant. The cell walls between connecting sieve elements (SEs),
called sieve plates, are perforated by a large number of pores,
enlarged plasmodesmata, which enable intercellular transport and
communication (Fig. 1b). Three major components represent the
simplified structure of plasmodesmata: a tube that establishes
plasma membrane continuity between adjacent cells, a central
axial element derived from endoplasmic reticulum (desmotubule)
and the cell wall surrounding the plasma membrane19,20. The
conductivity of the sieve tubes can be regulated via callose (b-1,3-
glucan) deposition at the neck region of plasmodesmata in the
sieve plates21. Callose has been shown to be involved in the
regulation of the sieve pore diameter. In cals7 mutants reduced
callose deposition at the sieve plate leads to a reduced number of
open pores per sieve plate, smaller diameter sieve pores and
impaired phloem transport22,23. But also over accumulation of
callose, as shown by the phloem-specific expression of a gain of
function mutant of CalS3, inhibits phloem conductivity24,
suggesting that callose deposition at the sieve plate has to
be tightly regulated. The only gene identified so far which

is specifically required to establish phloem identity is altered
phloem development (APL), a MYB coiled-coil-type transcription
factor25. Despite its importance for plant growth, the mechanisms
regulating phloem development and especially sieve plate
formation is still poorly understood.

In Arabidopsis, seven genes share sequence similarity to CTL
genes in animals and yeast. Here, we show that one of the
Arabidopsis CTL homologues, At3g15380, named here as CHER1,
mediates choline transport and loss-of-function results in an
altered choline metabolite profile, defects in sieve plate and sieve
pore formation and impaired phloem transport. CHER1 is
expressed in several tissues, localizes to the trans-Golgi network
(TGN) and transiently to the forming cell plate during
cytokinesis. In addition, during early SE differentiation, CHER1
has a polar localization associated with the forming sieve plates.
Together, our results indicate that a CTL-like protein functions in
a choline transport process that is involved in sieve plate and
sieve pore formation in plants.

Results
Isolation of cher1 mutants with altered AHP6 expression. To
identify novel regulators of vascular patterning and transport, we
carried out a misexpression screen for pAHP6::GFPer, a cytokinin
signalling inhibitor. pAHP6::GFPer is normally expressed in a
highly specific pattern associated with xylem26 (Fig. 1d), and its
expression pattern is known to respond to the transport status of
the phloem27. Screening ethyl methanesulfonate (EMS)
mutagenized plants expressing pAHP6::GFPer resulted in the
isolation of three mutants (Fig. 1c) with similar variable, often
expanded pAHP6::GFPer expression (50%, n¼ 20; Fig. 1e), which
we further characterized. An allelism test revealed that the three
isolated mutants are allelic.

cher1 mutants exhibit defects in root development. All three
cher1 mutant alleles are dwarf with defects in both shoot and root
architecture (Fig. 1c). Shortly after germination, cher1 mutants
develop a severe root growth phenotype that involves reduced
primary root growth and lateral roots that grow approximately
the same length as the primary root. Six–day-old cher1 seedlings
develop a primary root about 10% of the length of a wild-type
(WT) root (Supplementary Fig. 1a). Also the size of the root
meristem region decreased during the first 5–6 dag as determined
by propidium iodide-stained roots using confocal laser scanning
microscope (Supplementary Fig. 1b,c). Severe swelling of ground
tissue cells, abnormal root hair development and aberrant cell
wall positioning are further characteristics of cher1-1 mutant
(Supplementary Fig. 1d,e). Consistent with misexpression of
pAHP6::GFPer, altered xylem specification was detected in the
stele of cher1 mutants. Fuchsin staining of cher1 mutants revealed
that the distinct patterning of meta- and protoxylem as observed
in WT roots is abolished. The xylem in cher1-1 mutant is often
discontinuous, some of the roots developed extra meta- or pro-
toxylem files (Supplementary Fig. 1f,g).

CHER1 is required for phloem patterning and conductivity. To
follow-up the pAHP6::GFPer misexpression aspect, which is
informative for phloem function, we next analysed vascular
conductivity in the cher1-1 mutant. In WT plants, green fluor-
escent protein (GFP) expressed under control of the CC-specific
pSUC2 promoter (pSUC2::GFP)28 is translocated from CC to SEs
and unloaded symplastically into the root meristem (Fig. 1f,h). In
cher1-1 mutant, the unloading of GFP from protophloem into the
root meristem is blocked (Fig. 1g,i). Reduced symplastic
movement was further observed in cher1-1 mutants expressing
pSUC2::SpoGFP29, a Sporamin fused to GFP to increase the
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protein size (Supplementary Fig. 1h–k). These results indicate
that the cher1-1 mutant is defective in symplastic transport
through phloem.

To understand the status of phloem conductivity, we next
investigated phloem development in the cher1-1 mutants.
Toluidine blue-stained cross-sections of 6-day-old cher1-1 roots
revealed severe defects in procambium maintenance and phloem
patterning. WT phloem poles consist of two CCs and two SEs
(Supplementary Fig. 1l), whereas cher1-1 mutants exhibit an
increased number of SE-like cells frequently extending into the
procambial domain (Supplementary Fig. 1m). Furthermore, we
observed a disrupted pattern of the phloem-specific pAPL::GFPer
confirming that continuous phloem cell differentiation is unstable
in cher1-1 mutant (Fig. 1j,k).

CHER1 encodes a plant CHOLINE TRANSPORTER-LIKE
protein. To understand the role of the CHER1 gene product in
regulating phloem morphogenesis or phloem conductivity, we
next set out to better characterize the mutant locus. Rough
mapping via a PCR-based positional cloning approach indicated
the locus was between the markers J3-5079754 and J3-5255497
leaving a window of approximately 175 kb. Subsequent whole-
genome re-sequencing (Illumina) revealed a premature STOP in
the CHOLINE TRANSPORTER-LIKE (AtCTL1, At3g15380)30,31

gene, which we rename here as CHER1. Two other cher1 mutant
alleles with premature STOP codons were identified from the

same forward genetic screen. All three cher1 alleles (cher1-1
(TGG-TAG at position 1403 of CDS), cher1-2 (TGG-TGA at
position 438 of CDS) and cher1-3 (CGA-TGA at position 946 of
CDS)) and a T-DNA insertion mutant (SALK_065853; Fig. 2a)
segregate in a recessive manner. In addition, we were able to
complement cher1-1 with a 3117-bp genomic DNA
encompassing the CHER1 coding sequence and the 1,337 bp
50-upstream region (Fig. 2b). The CHER1/At3g15380 locus
encodes a protein of 700 amino acids, with ten predicted trans-
membrane spanning domains (TMHMM Server v. 2.0) similar to
the predictions of most CTL proteins from rat or human and
other organisms3. In plants, seven genes including CHER1/
At3g15380 have been annotated as potential CTL proteins in
Arabidopsis based on their protein sequence similarity
(Supplementary Fig. 2a). However, our in sillico analysis with
the multiple alignment with CTL proteins from various
organisms revealed that CHER1 is closest in homology to the
animal CTL proteins and is distinct from the other six
Arabidopsis CTL-like proteins (Supplementary Fig. 2b,c).

CHER1 facilitates choline transport. The first CTL protein was
isolated by screening a cDNA library from the Torpedo lobe,
which is highly enriched in neurons to identify genes able to
suppress the growth defects of a yeast mutant lacking choline
transport and reduced choline metabolism9,32. Choline uptake
experiments performed with CTL1 and CTL2 from different
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Figure 1 | cher1-1mutants show altered pAHP6::GFPer expression and abnormal phloem development. (a) Schematic presentation of the Arabidopsis root

highlighting the vascular cylinder. (b) Schematic of sieve tube structure and sieve pore maturation. (c) Seedling phenotype of 6-day-old wild-type (Col-0),

cher1-1, cher1-2 and cher1-3. Scale bar, 1 cm. (d,e) pAHP6::GFPer in wild-type Col-0 (d) and cher1-1 (e). Pericycle and protoxylem cells expressing

pAHP6::GFPer are marked with yellow asterisks. Scale bars represent 50mm for longitudinal and 25mm for cross-sections. (f–i) pSUC2::GFP in wild-type Col-

0 (f,h) and cher1-1 (g,i) (the tip region is shown at higher magnification in h and i). (j,k) pAPL::GFPer in wild-type (j) and cher1-1 (k). White arrows indicate

the sites of fragmented pAPL::GFPer expression. Scale bar, 50mm.
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organisms using various heterologous cell systems showed that
these CTL proteins can facilitate choline transport across
membranes9,32–36. To test whether CHER1 also has the
capability to transport choline, uptake experiments were
performed using Xenopus oocytes. Expression of CHER1-GFP
fusion proteins in the oocytes revealed that the tagged protein
localizes primarily to intracellular compartments. However, the
high levels of exogenous protein produced in the oocytes allow a
small portion to be localized in the plasma membrane because of
cell membrane trafficking, and the expression of in vitro
transcribed tagged CHER1 RNA was able to increase choline
uptake 1.3-fold (Fig. 2c) in the oocytes, which is similar to the
uptake rates observed with tagged human CTL1 (Supplementary

Fig. 3a). Both endogenous and CHER1-related choline uptake
were time (Fig. 2e and Supplementary Fig. 3a) and temperature
(Supplementary Fig. 3b) dependent. The time-dependent uptake
at 0.3 mM 14C-choline revealed a twofold difference in the slope
between water-injected and CHER1-YFP-injected oocytes
(Fig. 2e). Moreover, the transport kinetics analysis showed that
CHER1 increased the Vmax of a high affinity component of
choline transport in the oocytes (Fig. 2f). A similar effect on
Vmax has been observed previously with rat rCTL1a and rCTL1b
proteins36. We observed a stimulatory effect of low pH on choline
uptake in the presence of CHER1 (Supplementary Fig. 3c).
In contrast, the transport of indole-3-acetic acid (IAA) and
glucose by oocytes was not affected by the expression of CHER1
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(Fig. 2c). To determine whether the loss of function mutations in
CHER1 cause a reduction in choline and phosphocholine levels,
we measured the total content of these molecules in the root of
7-day-old seedlings. The quantification revealed a significant
reduction of Cho (40%, Po0.0001 Student’s t-test) and PCho
(51%, Po0.0001, Student’s t-test) content in cher1-1 compared
with that present in WT plants (Fig. 2d), indicating that CHER1
may be involved in the regulation and/or maintenance of choline
metabolite levels in plants. Furthermore, we analysed the
expression of pAPL::GFPer and the distribution of the freely
moving GFP driven by the phloem CC-specific pSUC2 promoter
during phloem development in the biosynthetic xipotl
mutant, which also shows reduced levels of choline and
phosphocholine16,37. Similar to cher1-1, we observed a reduced
movement and unloading defects of pSUC2::GFP (Supplementary
Fig. 4a–d), in addition to the fragmented expression pattern
of pAPL::GFPer (Supplementary Fig. 4e,f) in xipotl phloem and
an increased number of SE-like cells in the root cross-
section (Supplementary Fig. 4g,h). Taken together, these
data indicate that CHER1 facilitates choline transport and
maintains choline homeostasis during root (and phloem)
development in Arabidopsis.

CHER1 localizes to the TGN, forming cell- and sieve-plates.
We next investigated the subcellular localization of CHER1 in the
meristematic cells of Arabidopsis root by expressing a functional
pCHER1::CHER1-YFP in WT and cher1-1 mutants. We found
that pCHER1::CHER1-YFP displayed a punctate pattern in the
cytosol in close vicinity to the Golgi marker CD3-967-RFP38 and
colocalizes with the TGN/EE (early endosome) labelled by VHA-
a1-RFP (Fig. 3a–c). Transmission electron microscopy of
immunogold labelled ultrathin cryosections using GFP
antibodies confirmed the presence of pCHER1::CHER1-YFP in
the TGN/EE (Fig. 3d). Notably, in the mitotic cells,
pCHER1::CHER1-YFP is present at the sides of centrifugally
extending cell plates as indicated by the ring-like localization in a
three-dimensional (3D) projection (Fig. 3e–h; Supplementary
Movie 1). This localization suggests that pCHER1::CHER1-YFP
accumulates at the phragmoplast, the site where vesicles are
transported to the expanding cell plate. 40,6-Diamidino-2-
phenylindole staining of cortex and epidermis cells expressing
pCHER1::CHER1-YFP shows a specific requirement for CHER1
at the cell plate during the telophase stage of cell division
(Fig. 3h).
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Figure 3 | CHER1 localizes to TGN, nascent cell plates and in phloem precursor cells to the sites of forming sieve plates. (a–c) Colocalization of

pCHER1::CHER1-YFP with TGN marker VHA-a1-RFP. Scale bar, 7.5mm. (d) Immunogold labelling of CHER1 in Arabidopsis root. G, Golgi. Scale bar, 250 nm.

(e) pCHER1::CHER1-YFP expression in phloem and outer layers of the root. Yellow arrows indicate cell plate-specific CHER1 expression in outer layers of the

root; white arrow indicates sieve element-specific CHER1 expression. Scale bar, 50mm. (f) pCHER1::CHER1-YFP expression in cortex and epidermis cells.

Scale bar, 7.5mm. (g) pCHER1::CHER1-YFP ring-like localization in a 3D projection at the cell plate of cortex and endodermis cells. Scale bar, 5 mm.

(h) 40,6-Diamidino-2-phenylindole (DAPI) staining of endodermis cell expressing pCHER1::CHER1-YFP. Scale bar, 7.5mm. (i,j) Polar CHER1 localization in the

early phloem sieve elements. Protophloem sieve elements are marked with asterisks. Scale bar, 25mm. (k,l) Sustained expression pattern of CHER1 in sieve

plates in a 3D projection. Scale bars, 5 mm.
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Whereas in most root meristem cells, pCHER1::CHER1-YFP is
predominantly found at the TGN or at the phragmoplast in
dividing cells, in SE cells pCHER1::CHER1-YFP exhibited a
specific subcellular localization, in which CHER1-YFP accumu-
lates in a polar manner at the central domain of the developing
sieve plate (Fig. 3e,i–l). Compared with the transient ring-like
localization in nascent cell plates (Fig. 3g), CHER1-YFP in the
central domain of sieve plates is more sustained (Fig. 3k,l;
Supplementary Movie 2). These data suggest that CHER1 has a
specific function in the elaboration of the sieve plates/pores.

Continuous vesicle trafficking maintains CHER1 polarity. In
(cholinergic) neurons, acetylcholine synthesis is maintained by the
high-affinity CHT1, which transports choline across the plasma
membrane. By influencing CHT1, endocytosis and trafficking
choline uptake and hence acetylcholine biosynthesis can be regu-
lated39. To investigate whether continuous membrane trafficking is
required to maintain CHER1 polarity in SE cells, we treated
seedlings expressing CHER1(cDNA)-YFP under control of an early
phloem-specific promoter pEPM40 with brefeldin A (BFA). BFA is
a fungal toxin that inhibits vesicle transport and involves GDP-
GTP exchange factors for small G proteins of the ARF class (ARF
GEFs). In plants, BFA has been shown to block endocytic recycling
of certain proteins and causes an aggregation of endosomes
(including TGN) and internalized endocytic cargos into so-called

BFA compartment41. In untreated seedlings, we observed
pEPM::CHER1(cDNA)-YFP expression at the TGN and a polar
pattern in phloem precursor cells (Fig. 4a,b). By contrast, BFA
treatment caused rapid intracellular aggregation of CHER1
proteins into BFA compartments and loss of the polar pattern in
the early sieve plates (Fig. 4c,d), indicating that continuous vesicle
trafficking is required for creating CHER1 polarization in SE.
Furthermore, we analysed the behaviour of two dynamin-related
proteins, DRP1A and DRP1C, which are involved in the clathrin-
mediated endocytosis in plants42–44. As previously reported, both
DRP1A and DRP1C localize to the cell plate and the plasma
membrane of expanding and fully expanded interphase cells44,45.
Notably, we found that both DRP1A and DRP1C exhibit a similar
polarized pattern to that of CHER1 in SE cells (Fig. 4e–h). Taken
together, our observation here suggests that a BFA-sensitive
endocytotic recycling mechanism might be involved in the
maintenance of the polar CHER1 pattern in SE cells.

CHER1 is required for sieve plate and sieve pore elaboration.
The intriguing polar localization of CHER1 in SE cells suggests
that CHER1 may have a role in the elaboration of sieve plates.
Using serial block-face scanning electron microscopy (SBEM)46,
we next compared serial sectioned roots of two WT (from 235 to
562 mm and from 210 to 525 mm from the root tip) and two
cher1-1 (from 162 to 408mm and from 129 to 445mm from the

–BFAa

e f g

h

b c d

pEPM::CHER1-YFP pEPM::CHER1-YFP pEPM::CHER1-YFP pEPM::CHER1-YFP

pDRP1A::DRP1A-mGFP5

pDRP1C::DRP1C-mGFP5pDRP1C::DRP1C-mGFP5pDRP1A::DRP1A-mGFP5

–BFA +BFA +BFA

Phloem sieve plate

Phloem sieve plate

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

Figure 4 | Continuous vesicle trafficking is required for establishing CHER1 polarization and sustained pattern maintenance in the developing sieve

plates. (a,b) pEPM::CHER1-YFP expression in early sieve elements. Asterisks indicate phloem sieve elements and white arrows indicate polar CHER1

localization in the magnified image (b). Scale bars, 25mm for a and 5 mm for b. (c,d) pEPM::CHER1-YFP expression after 30min of 50mM BFA treatment.

Asterisks indicate phloem sieve elements and yellow arrows indicate BFA compartments in the magnified image (d). Scale bars represent 25mm (c) and

5 mm (d). (e) pDRP1A:DRP1A-mGFP5 expression in the early sieve elements. (f) pDRP1C:DRP1C-mGFP5 expression in the early sieve elements. Asterisks

indicate phloem sieve elements and white arrows indicate polar DRP1A and DRP1C expression pattern. (g,h) Sustained expression pattern of DRP1A (g) and

DRP1C (h) in sieve plates in a 3D projection. Scale bars, 5mm.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms5276

6 NATURE COMMUNICATIONS | 5:4276 | DOI: 10.1038/ncomms5276 | www.nature.com/naturecommunications

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


root tip) seedling root tips from the quiescent center (QC) to the
region in the root where enucleated SEs start to be formed
(Fig. 5a). In addition, we analysed the sieve plates in mature
cher1-1 and WT roots (Fig. 6c,d). The data revealed that, despite
having a reduced sieve plate area (17.16mm2 in cher1-1 and
20.01 mm2 in WT average), cher1-1 mutants have a reduced sieve
pore density (1.86 pores per mm2 in cher1-1 and 2.35 pores per
mm2 in WT average) when compared with WT (Fig. 5b–d). As

sieve pores are necessary for the translocation of various micro-
and macromolecules from one phloem cell to the next and
thereby enable long-distance transport throughout the plant
body, having a reduced sieve pore number in cher1-1 is likely to
explain the impaired transport of GFP in the phloem observed
with proSUC2::GFP mentioned above.

As the SE differentiates, it undergoes a selective breakdown and
all the remaining components become distributed along the
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wall47,48. Studies of SE formation in various plant species revealed
that this process is accompanied by plasmodesmata enlargement
and disintegration of the desmotubules, which leads to the
formation of mature sieve plate pores49,50 (Fig. 1b). Callose
deposition around plasmodesmata has been suggested to have an
important role in initiating this process23.

Using the SBEM, we observed that during the differentiation of
SEs the sieve pores are gradually losing the desmotubules, rigid
structures derived from endoplasmic reticulum that run between two
SEs. For our analysis, we selected the sieve plates at the junction
between ‘grey’ (cell which still undergoes the selective breakdown)
and ‘white’ (lacking most of cellular compartments) cells and
additionally the sieve plates between already elongated and
differentiated SEs (Supplementary Fig. 5a). We could not detect a
significant difference in the sieve pore anatomy in the junction
between ‘grey’ and ‘white’ cells in WT (361mm from the root tip; left
model in Fig. 6e and Supplementary Fig. 5b,c) and the cher1-1
mutant (226mm from the root tip; left model in Fig. 6f and
Supplementary Fig. 5b), where the sieve pores still retained the
desmotubules. However, the analysis of the sieve pores in already
developed SEs revealed a significant difference between WT and
cher1-1. The majority of sieve pores in the WT (468mm from the
root tip; right model in Fig. 6e and Supplementary Fig. 5b,c) have
lost the desmotubules, whereas cher1-1 sieve pores (445mm from the
root tip) still retained the desmotubules in the symplastic space (right
model in Fig. 6f and Supplementary Fig. 5b,c). Finally, we found that
the sieve plate area, sieve pore number and sieve pore area are
reduced in 30-day-old xipotl and cher1-1 roots compared with WT
(Supplementary Fig. 4i–k). Taken together, our analyses indicate that
the function of CHER1 as a facilitator of choline transport is
required for the proper sieve pore formation in developing SEs.

Discussion
In fungi and animals, the shortage of notable ctlmutant phenotypes
under non-stress/-induced conditions9,51,52 has hampered so far
the investigation of CTL-dependent developmental processes. Here

we report the identification of CHER1 as a novel regulator of sieve
plate formation and provide evidence that CHER1 is involved in
maintaining choline homeostasis in the Arabidopsis root.

Enucleated sieve tubes of the phloem form a conductive tissue
to distribute various molecules within plants. In order to facilitate
long-distance transport, the cell walls separating neighbouring
sieve tubes are perforated by sieve pores. Despite its importance
for growth and fitness of higher plants, little is known about the
genetic regulation of phloem development.

Both expression analysis of phloem marker genes and 3D-
scanning electron microscopy (SEM) data revealed that our novel
loss-of-function cher1 mutants fail to unload free (cytosolic) GFP
from the phloem into the root tip and form a reduced number
and structurally altered sieve pores in sieve plates. As phloem
conductance is predicted to be directly linked to the density and
size of pores on the sieve plate53,54, we propose that CHER1 is
required for sieve plate elaboration and hence influences phloem
long-distance transport and continuity. This is further supported
by the initial observation that the expression domain of AHP6,
which is regulated by the function of phloem-derived
phytohormone27, is expanded in cher1 mutants. Consistent with
its role in phloem development, CHER1 accumulates at the sites
of forming sieve plates but it is also localized to the TGN and
forming cell plates in other root cell types.

Endocytosis allows cells to adjust the protein composition and
localization at the plasma membrane in response to develop-
mental and environmental cues. This process has been shown to
regulate the abundance and polarity of various transporters, such
as CHT1 in human embryonic kidney and neuroblastoma
cells39,55–58, aquaporins59 and PIN-FORMED (PIN) auxin
efflux carriers60–62 in Arabidopsis. Our observation that CHER1
is rapidly endocytosed at forming cell plates suggests that a
specific vesicle transport machinery is employed to continuously
target CHER1 to the forming sieve plates.

Consistent with data from transport assays performed with
CTLs from various organisms9,11,35, expression of CHER1 in
Xenopus oocytes increased choline uptake from the medium. As
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the loss of CHER1 results in reduced choline metabolite levels in
the root, it is likely that CHER1-mediated maintenance of choline
levels is crucial for proper root development. This notion is
further supported by the phenotypic similarity of cher1 and the
phosphocholine biosynthetic xipotl (xpl) mutant16.

At this stage, our work does not fully reveal the cellular process
for which CHER1 is required for sieve plate development. Further
investigations will be required to clarify the molecular and
physiological function of CTLs in plants. For this analysis, the
three cher1 alleles of Arabidopsis may provide an important
resource.

Methods
Plant materials and growth conditions. WT Columbia (Col-0) mutants cher1-1,
cher1-2 and cher1–3 were isolated in a genetic screen based on EMS mutagenesis of
the mobile phloem marker pAHP6::GFPer. The cher1-1 (Col-0) was crossed to
Landsberg (Ler) to generate F2 mapping population. The information on mapping,
sequencing and genotyping primers is provided in Supplementary Tables. cher1-4
(SALK_065853) was obtained from the Nottingham Arabidopsis Stock Centre. The
reporter lines pAHP6::GFPer26, pAPL::GFPer25, pSUC2::GFP28, pSUC2-spoGFP29,
VHA-a1–GFP63 and pDRP1A:DRP1A-mGFP5 (ref. 45) have been described
previously. Seedlings were grown vertically in Petri dishes on 1% agar, one-half of
Murashige and Skoog (MS) basal salt mixture, 1% sucrose and 0.05% 4-morpholine
ethanesulfonic acid (MES).

Whole-genome re-sequencing. Five microgram of purified genomic DNA in
total volume of 50 and 700 ml nebulization buffer were added to a nebulizer.
Shearing was performed for 6min at 32–35 p.s.i. The recovered volume was 410 ml.
The sample solution was purified and concentrated by column (Qiagen). End
repair of the sheared fragments, addition of an A residue to the 30 end of blunted
fragments, and ligation of paired-end (PE) adaptors were according to the Illu-
mina’s instructions. The entire adaptor-modified DNA was resolved on a 2%
agarose gel (including 400 ngml� 1 ethidium bromide) run in 1� TAE buffer
(Bio-Rad) for 90min at 120V. Fragments of 300 b.p.s. were excised under illu-
mination from a Dark Reader (Clare Chemical Research). The DNA was then
isolated with a Gel Extraction Kit (Qiagen) and 1 ml (2.5 ng) was amplified by PCR
for 12 cycles with the supplied Illumina PCR primers 1.1 and 1.2 (Illumina). PCR
fragments were purified by PCR purification kit (Qiagen) and eluted with 50 ml
elution buffer (Qiagen).

The library yield was quantified by Nanodrop and diluted to 10 nM in EB buffer
(Qiagen) supplemented with 0.1% Tween-20 for long-term storage at � 20 �C. The
DNA sample was sequenced by the Max Planck Institute for Developmental
Biology, Tübingen, Germany, on an Illumina GAIIx instrument (Illumina). Whole-
genome sequencing data were filtered and trimmed based on per based quality
information using SHORE30. Quality controlled data were aligned against the A.
thaliana reference sequence using GenomeMapper allowing for at most 10% of the
read length to be involved in either gaps or mismatches31,64. Consensus calls were
performed by SHORE consensus using default parameters. All confident
mismatches within the 175-kb mapping interval were annotated according to their
effect of gene integrity. The whole-genome sequencing data of cher1-1 have been
deposited to the European Nucleotide Archive under accession code PRJEB6417.

Transgenic work. pAPL::GFPer, pAHP6::GFPer, pSUC2::GFP and pSUC2-spoGFP
markers were introduced into cher1-1 mutant background by crossing and analyses
were done on segregating F2 generations. Transgenic constructs were generated
using the Multisite Gateway System (Invitrogen). A 3.1-kb genomic CHER1 frag-
ment was amplified by PCR using primers 50-AAAAAGCAGGCTATGAGAGGA
CCTTTAGGAGCAGTG-30 (forward) and 50-AGAAAGCTGGGTTGTGAGTA
AGACTCTGAACCTCTTCC-30 (reverse) and cloned into pDONR(Zeo)
(Invitrogen) vector and verified by sequencing. Subsequently, the 1.3-kb sequence
corresponding to the CHER1 promoter (pCHER1) was amplified from Col-0
genomic DNA using primers 50-ATAGAAAAGTTGCTACAAAACTAAGTC
GTGCTCTGG-30 (forward) and 50-TTGTACAAACTTGACTTTGCCACAGCTA
TGTCTCTTCAC-30 (reverse) and cloned into pDONRP4-P1R (Invitrogen).
pCHER1, CHER1 and YFP were combined into the multisite destination vector
pBm43gw65 and transformed by floral dipping66 into Col-0 and cher1-1mutant. To
produce pEPM::CHER1(cDNA)-YFP, a 2.1-kb fragment was amplified from Col-0
cDNA by PCR using primers 50-AAAAAGCAGGCTATGAGAGGACCTTTA
GGAGCAGTG-30 (forward) and 50-AGAAAGCTGGGTTGTGAGTAAGACT
CTGAACCTCTTCC-30 (reverse), cloned into pDONR(Zeo) vector and verified by
sequencing. pEPM67, CHER1 (cDNA) and YFP were combined into the multisite
destination vector pBm43GW and transformed by floral dipping into Col-0.

Anatomical analyses and confocal microscopy. For serial sectioning, 5-day-old
seedlings were incubated in a fixation solution (1ml of 25% glutaraldehyde, 2.7ml
of 37% formaldehyde, 2.5ml of NaPi and 18.8ml of H2O) at 4 �C overnight. After

the fixation, the plants were dehydrated in an ethanol gradient (10%, 30%, 50%,
70%, 96%, 2� absolute ethanol), for at least 30min at each step. Next, the
seedlings were incubated in a 1:1 mix of absolute ethanol and solution A (100ml of
Basic resin, 1 g of Historesin activator (both from Leica Historesin embedding kit)
and 2ml of polyethylene glycol) overnight at room temperature. Consequently, the
incubation solution was replaced with pure solution A and incubated for 2 h more
at room temperature. For embedding, the roots were oriented horizontally next to
each other in a plastic well. The well was next filled with a mix of solution A and
Historesin hardener (15:1) and covered with a plastic and left for polymerization to
take place. As many wells were produced separately, they were finally combined
into one block and filled with the previously mentioned polymerization mix.
Finally, the resin blocks with embedded roots were attached to the wooden blocks
for sectioning. 3–5 mm sections were made on a Leica JUNG RM2055 microtome,
using a Leica microtome knife (Leica disposable blades TC-65; Leica). Sections
were stained in a 0.05% toluidine blue solution and visualized with a Leica 2500
Microscope (Leica).

For fuchsin staining, seedlings were first cleared with acidified methanol (10ml
of methanol, 2ml of concentrated HCl (37%) and 38ml of H2O) and incubated at
55�–57 �C for 15min. The acidified methanol was replaced with basic solution (7%
NaOH in 60% ethanol) and incubated for 15min at room temperature. The
rehydration of the seedlings took place in several steps (40, 20 and 10% ethanol,
10min each). The seedlings were stained for 5min in 0.01% basic fuchsin solution,
destained in 70% ethanol for 10min and rehydrated again in the ethanol gradient
(40, 20 and 10%). An equal amount of 50% glycerol was added to the 10% ethanol
and the seedlings were incubated overnight. Finally, the seedlings were mounted in
50% glycerol on the glass slides. The images of various markers and fuchsin-stained
roots were taken on Leica SP5 confocal microscope using a solid-state blue laser for
GFP (480 nm/270mW).

CHER1, DRP1A and DRP1C localization were examined by confocal
z-sectioning and 3D reconstruction. To inhibit the endosomal recycling, the roots
were treated with 50 mM BFA (Invitrogen).

Expression in Xenopus oocytes and choline uptake assays. Xenopus laevis
oocytes were prepared by excision and defolliculation using collagenase D
(20mgml� 1, Roche Diagnostics), then injected with CHER1 RNA made with
mMessage mMachine (Ambion) from the oocyte expression vector pOO2. Uptake
measurements were performed after 3–4 days of incubation in Barth’s medium.
Oocytes were incubated at room temperature with 14C-choline (2.04GBqmmol� 1,
Perkin-Elmer) at 0.1–10 mM for the indicated times, then washed and solubilized
for determination of the accumulated radioactivity.

Immunogold labelling. For immunogold labelling of ultrathin thawed cryosec-
tions, root tips were fixed with 4% (30min) and 8% formaldehyde (2 h), embedded
in gelatin and infiltrated with a mixture of polyvinylpyrrolidone and sucrose.
Thawed ultrathin sections were labelled with rabbit anti-GFP antibodies (1:300;
Abcam) and goat anti-rabbit IgG coupled to Nanogold (no. 2004; Nanoprobes).
After silver enhancement (HQ Silver, 8 min; Nanoprobes), sections were embedded
in methyl cellulose.

SBEM. SBEM is a method that is based on a combination of a microtome (3View,
Gatan) mounted inside the SEM chamber and a sensitive back-scattered electron
detector (Gatan) producing classic transmission electron microscopy-like images.
The microtome repeatedly shaves resin-embedded specimen to form a fresh block
face that is being imaged. After each cutting and imaging step, the specimen is
moved up by desired Z-step, and the cycle is automatically repeated.

The roots were fixed with 2.5% glutaraldehyde, 2% formaldehyde in 0.1M Na-
Cacodylate buffer (pH 7.4) supplemented with 2mM CaCl2 for 2–3 h at room
temperature, and prepared using a previously described protocol70. Durcupan
ACM resin (Fluka, Sigma-Aldrich) was mixed according to the manufacture’s
recommendations. After standard dehydration steps, samples were embedded in
silicone holders filled with 100% Durcupan and infiltrated for at least 2 h before
polymerization at 60 �C. The roots were trimmed to the desired starting point from
the tip using EM Ultracut UC6i ultramicrotome (Leica Mikrosysteme GmbH) and
a diamond knife. The excess resin around the root was trimmed away and the
specimen was mounted on a 3View pin. Finally, the sides of the specimen were
covered with silver paint (Agar Scientific Ltd.) and the whole assembly was
platinum-coated using Quorum Q150TS (Quorum Technologies, UK). Images
were acquired with a FEG-SEM Quanta 250 (FEI), using a backscattered electron
detector (Gatan) with 2.5-kV beam voltage, spot size 3 and pressure between 0.15
to 0.3 Torr. The block faces were cut with 40 nm increments. The images were first
processed and segmented using Microscopy Image Browser, a self-developed
programme written under Matlab environment, and further visualized in Amira
(FEI Visualization Sciences Group).

Scanning electron microscopy. Arabidopsis tissue for SEM investigations of sieve
plates was prepared as described previously68. In short, plants were shockfrozen in
liquid nitrogen, freeze substituted in ethanol and the cytoplasm was digested in
0.5% Proteinase K and 8% Triton X-100 for 2 weeks. The tissue was washed, freeze
dried, sputter coated and observed in a FEI Quanta 200 FEG SEM.
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