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Aging is a complex biological process that increases the risk of age-related cognitive

degenerative diseases such as dementia, including Alzheimer’s disease (AD), Lewy

Body Dementia (LBD), and mild cognitive impairment (MCI). Even non-pathological

aging of the brain can involve chronic oxidative and inflammatory stress, which disrupts

the communication and balance between the brain and the immune system. There

has been an increasingly strong connection found between chronic neuroinflammation

and impaired memory, especially in AD. While microglia and astrocytes, the resident

immune cells of the central nervous system (CNS), exerting beneficial effects during the

acute inflammatory phase, during chronic neuroinflammation they can become more

detrimental. Central cholinergic circuits are involved in maintaining normal cognitive

function and regulating signaling within the entire cerebral cortex. While neuronal-glial

cholinergic signaling is anti-inflammatory and anti-oxidative, central cholinergic neuronal

degeneration is implicated in impaired learning, memory sleep regulation, and attention.

Although there is evidence of cholinergic involvement in memory, fewer studies have

linked the cholinergic anti-inflammatory and anti-oxidant pathways to memory processes

during development, normal aging, and disease states. This review will summarize the

current knowledge of cholinergic effects on microglia and astroglia, and their role in

both anti-inflammatory and anti-oxidant mechanisms, concerning normal aging and

chronic neuroinflammation.

Abbreviations: ACh, acetylcholine; AChE, acetylcholine esterase; AD, Alzheimer’s disease; ANS, autonomic nervous
system; APOE4, apolipoprotein E4; ATP, adenosine tri-phosphate; Aβ, Amyloid β; BBB, the blood-brain barrier; BDNF,
brain-derived neurotrophic factor; BF, basal forebrain; BS, Brainstem; CCR, CC chemokine receptor; ChAT, choline
acetyltransferase; CNS, central nervous system; COX-2, cyclooxygenase-2; CSF, cerebrospinal fluid; CXCL, CXC motif
ligand; DMXBA, 3-[(2, 4-dimethoxy)benzylidene]-anabaseine dihydrochloride; GABA, γ-aminobutyric acid; GDNF, glial
cell line-derived neurotrophic factor; GFAP, glial fibrillary acidic protein; HO1, heme oxygenase; IL, interleukin; INF,
interferon; IP, inducible protein; IP3, inositol-3-phosphate; IκB, an inhibitor of nuclear factor κB; JAK, Janus kinase; JNK,
c-jun N-terminal kinase; LBD, Lewy body dementia; LPS, lipopolysaccharide; mAChR, muscarinic acetylcholine receptor;
MAPK, mitogen-activated protein kinase; MHC, major histocompatibility complex; MLA, methyllycaconitine; MPTP,
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; nAChR, nicotinic acetylcholine receptor; NADPH, nicotinamide adenine
dinucleotide phosphate; NF-κB, nuclear factor-κB; NO, nitric oxide; Nrf2, nuclear factor erythroid 2-related factor 2;
ORM2, orosomucoid 2; PAM, positive allosteric modulator; PD, Parkinson’s disease; PFC, the pre-frontal cortex; PI3K,
phosphatidylinositol-3-kinase; PLC, Phospholipase C; PNS, peripheral nervous system; ROS, reactive oxygen species;
STAT, signal transducer and activator of transcription; TGF, transforming growth factor; TNF, tumor necrosis factor;
TQS, 3a,4,5,9b-Tetrahydro-4-(1-naphthalenyl)-3H-cyclopentan[c]quinoline-8-sulfonamide; VTA, a ventral tegmental area;
α7nAChR, α7 nicotinic acetylcholine receptor.
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We provided details on how stimulation of α7 nicotinic acetylcholine (α7nACh) receptors

can be neuroprotective by increasing amyloid-β phagocytosis, decreasing inflammation

and reducing oxidative stress by promoting the nuclear factor erythroid 2-related factor

2 (Nrf2) pathways and decreasing the release of pro-inflammatory cytokines. There is

also evidence for astroglial α7nACh receptor stimulation mediating anti-inflammatory and

antioxidant effects by inhibiting the nuclear factor-κB (NF-κB) pathway and activating

the Nrf2 pathway respectively. We conclude that targeting cholinergic glial interactions

between neurons and glial cells via α7nACh receptors could regulate neuroinflammation

and oxidative stress, relevant to the treatment of several neurodegenerative diseases.

Keywords: cholinergic system, microglia, astrocytes, basal forebrain, neuroinflammation,

aging, neurodegeneration

INTRODUCTION

Acetylcholine Receptors in the CNS
Acetylcholine (ACh) was one of the first identified
neurotransmitters (Valenstein, 2002) and has been shown
to modulate many physiological functions within the peripheral
nervous system (PNS), the autonomic nervous system (ANS),
and the central nervous system (CNS). In the CNS, ACh
plays a crucial role in modulating diverse functions including
cognition, attention, and arousal (English and Jones, 2012). This
neurotransmitter is synthesized by choline acetyltransferase
(ChAT) along with choline and acetyl coenzyme A as substrates.
Signal transmission by this neurotransmitter is terminated
through rapid hydrolysis of ACh into choline and acetic acid
by acetylcholinesterase (AChE; English and Jones, 2012). ACh
receptors are classified according to binding affinity to their
ligands and can be divided into muscarinic (mAChR) or
nicotinic receptors (nAChR).

Muscarinic receptors, named from M1 to M5, are
metabotropic G protein-coupled receptors which are further
subdivided according to the sub-type of associated Gα subunit.
The M1, M3, and M5 receptors are coupled through Gq/11

proteins to upregulate phospholipase C (PLC), inositol
triphosphate, and intracellular calcium. M2 and M4 receptors
deactivate adenylate cyclase and activate K+ channels through
actions involving Gi (Akaike and Izumi, 2018). Muscarinic
receptors are involved in cholinergic signal transduction in
the CNS, autonomic ganglia, smooth muscles, and other
parasympathetic end organs (Liu et al., 2007). They are also
widely expressed in non-neuronal cells, such as epithelial,
endothelial, muscle fibers, and CNS glial cells (microglia and
astrocytes; Liu et al., 2007, 2016; Guizzetti et al., 2008).

Nicotinic acetylcholine receptors, which are the focus of this
review, are ionotropic cation channels permeable to Na+ and K+

and are abundantly expressed in skeletal muscle and the CNS.
These receptors belong to the cysteine-loop (Cys-loop) receptor
ligand-gated ion channel superfamily and are extensively
involved in cognitive and locomotive processes (Lester et al.,
2004). Neuronal nAChRs are cation channels which can either be
homopentamers formed of α7–α9 subunits, or heteropentamers
formed of αβ subunits combinations including α2–α6 and

β2–β4, or combinations of α9/α10 subunits (Dani and Bertrand,
2007). The most abundant and widely distributed nAChR
subtypes in the human CNS are α4β2 and α3β4 heteromers,
and α7 homomers (α7nAChR; Pym et al., 2005). α7nAChR
is expressed in both neurons in the cortex and hippocampus,
two structures related to cognition, attention, and memory
tasks (Foucault-Fruchard and Antier, 2017) and non-neuronal
cells, includingmicroglia, astrocytes, oligodendrocytes, and brain
endothelial cells (Dani and Bertrand, 2007; Cortes et al., 2017a,b;
Morioka et al., 2018; Cao S. et al., 2019). Neuronal nAChRs have
been studied extensively as potential drug targets for neurological
disorders such as Alzheimer’s disease (AD) and Parkinson’s
disease (PD; O’Neill et al., 2002; Lester et al., 2004). Recently,
expression of these receptors in peripheral immune cells and
CNS glial cells have attracted attention due to their involvement
in neuroinflammation and neurodegenerative disease via the
‘‘cholinergic anti-inflammatory pathway,’’ as introduced later
(De Jonge and Ulloa, 2007; Fujii et al., 2017; Takata et al., 2018).

Structure and Function of the Cholinergic
System
Cholinergic circuits in the CNS are involved in maintaining
normal cognitive function and regulating signaling within
the entire cerebral cortex. The four main mammalian brain
regions with the highest expression of cholinergic neurons
are: (1) the brainstem pedunculopontine and lateral dorsal
tegmental nuclei projecting to the thalamus; (2) a subset of
the thalamic nuclei; (3) the striatum interneurons, which are
involved in suppressing dopamine release; and (4) the basal
forebrain (BF) nuclei (Ballinger et al., 2016). The mammalian BF
is a heterogeneous aggregate of subcortical structures including
the medial septum, ventral pallidum, vertical and horizontal
diagonal band nuclei, substantia innominata/extended amygdala,
and peripallidal regions (Zaborszky et al., 2012; Agostinelli
et al., 2019). Collectively, the BF serves as the major source of
cholinergic projection neurons to the olfactory bulb, neocortex,
hippocampus, and amygdala. The central cholinergic system
helps regulate the vascularization of the brain (Sato and Sato,
1995; Van Beek and Claassen, 2011), and modulates cognition,
specifically executive functions, attention, and memory (Levin
and Simon, 1998; Ballinger et al., 2016; Prado et al., 2017;
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Solari and Hangya, 2018). The cholinergic neurons in the medial
septum and the ventral diagonal band of the BF project to
the hippocampus and are implicated in attention, short-term
memory, and spatial learning (Boskovic et al., 2019). The
cholinergic neurons of the brain stem (BS) project to the BF, the
thalamus, and the ventral tegmental area (VTA), and are involved
in regulating the waking state, behavioral responses as well as
ocular saccades (Kobayashi and Isa, 2002; Newman et al., 2012;
Mena-Segovia, 2016). Interestingly, cholinergic neurons appear
to have a higher demand for energy production whichmay reflect
a higher sensitivity to aging-related energy (glucose) deprivation
(Szutowicz et al., 2013).

The cholinergic system modulates memory and hippocampal
plasticity not only via neuronal cells but also via interactions
with non-neuronal cells (e.g., microglia and astrocytes; Maurer
and Williams, 2017). This suggests that microglia and astrocytes
can respond directly to Ach via α7nAChRs and influence
both short-term and long-term synaptic function and plasticity,
contributing to cognition (Ben Achour and Pascual, 2010).
BF cholinergic neurons release ACh in all regions of the
hippocampus, which exhibit a high density of microglia and
astrocytes, as well as nAChRs expressed in many hippocampal
cell types (Maurer and Williams, 2017). It has been hypothesized
that ACh acts as the decider between encoding and retrieval
in memory-processing and thus, is implicated in suppressing
old associations and inhibiting proactive interference (Easton
et al., 2012; Maurer and Williams, 2017). Thus, rats with BF
cholinergic lesions can perform equally to controls in a water
maze if the location of the platform is not changed daily
(Baxter et al., 2013). The rats with the intact cholinergic system
can form new associations inhibiting previous associations,
while rats with a lesioned BF tend to express a previously
encoded association (the previous location of the platform),
due to the lack of ACh in the hippocampus. The underlying
neural events can be explained as follows: inputs to the
CA1 region of the hippocampus come from two brain
regions: entorhinal cortex layer 3 (associated with sensory
perception/ ‘‘extrinsic input’’) and the CA3 region of the
hippocampus (associated with previously formed associations/
‘‘intrinsic input’’; Hasselmo, 2006; Easton et al., 2012). ACh
reduces the recurrent pathway in the CA3 region via mAChRs
activation on interneurons, and allow sensory inputs to be
encoded, thus prioritizing encoding in novel contexts and
allows working memory to be more efficient (Haam and
Yakel, 2017; Maurer and Williams, 2017). Interestingly, a
slow inhibition of dentate granule cells by septo-hippocampal
release of ACh is not by a direct action on neurons but
occurs rather by actions on both microglia and astrocytes
via α7nAChRs. A proposed mechanism for neuronal-glial
interactions via ACh and its impact on the hippocampus
is that BF cholinergic projections release ACh and decrease
cytokine release from microglia, as well as activate hilar
astrocytes by activating the α7nAChRs (Hasselmo, 2006; Pabst
et al., 2016). These activated astrocytes release glutamate,
activating inhibitory interneurons, which in turn decrease
firing from granule cells, leading to the decreased firing of
CA3 pyramidal cells (Bezzi et al., 2004; Volterra and Meldolesi,

2005). Overall, this prevents interference of past associations
on encoding, facilitating the formation of new memories
(Pabst et al., 2016; Maurer and Williams, 2017).

In summary, it is established that the BF provides multiple
inputs to the hippocampus and that thesemodulatory cholinergic
inputs play an important role in cognitive functions. A
substantial body of evidence suggests that the direct activation
of neuronal nAChRs, and more specifically the α7 subtype,
reverses cognitive deficits that arise due to disruption of the
BF-hippocampal pathway (O’Neill et al., 2002). However, it is
not only neurons that respond to ACh via nAChRs. Indeed,
both hippocampal microglia and astrocytes express nAChRs,
suggesting that ACh also affects the hippocampus through glial
cell activation (Foucault-Fruchard and Antier, 2017). Hence, this
review will primarily focus on the cholinergic anti-inflammatory
and anti-oxidant pathways to memory processes during
development, normal aging, and disease states, specifically via

activation of glial α7nAChRs.

THE FUNCTIONAL ROLE OF GLIAL CELLS
IN THE IMMUNE RESPONSE OF THE CNS
AND THEIR INTERACTION DURING
NEUROINFLAMMATION

As highlighted in a review from Herculano-Houzel (2014), after
the discovery of glia cells, it was commonly thought that they
massively outnumbered neurons and that their number was
directly correlated with brain size. But in fact, it seems that
the glia/neuron ratio increases as neuronal density decreases
(Herculano-Houzel, 2014). A decrease in neuronal density is
related to an increase in neuronal cell mass which is highly
variable among species and brain structures in mammals, while
the average glial cell mass is relatively conserved (Mota and
Herculano-Houzel, 2014). Thus, the glia/neuron ratio varies
among species and brain structures. For example, overall in
the brain, this ratio is about 1 in humans and 0.54 in mice,
and when looking at different brain structures in humans,
it is about 0.23 in the cerebellum but is 1.48 in the gray
matter of the cerebral cortex (Herculano-Houzel, 2014). The
composition of the glial cells can also vary depending on
the brain region considered, the sex and the age of the
subject (Pelvig et al., 2008; Herculano-Houzel, 2014). This is
important to keep in mind when considering the limitations
from research conducted in vivo (with animal models) or
in vitro (with cell culture) when translating these findings
to humans.

This reviewwill focus on two of themajor glial cell types in the
mammalian CNS: astrocytes and microglia, and their crosstalk,
which is extremely important for neuronal development,
regulation of synaptic transmission as well as protection of
the CNS and maintenance of its homeostasis (Vainchtein and
Molofsky, 2020). Glial cell activation physiologically occurs
during CNS insults, such as inflammation, infection, or
lesion, to facilitate neuroprotection. However, this activation
can be dysregulated and promote chronic neuroinflammation
and/or neurodegeneration.
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Microglia are the innate immune resident cells of the
CNS. In both developing and adult brains, these cells are
critical for the maintenance of CNS homeostasis and perform
several physiological functions, including regulation of
neurogenesis, synaptic pruning, and production of trophic
factors in both developing and adult brains (Ransohoff and
El Khoury, 2016). In the presence of external stimuli that
could negatively affect CNS homeostasis, microglia can acquire
an activated phenotype to mediate a glial immune response
that contributes to the development of pathological processes
(Frank-Cannon et al., 2009; Kierdorf and Prinz, 2013). Possible
causes for microglia activation include trauma, brain injury,
stroke, apoptotic debris from dying neurons, aggregates
of neurotoxic proteins, and pro-inflammatory cytokines.
Microglia can transit from a resting or ramified state to an
activated or primed amoeboid state, this transition is tightly
regulated by molecular factors (e.g., CD200, CX3CR1 and
TREM2) and minor changes in this signaling can
potentially cause dysregulation of microglia homeostasis and
pathology (Butovsky et al., 2014; Wolf et al., 2017; Deczkowska
et al., 2018).

While the classical macrophage activation nomenclature
(three functional states of polarized microglia phenotypes
are postulated, M0, M1, and M2) has been adopted to
define functional states of microglia, transcriptome analysis
of microglia from animal models of neurodegeneration and
aging suggests this classification is over-simplified (Chiu et al.,
2013; Khakh and Sofroniew, 2015; Grabert et al., 2016;
Ransohoff, 2016; Wes et al., 2016). Recent research suggests
that microglia display phenotypes specific to changes in their
microenvironment and surrounding CNS structures rather than
showing only a distinct M1/M2 phenotype (Chiu et al., 2013;
Khakh and Sofroniew, 2015; Grabert et al., 2016; Ransohoff,
2016; Wes et al., 2016). Historically, gene profiling data
revealed that the molecular signature of the M0 phenotype
was related to nervous system development and resembled
adult microglia crucial in maintaining homeostasis (Butovsky
et al., 2014; Sarlus and Heneka, 2017). The M1 phenotype
appeared to express relatively high levels of inflammatory-
related transcripts (Ccl2, Ccl3, and Ccl5), and upregulate
cytokines like tumor necrosis factor (TNF), interleukin-1β (IL-
1β), as well as nitric oxide (NO) and reactive oxygen species
(ROS). The M2 phenotype expressed genes (e.g., Insulin-like
growth factor 1) that promoted tissue development, neural cell
renewal, and upregulated anti-inflammatory cytokines like IL-4
and IL10.

Microglia-mediated inflammation is essential to the primary
acute CNS immune response; however, this acute response must
be resolved to prevent chronic activation. To this end, microglia
can release anti-inflammatory cytokines and tissue-repairing
factors (Colton, 2009), and to reduce oxidative and nitrogen-
induced stress by downregulating free radicals that accumulate
in the interstitial space after trauma or in neurodegenerative
diseases (Wagner et al., 2003; Moestrup and Møller, 2004).
Dysregulation of this mechanism can be a breeding ground for
the development of pathologies. A recent review summarizes
how microglia priming renders aged microglia more responsive

to proinflammatory stimuli, thus enhancing and prolonging
their response to homeostatic disturbance and increased risk
of neuronal loss and progression toward neurodegenerative
disease (Wolf et al., 2017). Moreover, mouse models for aging
and neurodegeneration account for senescent proinflammatory
microglia that display morphological features and signaling
pathways distinct from those microglia activated by the
acute inflammation induced by lipopolysaccharides (LPS)
in young mice (Holtman et al., 2015; Ransohoff and El
Khoury, 2016). We have summarized the principal intracellular
pathways involved in the regulation of microglial activity
by highlighting their protective and detrimental roles
in Table 1.

Astrocytes are responsible for the maintenance and support
of neurons. They are crucial in regulating oxidative stress
thanks to the production of glutathione (GSH) and, according
to the astrocyte-neuron lactate shuttle hypothesis, by glucose
transformation into lactate which ensures energetic support
of neurons (Sidoryk-Wegrzynowicz et al., 2011). Astrocytes
can also regulate innate and adaptive immune responses
in the CNS by controlling the activation and immune cell
trafficking and are immune-competent cells able to detect
danger signals and respond via secretion of cytokines and
chemokines and activate adaptive immune defenses (Farina et al.,
2007). In reaction to harmful stimuli to the CNS, astrocytes
can respond with proliferation, migration, hypertrophy, and
increased production of glial fibrillary acidic protein (GFAP).
Indeed, inflammatory stimuli from the microenvironment can
shift the role of astrocytes from a protective ‘‘neuronal-focused’’
state to an inflammatory-focused state, also called ‘‘neuronal-
neglecting.’’ Activated astrocytes were originally divided into
two groups—A1 and A2. A1 astrocytes promote inflammation,
lose the ability to protect neurons and control synaptogenesis,
become phagocytic, and lead to neuronal loss through the
NF-kB pathway. A2 astrocytes upregulate neurotrophic factors
promoting neuronal survival via Janus Kinase/Signal Transducer
and Activator of Transcription 3 (JAK-STAT3) signaling, which
leads to the production of neurotrophic factors like brain-
derived neurotrophic factor (BDNF; Li K. et al., 2019). However,
as with microglia, the A1/A2 astrocytic phenotypes do not
exactly account for the in vivo complexity of astrocyte activation.
Rather, there appears a continuous spectrum of astrocytic
activation (or astrogliosis) with a gradient in morphological as
well as functional changes based on the nature and severity of
the stimuli (Sofroniew, 2015). Also, heterogeneity in astrocyte
morphology and physiology (Matyash and Kettenmann, 2010)
may affect glial responses to specific inflammatory stimuli
(e.g., an early or late activation of astrocytes can modulate a
disease onset and progression). A summary of both pro- and
anti-inflammatory astroglia intercellular pathways is provided
in Table 2.

The maintenance of CNS integrity depends on glial cells and
their well-orchestrated interactions. As the balance between
protective vs. detrimental function of glial cells is regulated
by surface and cytoplasmic proteins, transcription factors,
and released mediators, it is crucial to highlight the crosstalk
between distinct neuroinflammatory pathways and identify
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TABLE 1 | Summary of protective and detrimental pathways of microglial signaling.

Mediated by Function Effect References

Microglia

activation

Inflammation Neurodegeneration

Protective

microglia

pathways

TGF-β via SMAD

signaling

Neuroprotection,

promote a

quiescent state in

microglia

↓ ↓ ↓ Abutbul et al. (2012)

BDNF through

JAK-STAT3

pathway

Neurotrophic = ↓ ↓ Zamanian et al. (2012)

and Parkhurst et al.

(2013)

GDNF Inhibition of

microglia

↓ ↓ ↓ Rocha et al. (2012)

NGF and NT-3 via

p75

Downregulation of

microglial activity

↓ = = Sobrado-Calvo et al.

(2007) and Cragnolini

et al. (2009)

CD200-CD200R Maintain microglia

in a quiescent state

↓ ↓ ↓ Hernangómez et al.

(2012), Shrivastava et al.

(2012) and Oria et al.

(2018)

ORM2-CCR5 block

CXCL4-CCR5

Inhibition of

microglia

↓ ↓ ↓ Jo et al. (2017)

TNF-TNFR2 Anti-inflammatory

and neuroprotective

↑ anti-inflammatory

cytokines

↓ = Veroni et al. (2010) and

Gao et al. (2017)

Detrimental

microglia

pathways

TNF-TNFR1 Microglia activation

and neurotoxicity

↑ ↑ ↑ TNFR1-mediated

neuronal loss

Fontaine et al. (2002)

MD-1 (Ly86) protein Innate immunity

mediator

↑ increased

proliferation

↑ chemokines

CXCL10 and

CCL2 production

↑ Jordão et al. (2019)

IL-33 astrocytic

expression

Pro-inflammatory ↑ chemokines

expression

↑ recruitment of

infiltrating

macrophages in

CNS

↑ Fairlie-Clarke et al. (2018)

TLRs signaling Pro-inflammatory ↑ cytokines

production

↑ = Kaminska et al. (2016)

TREM2 myeloid

cells receptor

Phagocytosis ↑ phagocytic

activity

↑ ↑ Wolfe et al. (2019)

LCN2 Pro-inflammatory ↑ cytokines

production and NO

↑ ↑ Zamanian et al. (2012)

and Bi et al. (2013)

CCL2, CCL 21,

CXCL10 via NF-kB

signaling

Pro-inflammatory ↑ ↑ recruitment of

infiltrating immune

cells in CNS

↑ Brambilla et al. (2005,

2009), Kim et al. (2014),

and Mills Ko et al. (2014)

Principal intracellular pathways involved in the regulation of microglial activity, according to the protective and detrimental roles of microglia. This table highlights the main function of

microglia, followed by the specific effect on cellular activation and the effect on the inflammatory and neurodegenerative condition. ↑ and ↓ represent upregulation and downregulation,

respectively, = means that the pathway does not affect that condition.

their shared effector mechanisms (Colombo and Farina, 2016).
There is evidence supporting a faster response by microglia
to stimuli, showing a higher phagocytic activity after IFN-γ
stimulation compared to astrocytes (Magnus et al., 2002).
During CNS injury there is a rapid release of cytokines by
microglia, while the astrocytic response seems to be delayed
(Zhang et al., 2009, 2010). These findings are supported by
the high dynamicity of microglia typical of their resting state;
indeed, microglia appear to be the dynamic surveillants of
CNS (Nimmerjahn et al., 2005; Ransohoff and Cardona, 2010;
Gomez-Nicola and Perry, 2015) and their activation can trigger
and modulate the different responses of surrounding glial
cells. Microglial dynamics can be stimulated by factors like
ATP and other nucleotides or reduced by factors including
fractalkine, also known as chemokine CX3CL1 (Liang et al.,

2009). Recent evidence supporting the role of microglia in
regulating the astrocytic response (Jha et al., 2019) indicates a
reactive astrocytic phenotype through the release of IL-1α,
TNF-α, and complement component 1 (C1q; Liddelow
et al., 2017). However, microglia-astrocyte interactions via

purinergic signaling are crucial to switch astrocytes toward
a neuroprotective phenotype (Shinozaki et al., 2017). In
return, astrocytes can also regulate microglial phenotypes and
functions through numerous astrocyte-derived factors, such
as cytokines, chemokines, complement proteins, Ca2+, and
other inflammatory mediators (Tanuma et al., 2006; Jha et al.,
2019). Moreover, microglial activation can also be modulated
by astrocyte- released glial cell line-derived neurotrophic factor
(GDNF), cerebral dopamine neurotrophic factor (CDNF),
and BDNF. Astrocyte-derived GDNF in particular has been
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TABLE 2 | Summary of protective and detrimental pathways of astroglial signaling.

Mediated by Function Effect References

Microglia

activation

Inflammation Neurodegeneration

Protective microglia

pathways

Glycoprotein

gp130 Signal

transducer for IL-6

cytokine family

Astrocyte’s survival ↑ astrocytes-

mediated

apoptosis

= ↓ Haroon et al. (2011)

TGFβ signaling Immuno-

suppressive

↓ proliferation ↓ inhibition of

NF-kB signaling

↓ Cekanaviciute et al.

(2014)

IFNyR through T

and NK cells

Inflammatory

regulation and

immuno-

suppressive

↓ proliferation ↓ down-regulation

of iNOS, TNF,

IL-10, and IL-27

↓ Hindinger et al. (2012)

NrF2 pathway Anti-inflammatory

and antioxidant

↑ expression of

antioxidant genes

↓ suppression of

cytokines

↓ Patel et al. (2017)

BDNF through

JAK-STAT3

pathway

Anti-inflammatory

and neurotrophic

↓ ↓ suppression of

cytokines

↓ O’Callaghan et al. (2014)

Detrimental

astrocyte pathways

BDNF through

TRkB receptor and

NF-kB pathway

Pro-inflammatory ↑ increase of NO

released by

astrocytes

↑ ↑ Colombo et al. (2012)

NFkB recruitment

after IL-17 binding

to its receptor

Release of

pro-inflammatory

cytokines and

chemokines

↑ ↑ via astrocytic

IL-17 pathway

↑ Brambilla et al. (2005)

CCL2, CCL 21,

CXCL10 via NF-kB

signaling

Pro-inflammatory ↑ ↑ recruitment of

infiltrating immune

cells in CNS

↑ Brambilla et al. (2005,

2009), Kim et al. (2014),

and Mills Ko et al. (2014)

CXCL12 Pro-inflammatory ↑ ↑ pro-inflammatory

cytokines

production

= Bezzi et al. (2001)

VEGF Control of vascular

permeability (BBB

integrity)

= ↑ recruitment of

infiltrating immune

cells in CNS

↑ Argaw et al. (2012)

The table reports the principal intracellular pathways involved in the regulation of astrocytes activity by dividing the protective and the detrimental role. It highlights the main function of

astroglia, followed by the specific effect on cellular activation and the effect on the inflammatory and neurodegenerative condition. ↑ and ↓ represent upregulation and downregulation

respectively, = means that the pathway does not affect that condition.

shown to control midbrain microglial activation and prevent
neurodegeneration through inhibition of neuroinflammation
(Rocha et al., 2012). Of particular interest is the role of two
proteins belonging to the lipocalins family which astrocytes,
observed in mouse and rat models, can mediate microglial
activation: orosomucoid 2 (ORM2) binds CC chemokine
receptor 5 (CCR5) on microglia and blocks the interaction
between chemokine (C-X-C motif) ligand 4 (CXCL4)-CCR5,
which is crucial for their activation (Jo et al., 2017). Lipocalin-2
opposes ORM2 function and enhances inflammatory activity
(Lee et al., 2009) by the production of pro-inflammatory
mediators including IL-1β, IL-6, TNF-α, and NO
(Zamanian et al., 2012; Bi et al., 2013).

Considering that most cells in the brain, including astrocytes
(Liddelow et al., 2017) and microglia (Füger et al., 2017),
have a long lifespan, it is plausible that the accumulation and
overstimulation of inflammation can trigger multiple cumulative
molecular modifications (e.g., telomere shortening, DNA
damage, epigenetic modifications, lysosomal dysregulation) that
eventually contribute to cellular senescence and loss of function
(Desplats et al., 2019).

THE INTERACTION BETWEEN
CHOLINERGIC NEURONS AND GLIAL
CELLS—THE CHOLINERGIC
ANTI-INFLAMMATORY PATHWAYS

Anatomical Evidence for the Connection
Between Cholinergic Neurons and Glial
Cells
In the CNS, both microglia and astroglia express muscarinic
and nicotinic AChRs, which can be composed of different
sub-units depending upon the brain area and the species
considered (André et al., 1994; Guizzetti et al., 1996; Xiu
et al., 2005; Rock et al., 2008; Morioka et al., 2014; Pannell
et al., 2016). This might raise the question of the validity
of rodent models when studying the role of nAChR and
mAChR on neuroinflammation. To our knowledge, more
studies are still needed to fully characterize the expression
profile of mAChR and nAChR subunits in both microglia
and astrocytes. The currently known subunits expressed in
humans, rats, and mice have been summarized in Table 3.
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TABLE 3 | Summary of known AChR subunits to be expressed in glial cells in human, rat, and mouse.

Microglia Astrocytes

Subunits Origin Subunits Origin

Human nAChR α3, α5, α7, β4 Fetal brain (Rock et al., 2008) α7 Hippocampus and entorhinal cortex

(Teaktong et al., 2003)

mAChR M5 Levey (1996) M2, M3, M5 Fetal brain (Guizzetti et al., 1996)

Rat nAChR α7, α4, β2 Neonatal Cortex (Morioka et al., 2014)

Adult brain (Martín et al., 2015)

α4, α7, β2, β3 Neonatal brain (Xiu et al., 2005)

mAChR M1 Adult cortex and hippocampus (Huang

et al., 2016)

M2, M3, M5 Cell line 132 1N1 (Guizzetti et al., 1996)

Mouse nAChR α7 Cerebral cortices (Shytle et al., 2004) α7

β4

Neonatal brain (Patel et al., 2017)

The hippocampus of the adult brain

(Gahring et al., 2004)

mAChR M1, M2, M3,

M4, M5

Neonatal and adult whole brain (Pannell

et al., 2016)

M1, M3 Neonatal cerebral hemisphere,

mesencephalon, and medulla-pons

(André et al., 1994)

This table presents the different subunits of nAChR and mAChR that have been found until today (and to the best of our knowledge) in microglia and astrocytes in humans, rat,

and mice.

Microglia express a variety of neurotransmitter receptors that
help to intercede bidirectional communication with neurons,
including glutamate, GABA, norepinephrine, cannabinoid, and
ACh receptors (Liu et al., 2016). In humans, microglia
express the α3, α5, α7, and β4 subunits of nAChR, while
rat cortical microglia exclusively express α7nAChRs (Morioka
et al., 2018). A limited number of studies using electron
microscopy indicate a close relationship between glia and
cholinergic neurons. In the septal complex of the BF, the
dendrites, axon, and soma of cholinergic neurons are mostly
surrounded by astrocytic processes (Milner, 1991). In the
laterodorsal and pedunculopontine tegmental nuclei of the
brainstem, cholinergic neurons receive a large amount of
synaptic input, with approximately one-quarter of their somatic
surface covered by astrocytic processes (Honda and Semba,
1995). Expression levels of α7nAChR have been investigated
in various inflammatory models. On one hand, an increase
of α7nAChR expression in both microglia and astrocytes was
reported in cerebral ischemia in rats, leading to microglial
activation and pro-inflammatory cytokine production (Niranjan
et al., 2012; Wu L. et al., 2014; Colás et al., 2018).
This was counteracted by nicotine treatment, which reduced
pro-inflammatory cytokine production as well as microglial
activation, and also prevented neuronal death in the CA1 region
of the hippocampus in rats (Guan et al., 2015). Also, activation
of α7nAChR by a pre-treatment with a positive allosteric
modulator (PAM) reduced LPS-induced expression of the
pro-inflammatory markers IL-1β, TNF-α, and the microglial
activation marker cluster of differentiation 11b (CD11b) in
the hippocampus and prefrontal cortex (PFC) of mice, and
even blocked LPS-induced anxiety-like behaviors (Abbas et al.,
2017; Alzarea and Rahman, 2019). On the other hand,
neuroinflammation induced by the intra-cerebroventricular
injection of an inflammatory soup containing prostaglandin E2
(0.2 mM), serotonin (2 mM), bradykinin (2 mM), and histamine
(2 mM), in a rat model can also be linked with a decrease in
the expression level of α7nAChR in the hippocampus, which
can be reversed by the treatment with an α7nAChR agonist
(Liu et al., 2018).

Functional Evidence for a Connection
Between Cholinergic Neurons and Glial
Cells
Various electrophysiological studies have demonstrated how
glial responses to cholinergic activation are the result of a
balance between the hyperpolarizing action of ACh and the
opponentmodulation of glutamate andGABA from surrounding
neurons. A study of rat hippocampal slices showed that
cholinergic stimulation of glial cells increases intracellular
Ca2+ mobilization (Araque et al., 2002). Understanding Ca2+

transmission in neuron and astrocyte interactions and effects on
cholinergic activation is essential for pathologies characterized
by dysfunctional cholinergic signaling (Parpura et al., 1994;
Verkhratsky and Kettenmann, 1996; Bezzi et al., 1998; Perea
and Araque, 2005; Verkhratsky, 2006). In vivo studies of cats
have found that during activation states associated with ACh
transmission, cortical glial cells are hyperpolarized through the
interaction between membrane ACh and muscarinic AChRs
(Seigneur et al., 2006). This interaction, observed in mice, causes
neuronal depolarization that leads to the release of glutamate
and GABA from neurons (Czarnecki et al., 2014; Takács et al.,
2018), which can in turn cause depolarization of glial cells.
Besides, glial cells can also be influenced by the release of
K+ provoked by the excitation of neighboring neurons, and
this could be related to increased membrane resistance and
decreased membrane capacitance in glial cells (Seigneur et al.,
2006). In vivo cat and in vitro mouse models have observed
decreased glial capacitance during cholinergic activation reflects
several phenomena, such as osmotic changes and modifications
of the gap junction permeability (Amzica andNeckelmann, 1999;
Hernández-Balaguera et al., 2018), which drive glial shrinkage
and the consequent expansion of extracellular space resulting
in a decrease of the overall K+ concentration. These studies
illustrate a functional electrophysiological relationship between
cholinergic neurons and astrocytes, highlighting the importance
of this axis.

Microglial activation following LPS administration in the
hippocampus decreases BDNF release by astrocytes in the
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CA1 region of rats (Tanaka et al., 2006). Chronic nicotine
exposure activates nAChRs in the rat hippocampus and
upregulates BDNF in this brain region (Kenny et al., 2000).
Interestingly, cholinergic neuronal loss in the BF leads to a
subsequent reduction of BDNF in the hippocampus of mice
(Turnbull and Coulson, 2017). Furthermore, BDNF increases
α7nAChR density on hippocampal neurons, and activation
of α7nAChRs upregulates BDNF in the rat hippocampus
(Freedman et al., 1993; Massey et al., 2006). However, there is
no direct evidence linking microglial α7nAChR activation and
BDNF levels. It is also interesting that pharmacological activation
of α7nAChRs in the hippocampus (CA1 and CA3 regions)
increases hippocampal long-term potentiation (LTP) through
long-lasting increases in calcium activity in wild-type, but not
in α7nAChR knockout mice (Gu et al., 2012). The α7nAChR
is reported to be highly permeable to Ca2+ (Shen and Yakel,
2009), and microglial α7nAChR stimulation also increases
cytosolic Ca2+ (Takata et al., 2018). Together, this suggests
activation of α7nAChR on neurons as well as microglia can
facilitate LTP.

After brain insult, ATP is released from injured cells and
activates microglia which, thanks to the interaction with
the purinergic P2X7 receptor, starts to release molecules to
protect neurons of the neonatal rat brain in vitro (Suzuki
et al., 2004). In particular, P2X7 receptor stimulation has a
role in neuronal protection against glutamate toxicity mediated
by small amounts of TNF-α released by microglia, while
LPS treatment mediates TNF-α production that leads to
neuroinflammation (Suzuki et al., 2006). Considering that ACh
can elicit glutamate release through presynaptic α7nAChRs,
and ATP is a co-transmitter of ACh, Patti et al. (2006)
investigated the role of the P2X7 receptor in this interaction in
the rat neocortex. They found P2X7 receptors and α7nAChRs
co-existed and interacted on glutamatergic terminals where
P2X7 exerts a permissive role on the activation of α7nAChRs,
suggesting regulation of ATP-mediated signaling. A later work
observed colocalization of the P2X7 receptor with astrocytes
and microglia, but not neurons, and proposed a role for these
receptors in glial apoptotic and proliferative functions after ATP
stimulation (Oliveira et al., 2011). Furthermore, it is generally
recognized that healthy neurons and astrocytes can regulate
microglia-mediated innate immune responses via activation
of α7nAChR and purinergic P2X7 receptors (Suzuki et al.,
2006). Indeed, the hyperactivation of the P2X7 receptor by ATP
drives microglia toward a reactive phenotype and can increase
pro- or anti-inflammatory microglia markers (Parisi et al.,
2016). An example, observed in embryonic rat pups in vitro,
is the increased formation of membrane vesicles in microglia
containing IL-1β after ATP stimulation mediated by the
P2X7 receptor, which leads microglia to promote inflammation
(Bianco et al., 2005).

The anatomical and electrophysiological evidence for a
connection between the cholinergic system and glial cells
supports further investigation into the role of aging and
chronic microglial activation on their bidirectional relationship.
Possibly, the loss of cholinergic connections, resulting from
either damaged neurons or astrocytes may lead to hyperactive

microglia, which then causes persistent neuroinflammation and
augmentation of neurodegeneration.

The Anti-inflammatory Role of the
Cholinergic System
The existence of a ‘‘cholinergic anti-inflammatory pathway’’

(CAP) in the CNS, mediated by the activation of α7nAChR
on microglia, was first proposed by Shytle et al. (2004). They
demonstrated that pre-treatment of cultured murine-derived
microglial cells with ACh and nicotine inhibited LPS-induced
TNF-α release, which was attenuated by α7 selective nicotinic
antagonist, α-bungarotoxin (Shytle et al., 2004). Thus, the
α7nAChR subunit was confirmed as essential in the endogenous
cholinergic anti-inflammatory pathway for inhibiting cytokine
synthesis by macrophages. This was later confirmed by several
other in vivo and in vitro studies demonstrating the existence
of the cholinergic anti-inflammatory pathway in the CNS, which
appears to mainly rely on the activity of nicotinic receptors and
more specifically, α7nAChR (De Jonge andUlloa, 2007; Kalkman
and Feuerbach, 2016; Hoover, 2017).

Neuroinflammation in utero, due to maternal infection
during pregnancy, may contribute to fetal brain injury and
life-long risk of neurodevelopmental defects (Al-Haddad et al.,
2019). Glial cells, both microglia and astrocytes, play a
pivotal role in the risk of neurodevelopmental defects but
the exact mechanisms are poorly understood. However, recent
studies have shed new light on the inflammatory phenotypes
of fetal glia involved in life-long neurological disabilities
(‘‘second hit’’ hypothesis). Using an in vivo–in vitro model of
developmental programming of neuroinflammation induced by
LPS, Cao et al. (2015) demonstrated that the inflammatory
microglial phenotype acquired by exposure to LPS in sheep
fetus (in vivo) sustained and potentiated a pro-inflammatory
phenotype in vitro upon re-exposure to LPS. They also confirmed
the downregulation of heme oxygenase (HO)1 gene, a key gene of
iron homeostasis, as well as an upregulation of gluconeogenesis
(energy conserving) fructose-1,6-biphosphate (FBP) gene, in
second hit microglia compared to single hit microglia (Cao et al.,
2015). This suggests an interplay of inflammatory and metabolic
pathways and immunological and metabolic memory of the
prior-inflammatory insult relevant to neuronal development. A
study expanding the work of Cao et al. (2015) used primary
fetal sheep microglia cultures re-exposed to LPS in the presence
of a selective α7nAChR agonist (AR-R17779) or antagonist
(α-bungarotoxin; Cao et al., 2015; Cortes et al., 2017b). The
microglial α7nAChR agonist reversed the pro-inflammatory
microglial phenotype acquired in vitro by LPS stimulation
while blocking α7nAChR potentiated the pro-inflammatory
microglial phenotype (Cortes et al., 2017b). In this study, a link
between iron homeostasis and microglia α7nAChR has also been
proposed (Cortes et al., 2017b); iron accumulation and toxicity
are related to oxidative stress, which is found in numerous
neurodegenerative diseases (Gaasch et al., 2007).

A very recent study extended this investigation to examine the
role of α7nAChR in fetal sheep astrocytes (Cao M. et al., 2019)
and showed that the pro-inflammatory transcriptome astrocyte
phenotype acquired in vivo or in vitro by LPS stimulation
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was reversed by α7nAChR agonist. Conversely, α7nAChR
inhibition potentiated the pro-inflammatory astrocytic
phenotype and pro-inflammatory signaling pathways NF-
κB and STAT3 (Cao M. et al., 2019). The exact mechanism by
which activation of nAChR on astroglia or microglia can lead
to an anti-inflammatory effect is still under investigation. A
recent study applied ACh to rat hippocampal neuron-microglia
co-cultures to confirm its anti-inflammatory properties in
response to microglia-derived neuroinflammation (Li L. et al.,
2019). A higher concentration of ACh markedly inhibited the
LPS-induced microglial inflammatory response by decreasing
pro-inflammatory factors and inhibiting hippocampal neuronal
apoptosis, showing that ACh has concentration-dependent
anti-inflammatory and neuroprotection properties in this
model (Li L. et al., 2019). They also demonstrated, by genetic
knockdown of α7nAChR, that both the anti-inflammatory
and neuroprotective abilities of ACh depend on microglial
α7nAChR signaling (Li L. et al., 2019). In a model of oxaliplatin-
induced neurotoxicity in co-cultured neurons and astrocytes,
the application of an α7nAChR agonist increased neuron
viability by preventing caspase-3 activation, increased glutamine
synthetase expression levels, and increased the production of the
anti-inflammatory cytokine TGF-β (Di Cesare Mannelli et al.,
2015). Thus, the activation of cholinergic receptors could not
only have an anti-inflammatory effect but also an antioxidant
and neuroprotective role, as these three phenomena are highly
interconnected. Indeed, ACh has been suggested to exert both
anti-inflammatory and neuroprotective properties in several
neurodegenerative disorders (Gallowitsch-Puerta and Pavlov,
2007; Martelli et al., 2014).

In astrocytes, activation of α7nAChRs has an
anti-inflammatory effect. This is mediated by the activation of
nuclear factor erythroid 2-related factor 2 (Nrf2), which allows
the expression of several antioxidant genes (HO1, thioredoxin
reductase 1, glutamate-cysteine ligase catalytic subunit) and
the inhibition of the NF-κB pathway with a decrease of the
expression of p50, of an inhibitor of κBα (IκBα) phosphorylation
and NFκB nuclear translocation (Patel et al., 2017).

The anti-inflammatory action of α7nAChR in microglia
is also mediated via the Nrf2-HO1 pathway (Parada et al.,
2013). Moreover, the activation of α7nAChR in microglia
decreases the phosphorylation, and therefore the activation, of
the p38, p44/42 and c-jun N-terminal kinase (JNK) MAP kinases
(Shytle et al., 2004; Suzuki et al., 2006), which are involved
in neuroinflammation (Koistinaho and Koistinaho, 2002; You
et al., 2018; Zhao et al., 2018). Interestingly, it also increases the
expression of cyclooxygenase-2 (COX-2) and prostaglandin E2
(De Simone et al., 2005), but the latter has a complex role in
neuroinflammation and can either be pro- or anti-inflammatory
(Levi et al., 1998; Zhang and Rivest, 2001).

Some evidence suggests that α7nAChR can function as
a metabotropic receptor by activating the PLC-inositol-3-
phosphate (IP3) pathway, which triggers the release of Ca2+

from intracellular stores, and can reduce the release of TNF-
α triggered by LPS -induced neuroinflammation in microglia
(Suzuki et al., 2006; Brawek and Garaschuk, 2013; Hua et al.,
2014). Experiments in neuroblastoma support the hypothesis

that α7nAChR can also be a metabotropic receptor. α7nAChR
is physically connected with JAK2, phosphatidylinositol-3-kinase
(PI3K), and Fyn, and its activation leads to neuroprotection
against amyloid-β (Aβ)-induced toxicity via the PI3K, leading
to the upregulation of neuroprotective factors such as B-cell
lymphoma 2 (Bcl-2; Kihara et al., 2001; Shaw et al., 2002).
This neuroprotective effect is coherent with the decrease in
LPS-induced caspase activation that has been shown in astrocytes
after activation of α7nAChR (Patel et al., 2017).

An important structure to discuss when considering the
CAP is the vagus nerve. Peripherally, this nerve is involved in
a neuroimmune reflex which can attenuate TNFα production
during endotoxemia, giving the vagus nerve promising clinical
implications during sepsis (Bonaz et al., 2016). While the efferent
arm of this reflex arc has been well described, the implication
of a vagal-mediated central CAP has yet to be fully elucidated.
Visceral afferents of the vagus nerve in the gut may be stimulated
by cytokines, namely IL-1, to induce a neuroimmune reflex.
This information is received by the nucleus of the solitary tract
where a synaptic relay occurs with the dorsal motor nucleus
of the vagus. Efferent vagal fibers will then communicate with
splenic lymphocytes and macrophages to reduce the production
of pro-inflammatory cytokines via the α7nACh receptor (Bonaz
et al., 2016). Recent evidence suggests that this neuroimmune
signaling may go on to higher centers, including the BF, to
mediate a centralized CAP. Both afferent and efferent fibers of
the vagus nerve have been shown to communicate with limbic
structures, where afferents increase cholinergic signaling in the
BF (Broncel et al., 2018; Suarez et al., 2018). This BF cholinergic
signaling reduces pro-inflammatory cytokines both centrally and
peripherally in an effect which requires an intact vagus nerve
(Zhai et al., 2017). Vagal afferents may also influence cholinergic
signaling through norepinephrine production from the locus
coeruleus (LC), which in turn promotes ACh production from
the Nucleus Basalis of Meynert (Kaczmarczyk et al., 2018). In
light of these findings, the BF has been proposed as a higher
integrative center for neuroimmune signaling by way of the
vagus nerve. Recent studies have provided evidence for the
anti-inflammatory role of vagal cholinergic signaling in the
CNS. By using an in vivo model of near-term ovine fetuses,
Frasch et al. (2016) described how microglial activation, induced
by acidosis, was less prominent in animals with higher vagal
afferent signaling and that this effect is likely mediated by the
α7nACh receptor. The higher vagal activity was associated
with a higher count of α7nACh receptors in neural tissue,
suggesting a relationship between vagal innervation and
α7nACh receptor expression. Reduced microglial activation
and attenuation of pro-inflammatory cytokines were observed
with vagal nerve stimulation (VNS) during peripheral LPS
challenge in mice (Meneses et al., 2016). Morphological signs
of microglial activation in a murine model of AD were reversed
by VNS (Kaczmarczyk et al., 2018). Further, VNS used in
a murine model of stroke provided a neuroprotective effect
that was mitigated by α7nACh receptor antagonists (Lu et al.,
2017). While future research is required to better understand
the neuroimmune signaling pathways between the BF and
afferent vagus nerve fibers, it appears vagal activity may have
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significant anti-inflammatory properties in the CNS by way of
cholinergic signaling.

In summary, both astrocytes and microglia are involved
in the cholinergic anti-inflammatory pathway, via α7nAChR
expression, resulting in anti-inflammatory, antioxidant, and
neuroprotective effects. We hypothesize that the loss of
cholinergic profiles resulting in decreased α7nAChR activation
on glial cells has a significant impact during aging and
contributes to the development of the neurodegenerative disease.

IMPLICATIONS OF CHOLINERGIC-GLIAL
INTERACTIONS IN AGING AND
NEURODEGENERATIVE DISORDERS

Physiological Aging
Aging is a physiological process accompanied by a decline in
brain function, reduction in synaptic plasticity, and changes
in neurotransmission and receptor availability in the CNS
which may affect cognitive performance (Li et al., 2001;
Mahncke et al., 2006). Hallmarks of brain aging include
increased oxidative stress and inflammation (Lee et al., 1999;
Godbout et al., 2005), due to the accumulation of free radicals
and enhanced expression of pro-inflammatory cytokines,
including IL-1β and IL-6 (Sierra et al., 2007; Kuzumaki
et al., 2010), combined with decreased in anti-inflammatory
cytokines such as IL-10 and IL-4 (Ye and Johnson, 2001; Nolan
et al., 2005). Resident glial cells are key contributors to the
age-related shift in the inflammatory profile of CNS. Histological
examination of postmortem brain samples reveals microglial
de-ramification and the shortening of cellular processes that
are related to the activated state of microglia (Streit et al.,
2004). Furthermore, microglia exhibit a ‘‘primed’’ phenotype,
indicating an enhanced inflammatory response to an immune
stimulus (Perry and Holmes, 2014). This can be accompanied
by upregulation of genes associated with antigen presentation,
like major histocompatibility complex (MHC) II and CD68
(Frank et al., 2006; VanGuilder et al., 2011), suppression
of anti-inflammatory proteins, such as IL-10 and CD200
(Frank et al., 2006), and rise of pro-inflammatory cytokines
as IL-1β (Henry et al., 2009). Microglia also decrease their
mobility with age, becoming less reactive in surveying the CNS
microenvironment, and reducing the resolution of an established
inflammatory state (Damani et al., 2011). Astrocytes move from
a resting/flat morphology towards a stellate state (VanGuilder
et al., 2011), and acquire an activated profile indicated by
increased expression of GFAP (Zamanian et al., 2012; Liddelow
et al., 2017). Reactive astrocytes also exhibit upregulated MHCI
(Mangold et al., 2017), and chemoattractants for infiltrating
immune cells such as CXCL10 and CXCL5 (Boisvert et al., 2018;
Sorensen et al., 2018). Interestingly, the receptor for CXCL10 is
CXCR3 which is a microglial marker, suggesting communication
between astrocytes and microglia that affects aging
(Rothhammer et al., 2018).

Glial inflammatory profiles are regulated by ACh through
α7nAChRs on astrocytes and microglia, to control the
production of inflammatory cytokines (Niranjan et al., 2012;

Kalashnyk et al., 2014). Thus, cholinergic transmission appears
crucial in regulating glial cell inflammatory profiles during
aging. During development and aging, there are changes to the
profiles of nicotinic and muscarinic receptors. In a study using
human brain tissue from 24 weeks of gestation to 100 years,
Court et al. (1997) found the highest level of nAChR expression
in the late fetal stage in the hippocampus, entorhinal cortex,
and presubiculum. In the hippocampus, this is followed by a
considerable decrease within the first 6 months of life and a
slight decrease during aging (Court et al., 1997). Muscarinic
ACh receptor expression slightly decreased with age in the
hippocampus and the subicular complex (Court et al., 1997).
This age-related decrease in cholinergic receptor expression
may contribute to age-related cognitive impairment (Dumas
and Newhouse, 2011). Indeed, a reduction in cholinergic
transmission appears to affect the protective and supportive
role of glial cells to neurons, and this is mediated by ACh. An
example is the expression of GDNF stimulated by the activation
of astrocytic α4β2 and α7nAChRs, whereby astrocyte-derived
GDNF promotes the inhibition of microglia activation and
neuronal protection (Rocha et al., 2012; Konishi et al., 2014). The
neuroprotective effect of nAChR can be mediated by different
subunits in different brain regions, for instance, α4β2-type
nAChRs are involved in nicotine-mediated protection in the
cortex and striatum (Ryan et al., 2001; Laudenbach et al., 2002)
while α7 subunits are involved in hippocampal nAChRs (Messi
et al., 1997; Dajas-Bailador et al., 2000). Studies on aged β2
subunit knockout mice show neocortical hypotrophy, loss of
pyramidal neurons in the CA3 field, and Astro- and microgliosis
in neocortex and CA1–3 hippocampal fields, suggesting that
chronic loss of β2 subunit removes the protective role of glial
cells against neurodegenerative processes during aging in the
mouse brain. The same mice also showed impaired spatial
learning (Zoli et al., 1999; Caldarone et al., 2000), implying that
nAChRs contribute to both neuronal survival and maintenance
of cognitive performance during aging (Picciotto and Zoli, 2002).

A SPECT imaging human study involving 47 healthy female
and male volunteers from 18 to 85 years old, revealed an inverse
correlation between age and regional β2 nAChR availability in
several brain regions including the thalamus, frontal, parietal,
and anterior cingulate cortices (Mitsis et al., 2007). These
results confirmed what was observed in postmortem human
samples using RT-PCR, where mRNA expression of α4 and
β2 subunit nAChRs decreased with age in the frontal cortex,
while in the hippocampus, only β2 significantly decreased with
age (Tohgi et al., 1998). The age-related changes also affect
the α7nAChR: binding experiments with [125I]α-bungarotoxin,
the specific marker of this nAChR subtype, showed a higher
expression of the α7 subunit in several brain areas in the human
fetal sample (9–11 weeks of gestation) compared to middle-aged
(28–51 years) and aged (68–94 years) samples (Falk et al., 2003).
However, opposing evidence has been reported: a PET imaging
study with 25 healthy volunteers aged from 21 to 86 years
showed a positive correlation between α7nAChRs distribution
and age in all the brain regions investigated, including the
thalamus, striatum, hippocampus, cerebellar cortex, temporal
cortex, occipital cortex, cingulate cortex, frontal cortex, and
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parietal cortex, suggesting an increase in cerebral α7nAChRs
during healthy aging (Coughlin et al., 2018). Rodent data
may shed light on these seemingly contradictory results, as
not all nAChR subunits appear equally affected by age. Adult
(12–14 months) and aged (24–28 month) mice from two
strains (C57BL/6 and CBA/J) showed different trajectories of
α4 and α7 expression with age (Gahring et al., 2005; Utkin,
2019). CBA/J mice demonstrated a considerable decrease in
α4 and α7 expression with age, while C57BL/6 mice showed
a slight decrease in α4 and a reduction in β4 nAChR with
age, suggesting that the interpretation of age-related AChR
changes should be done very carefully, preferentially using a
large group of individuals (Gahring et al., 2005; Utkin, 2019).
Moreover, electrophysiological studies using whole-cell patch-
clamp recordings in mouse brain slices highlighted differences
in the contribution of nAChR subunits to ACh-induced inward
currents across aging (Christensen and Kohlmeier, 2016). In
younger animals, this was predominantly mediated by the
nAChR containing β2 and/or β4 subunits, however, in neurons
from older animals, the currents conducting by nAChRs
containing the β2 and/or β4 and the α7 subunits were similar
(Christensen and Kohlmeier, 2016).

All these findings support the cholinergic hypothesis of
age-related cognitive dysfunction and underline the importance
of a better characterization of the contribution of nAChR
subunits during aging (Dumas and Newhouse, 2011; Utkin,
2019). One of the possible future directions in the field of
studying normal aging could be to find a specific correlation
between the loss of different cholinergic receptor subunits and
resulting cognitive impairment. Eventual findings could be very
helpful in understanding not only physiological aging but also
the pathogenesis of the age-related neurodegenerative disease.
Physiological aging is also associated with active clearance of
accumulated neurotoxic proteins, like amyloid and tau, from
and around neurons by microglia (Clayton et al., 2017). The
failure of this process leads to the formation of aggregates,
typical of AD and other forms of dementia, and dysfunction
of the neuron to glia communication. Indeed, there is the
age-related loss of cholinergic function driven by dendritic,
synaptic, and axonal degeneration, a decrease in neurotrophic
support, and impairment in glial intracellular signaling (Clayton
et al., 2017). The aging process alters the expression ofmuscarinic
and nicotinic receptors for ACh, contributing to impaired
crosstalk between neurons and surrounding glial cells, which
may be responsible for dysfunction leading to neurodegenerative
processes instead of normal brain aging (De Keyser et al., 2008;
Sofroniew, 2009).

Pathological Aging and Neurodegenerative
Disorders
Inflammation and aging appear closely linked and microglial
activation has been shown to increase with age (Bachiller et al.,
2018). While low levels of inflammation correlate with healthy
brain function (Walker et al., 2017) and longevity (Arai et al.,
2015), high levels of inflammation during aging are likely to
disrupt brain homeostasis and the physiological equilibrium

between the pro- and the anti-inflammatory response of
microglia and astrocytes.

Basic signaling between astrocytes and neurons is preserved
in the early stages of aging; however, in a mouse model of
AD, this communication mechanism is dysfunctional, affecting
astrocyte Ca2+ signaling, which is crucial for normal brain
activity (Gómez-Gonzalo et al., 2017). This confirms what was
previously observed regarding astrocytic Ca2+ signaling during
age-related neurodegeneration: mouse cortical astrocytes near
Aβ plaques demonstrate enhanced Ca2+ excitability (Kuchibhotla
et al., 2009). Moreover, Ca2+ levels are increased in hippocampal
slices acutely treated with Aβ oligomers (Pirttimaki et al.,
2013; Talantova et al., 2013). While both microglia and
astrocytes respond to perturbations that lead to an activated
state, this mechanism needs to be tightly regulated to avoid
glial cell overstimulation, which could result in a failure
to return to a resting basal state and leading to cellular
dysfunction (Van Rossum and Hanisch, 2004; Biber et al.,
2007). Physiological aging leads to activated microglia and
increased glial neuroinflammatory markers. However, there
are differences between aging and aging with the presence
of an inflammatory stimulus, like LPS, which causes a
prolonged and exaggerated immune response (Xie et al., 2003).
Microglia and astrocytes of aged mice are prone to exhibit
an uncontrolled LPS-induced inflammatory response (Nava
Catorce and Gevorkian, 2016). Thus, the combination of aging
and an inflammatory stimulus can cause an overdrive of normal
physiological aging mechanisms, leading to severe anatomical
degeneration in the CNS and subsequent neurological deficits
(Rosczyk et al., 2008; Norden and Godbout, 2013; Wong, 2013).

Cholinergic neurons in the BF show a lower excitability
profile compared to their neighboring non-cholinergic neurons,
and their basic properties do not significantly change between
adolescence and young adulthood in mice (López-Hernández
et al., 2017). However, older animals have a lower excitability
profile in cholinergic neurons than younger animals, and there
is an age-dependent bi-phasic profile of cholinergic neurons
during physiological aging, whereby excitability increases in
adult mice (9–12 months old), but excitability decreases in
aged mice (>18 months; Kékesi et al., 2019). Together, this
suggests age-dependent susceptibility of BF neurons to changes
in excitability. Interestingly, the number of cholinergic neurons
also decreases with age in humans (Schliebs and Arendt, 2011).

Some research groups have assessed the susceptibility of
cholinergic neurons to neuroinflammation throughout aging.
In these studies, LPS injections were used to induce glial
cell activation, which leads to a release of pro-inflammatory
cytokines and ROS (Goossens et al., 1995; Minghetti and Levi,
1995). A study on 3 months old rats observed a significant loss
of cholinergic neurons and extensive inflammation, including
astrocyte and microglia activation, after direct BF LPS injections
(Wenk et al., 2000). LPS can also be administrated via peripheral
injections to induce a milder inflammatory response in the brain
and allow for the investigation of glial activation at different ages.
Kékesi et al. (2019) noticed that LPS peripheral injections slightly
affect electrophysiological properties of cholinergic neurons in
younger mice (3–6 months), but drive hyperexcitability in
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older mice (9–12 months). Surprisingly, they did not report
LPS-induced excitability differences in aged mice (>18 months).
The mechanism underlying the altered excitability of cholinergic
neurons and neuroinflammation is yet to be resolved, although
the authors proposed a connection between the bi-phasic
pattern and LPS injections. The pattern is abolished due to
dysregulation of calcium homeostasis and changes in membrane
resistance of cholinergic neurons, which is caused by glial
activation subsequent LPS-induced neuroinflammation (Kékesi
et al., 2019).

Neurodegenerative diseases including Alzheimer’s and Lewy
Body Dementia (LBD) share two characteristics in common: a
prevalence that increases with age and is associated with elevated
neuroinflammatory markers. This relationship has led to the
hypothesis that pathogenic mechanisms underlying age-related
neurodegenerative disease involve changes in the CNS cells
responsible for the immune response during aging (Wong, 2013).

Alzheimer’s Disease
AD is the most common cause of age-related dementia, and its
pathological hallmarks include senile plaques and neurofibrillary
tangles along with extensive neurodegeneration, characterized
by progressive cognitive impairment (Francis et al., 1999).
Several environmental and genetic factors increase the risk
for AD development (Armstrong, 2019). Aging is one of the
strongest risk factors for AD, and mechanisms for this include
an age-related increase in microglial activation (Schuitemaker
et al., 2012), degradation of the blood-brain barrier, and a
decrease of glucose influx (Mooradian, 1988; Mooradian et al.,
1991; Shah and Mooradian, 1997). Other risk factors associated
with AD include several genes associated with the formation
of Aβ aggregates or tau neurofibrils, as well as genes involved
in the modulation of the immune system (Giri et al., 2016).
Some environmental factors are also associated with AD include
stress (Baglietto-Vargas et al., 2015; Caruso et al., 2018, 2019)
or systemic inflammation (Holmes et al., 2009; Holmes, 2013;
Takeda et al., 2014; Lim et al., 2015). One hypothesis suggests
that in AD (and other neurodegenerative diseases), microglia
can be ‘‘primed’’ which later leads to a disproportionated
response towards a pro-inflammatory stimulus (Dilger and
Johnson, 2008; Lue et al., 2010; Cunningham, 2013; Niraula
et al., 2017; Sfera et al., 2018). Several factors can induce
this priming. During systemic inflammation, pro-inflammatory
cytokines are expressed in response to a pathogen invasion
or tissue injury, and they can reach the CNS. This can
prime microglia which, combined with other risk factors
e.g., genetic mutations associated with AD, leads to chronic
neuroinflammation and neurodegeneration. Microglia can also
be primed by exposure to Aβ aggregates or other abnormal
proteins, to glucocorticoids, or by the loss of their inhibition
because of a genetic predisposition (which could also be
favorited by aging). Subsequent systemic inflammation then
leads to chronic neuroinflammation and neurodegeneration
(Cunningham, 2013). It is relevant to mention that the vagus
nerve, which uses ACh as the main neurotransmitter, is involved
in the regulation of the innate immune response during systemic
inflammation. The vagus nerve is thought to be an important

component for the bidirectional exchange between the CNS and
the peripheral immune system (Thayer and Sternberg, 2010;
Kox and Pickkers, 2015) and is involved in the cholinergic
anti-inflammatory pathway (Zila et al., 2017).

Alzheimer’s Disease and the Basal Forebrain Cholinergic

System
The early establishment of the ‘‘cholinergic hypothesis’’ of AD
was based on deficits in cholinergic function in AD (Bartus
et al., 1982; Francis et al., 1999; Hampel et al., 2019). Indeed,
interest in the cholinergic hypothesis of AD has attracted
recent attention, as virtually all older adults over the age of
70 show progressive accumulation of misfolded extracellular
amyloid and intracellular over-phosphorylated tau proteins, but
progressive neurodegeneration that accounts for AD-related
cognitive impairment occurs only in ∼10% of this population
(Kok et al., 2009; Deture and Dickson, 2019). These findings
suggest that ‘‘proteinopathies’’ alone are not a sufficient driving
force to lead to progressive neurodegeneration and cognitive
loss. Recent evidence indicates microglia may play a key role in
neurodegenerative processes. Indeed, microglial Aβ phagocytosis
is identified as one of the mechanisms to reduce Aβ burden
and has been proposed as a therapeutic target for AD (Bard
et al., 2000). As opposed to the ‘‘amyloid hypothesis’’ to explain
AD etiology, the ‘‘inverse Warburg hypothesis’’ is a theory
centered on metabolic mechanisms and more particularly on the
cooperation between neurons and astrocytes, the latter playing
a fundamental role in energy supply and glutamate-glutamine
cycle, that could have critical implications for neurodegeneration
(Bélanger et al., 2011; Demetrius et al., 2015). Thus, astrogliosis
might have major metabolic consequences on neurons.

Cholinergic neurons are amongst themost energy-consuming
neurons as they require the production of supplementary
acetyl-CoA by mitochondria which makes them highly sensitive
to toxicity from excess microglial activation (Wenk et al.,
2000) and oxidative stress (Wurtman, 1992; Fass et al., 2000;
McKinney, 2005; Szutowicz et al., 2013). These neurons have
also been shown to be vulnerable to the activation of the
hypothalamic-pituitary-adrenal axis early in life (Aisa et al.,
2009). As mentioned earlier, the central cholinergic system
is involved in cognitive processes such as executive function,
attention, and memory (Levin and Simon, 1998; Ballinger et al.,
2016; Prado et al., 2017; Solari and Hangya, 2018) but also in
the regulation of the vascularization of the brain (Sato and Sato,
1995; Van Beek and Claassen, 2011). In AD, amongst the two
main cholinergic nuclei of the brain, the cholinergic neurons
of the BF appear to be the ones to degenerate compared to
the cholinergic neurons of the BS which seem to be relatively
spared (Woolf et al., 1989; Lehéricy et al., 1993; Kotagal et al.,
2012; Schmitz and Nathan Spreng, 2016; Schmitz et al., 2018).
Nonetheless, cholinergic neurons of the BS are still affected and
exhibit neurofibrillary tangles or/and amyloid plaques (Parvizi
et al., 2001). Interestingly, the cholinergic neurons of the BS
are involved in ocular saccades (Kobayashi and Isa, 2002).
This may raise the question of a link between impairment
of the BS cholinergic neurons and its involvement in visual
complaints of some AD patients, which is sometimes their
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primary reason for a consult (Kobayashi and Isa, 2002). The
degeneration of BF cholinergic neurons appears to coincide
with cognitive decline exhibited by AD patients (Grothe et al.,
2014; Ballinger et al., 2016; Schmitz and Nathan Spreng, 2016).
Thus, the loss of cholinergic inputs to the hippocampus from
the BF could contribute to AD memory impairment, as the
hippocampus is a key structure in learning and memory (Bartsch
and Wulff, 2015). The loss of cholinergic input to the frontal
cortex also affects executive function and cognitive flexibility
(Prado et al., 2017), which also impairs memory as patients
can no longer develop efficient memorization strategies. In
AD patients, there is a hypometabolism of the temporoparietal
area, the frontal cortex, and the posterior cingulate cortex
(Mosconi, 2005; McMurtray et al., 2008). This hypometabolism
is likely due to the loss of cholinergic inputs from the BF,
which in turn leads to functional impairment in downstream
temporoparietal regions (Grothe et al., 2016). This may coincide
with hypoperfusion due to the death of cholinergic neurons,
as the BF is involved in brain blood flow regulation (Sarter
and Bruno, 2004; Van Beek and Claassen, 2011). In return, this
hypoperfusion could lead to the death of even more cholinergic
neurons as the cholinergic neurons are energy-deprived. In rats,
cholinergic inputs from the BF are responsible for increasing
cerebral blood flow in the hippocampus (Nishimura et al.,
1992; Sato et al., 2004); this can be impaired by limited NO
production via a decrease of neuronal NO-synthase catalytic
activity (Hartlage-Rübsamen and Schliebs, 2001). In humans, it
has been shown that greater blood flow into the hippocampus
is correlated with a better performance in spatial memory in
older adults (Heo et al., 2010) and a greater hippocampal
vascular reservemight be a protective factor against cognitive loss
(Perosa et al., 2020).

The relationship between central cholinergic degeneration
and AD proposed in this review is summarized in Figure 1.

As mentioned earlier, microglia can function by
displaying persistent chronic inflammation which can lead to
neurodegeneration (Zamanian et al., 2012; Sochocka et al., 2017;
Tohidpour et al., 2017). One of the mechanisms involved in the
establishment of neurodegeneration is increased phagocytosis
and upregulation of an innate immune receptor protein on
the cell membrane, TREM2, which aids in the phagocytosis of
accumulated amyloid and tau debris (Klinkenberg et al., 2011).
During phagocytosis of the accumulated debris, membrane
TREM2 is released into the cerebrospinal fluid (CSF) as soluble
(s)TREM2, with little apparent inflammation (Ewers et al., 2019;
Parhizkar et al., 2019). This process may be neuroprotective
during the earliest stages of amyloid pathology, but with the
subsequent occurrence of tau pathology associated with a
larger increase in CSF sTREM2, may reflect the transition
of microglia to a detrimental phenotype (Leyns et al., 2017;
Schmitz et al., 2020). Activated microglia upregulate multiple
proinflammatory cytokines in response to neuronal amyloid
and tau accumulation (Sarlus and Heneka, 2017). Activated
microglia are also linked to the proliferation of neurotoxic
reactive astrocytes via the complement component C3, which
is the activating gene of the complement cascade, highly
upregulated in the cross-talk between activated microglia and

reactive astrocytes (Liddelow et al., 2017). Dysregulation of
cholinergic modulation, possibly due to early age-related BF
cholinergic neuronal loss, may remove an important check
on the proliferation of pro-inflammatory activated microglia.
Indeed, the loss of cholinergic inputs to the hippocampus from
the BF might favor neuroinflammation in the hippocampus
as the anti-inflammatory effect of the ACh is impaired. This
view was supported by a recent study by Schmitz et al. (2020)
which shows that an increased magnitude of BF degeneration
in preclinical adults was associated with abnormally elevated
levels of sTREM2 in the CSF and increased levels of peripheral
blood C3. The authors hypothesized that damage to cholinergic
neurons in the aging brain might result from a disruption to
lipid metabolism, possibly due to an apolipoprotein E4 (APOE4)
genetic background (Schmitz et al., 2020). Interestingly, they
showed that increased BF degeneration and C3 expression
were most pronounced in preclinical APOE ε4 carriers, despite
equivalent levels of CSF Aβ and pTau (Schmitz et al., 2020).
Previous studies validate these results, as APOE4 glia secrete
less lapidated cholesterol and fatty acids which are unable
to be transported into neurons, and deprived neurons of
energy to build, repair, and maintain synapses and axons
(Kanekiyo et al., 2014; Hu et al., 2015). The larger size of the
cholinergic axon arbors presents biological challenges such
as a large expenditure of resources for growth, maintenance,
repair, and axonal transport, making these cells susceptible
to age-related changes (Wu H. et al., 2014). Overall, the data
presented suggest that the loss of afferent cholinergic BF input
in AD may disrupt anti-inflammatory cholinergic signaling
and exacerbate microglial proinflammatory responses in the
presence of other age-related ‘‘proteinopathies,’’ leading to
further neurodegeneration and cognitive loss in the later stages
of the disease.

Reduced Cholinergic Transmission and the Therapeutic

Effect of α7nAChR in AD
Decreased expression of nicotinic receptors can be found in the
brain of AD patients. This decrease is not uniform depending
on the sub-unit or the brain area considered. In a study using
human brain homogenates, a significant decrease in protein
levels of α7nAChR (about 17%) and α4nAChR (about 40%)
was found in the superior temporal gyrus in AD patients
compared to controls (Burghaus et al., 2000). Similarly, a
different study detected a decrease in protein levels of 35% for
the α4 subunit, 25% for the α3 subunit, and 36% α7 subunit
was found in the hippocampus, and in the temporal cortex,
there was a decrease of 47% for the α4 subunit and 29% for
the α3 subunit, with no change for the α7 subunit (Guan et al.,
2000). There was no change in the β2 subunit in these areas
(Guan et al., 2000). When looking specifically at the expression
of α7nAChR in the astrocytes, Teaktong et al. (2003) found
more α7-immunoreactive astrocytes in the hippocampus and
entorhinal cortex of AD patients compared to controls. Also,
in human post mortem AD brain tissue, microglia accumulates
on Aβ deposits and expressed α7nAChRs (Takata et al., 2010).
Together, this suggests a reduction in glial α7nAChR is evident
in several brain regions in AD.
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FIGURE 1 | Several interacting factors can lead to the death of central cholinergic neurons. Aging with an increased microglial activation disrupted the blood-brain

barrier and decreased neuronal plasticity provides a breeding ground to which environmental factors, such as stress or systemic inflammation, and genetic factors,

such as loss of inhibition of neuroinflammatory process or abnormal protein leading to aggregates, are added. Cholinergic neurons are highly demanding in energy

and highly sensitive to oxidative stress. The two main cholinergic populations of the central nervous system (CNS) are located to the brainstem (BS) and the basal

forebrain (BF). The cholinergic neurons of the BF are projecting to the hippocampus (Hipp.) and throughout the neocortex. The cholinergic neurons of the BS are

projecting to the thalamus (Thal.), the ventral tegmental area (VTA), and the BF. Death of BF cholinergic cells leads to a loss of acetylcholine (Ach) influx in the

hippocampus which is involved in memory impairment but also relieves a brake on neuroinflammation. The loss of cholinergic input to the PFC leads to impaired

executive function. Concerning cholinergic death in the BS, it raises the question of its association with the inaugural visual complaints expressed by Alzheimer

patients as it controls ocular saccades. Finally, the death of central cholinergic neurons is associated with a temporoparietal hypometabolism.

Preclinical data suggest that increasing the expression and
function of glial α7nAChR may be protective in AD. In primary
cultured rat microglia, the positive modulation of nAChRs by
galantamine or stimulation of nAChRs by nicotine increases
Aβ phagocytosis (Takata et al., 2010). Moreover, these changes
were closely associated with reduced Aβ burden in the brain and
enhancement of memory in the APdE9 transgenic mouse model
of AD (Takata et al., 2010). A recent study published by the
same group confirmed the subtype of nAChR involved in these
beneficial effects as α7, and α7nAChR selective agonist 3-[(2, 4-
dimethoxy)benzylidene]-anabaseine dihydrochloride (DMXBA)
promoted Aβ phagocytosis in primary cultures of rat microglia
(Takata et al., 2018). They also reported the administration
of DMXBA to ApdE9 mice attenuated brain Aβ burden and
memory dysfunction (Takata et al., 2018). Moreover, DMXBA
also repressed γ-secretase activity in human neuroblastoma
cells and in transgenic mouse brains (Takata et al., 2018). In
another study, long-term treatment of aged 3xTg-AD mice
with the selective α7nAChR agonist, A-582941 (12 mg/kg/day,
for 3 months, from 15 to 18 months of age), completely
restored cognition in 3xTg-AD mice to the level of that in
age-matched non-transgenic controls (Medeiros et al., 2014).
Overall, this suggests that selective activation of microglial and
neuronal α7nAChRs promotes Aβ phagocytosis and suppresses

neuronal γ-secretase activity respectively, lessening Aβ burden
and cognitive impairment.

Stimulation of α7nAChRs on microglia and neurons
ameliorates brain Aβ burden and cognitive impairment
via two distinct mechanisms (Takata et al., 2010, 2018). In
microglia, stimulation of α7nAChR increases cytosolic Ca2+

and consecutively activates calcium-dependent pathways for
actin reorganization through CaM-CaMKII (Ca2+/calmodulin-
dependent protein kinase II) and CaM-Rac1-WAVE (CaM-
Ras-related C3 botulinum toxin substrate 1-Wiskott-Aldrich
syndrome protein family verprolin-homologous protein)
signaling pathways and subsequently may promote microglial
Aβ phagocytosis. In neurons, α 7nAChR stimulation may
downregulate presenilin 1 (PS1) expression and subsequent
suppression of γ-secretase activity.

One of the proposed mechanisms explaining Aβ-related
neurotoxicity is microglia-related oxidative stress and
neuroinflammation via nicotinamide adenine dinucleotide
phosphate (NADPH) activation (Kim et al., 2007). The
neuroprotective function of nicotine may be mediated by
suppressing Aβ-induced ROS production in microglia. Nicotine
suppresses ATP release and thus inhibits NADPH oxidase
activation, completely blocking Ca2+ influx in Aβ-stimulated
microglia (Della Bianca et al., 1999; Moon et al., 2008). Taken
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together, these findings suggest that reduced expression or
inactivation of microglial and neuronal α7nAChRs receptors
may contribute to some pathological changes and cognitive
impairment observed in AD.

A therapeutic approach that targets α7nAChRs is already
being explored by pharmaceutical companies not only for AD but
also for disorders such as PD, schizophrenia, or attention deficit
hyperactivity disorder (Yang et al., 2017).

Lewy Body Dementia
Neurodegenerative diseases characterized by the presence
of intraneuronal Lewy bodies (constituted primarily of
α- synuclein) and Lewy neurites are termed Lewy body
diseases and are considered the hallmark of dementia with
Lewy bodies and PD (Duda, 2004). The principal Lewy body
diseases are PD, Parkinson’s disease dementia, and LBD (Barrett
et al., 2020). LBD is recognized as a common cause of cognitive
deterioration in the elderly and is the second most common
cause of neurodegenerative dementia after AD (Tiraboschi
et al., 2002; Ferman and Boeve, 2007). It is well-established that
cholinergic input from the nucleus basalis of Meynert in the
BF is required for cognitive function, and degeneration of the
nucleus basalis of Meynert in LBD contributes to the weakening
of cognitive function observed in LBD patients. LBD is also
characterized by neuropsychiatric symptoms such as psychosis
with visual hallucinations and depressive symptoms associated
with BF cholinergic degeneration. More compelling evidence of
cholinergic BF degeneration in LBD comes from cholinesterase
inhibitor trials (Barrett et al., 2020). One such early clinical
trial using rivastigmine, a cholinesterase inhibitor, improved
hallucinations, delusions, apathy, and anxiety in patients with
LBD (Mckeith et al., 2000). In LBD, ACh downregulation is
generally thought to be more severe than that in AD (Kitajima
et al., 2015) and autoradiographic studies on postmortem brains
showed reduced nAChR in the cortex and hippocampus in
PD (Rinne et al., 1991; Lange et al., 1993; Barrett et al., 2020).
Rinne et al. (1991) showed that a reduction in nicotinic receptor
binding in the frontal cortex correlated with the severity of
dementia in PD and AD (Rinne et al., 1991). While there was
a reduction in both α7 and non-α7nAChRs in LBD, only the
decrease in α7 receptors correlated with cholinergic denervation
as measured by ChAT activity (Reid et al., 2000). Moreover,
Court et al. (2001) reported a loss of α7nAChRs in the temporal
cortex of dementia with Lewy Bodies (DLB) patients associated
with visual hallucinations and delusional misidentification
(Court et al., 2001). Together, this indicates a role for cortical
and hippocampal nAChRs, and in particular α7nAChRs in
LBD, which may be linked to behaviors such as hallucinations,
delusions, apathy, and anxiety in LBD patients. All the above-
mentioned studies focused on α7nAChRs as a whole, without
differentiating them into neuronal or glial subtypes. However,
direct evidence of inflammation in LBD is growing, with
augmented microglial activation identified at post-mortem
(Togo et al., 2001), as well as a recent study reporting microglial
activation in key brain regions associated with disease pathology
(Surendranathan et al., 2018). Immunohistochemical studies
carried out on post-mortem brains of AD and LBD patients

reported an increase in the number of astrocytes double-labeled
with α7nAChR and GFAP antibodies, in most areas of the
hippocampus and entorhinal cortex in AD, but not in LBD
(Teaktong et al., 2003, 2004). Thus, further pre-clinical and
clinical evidence is required to support the direct involvement
of glial α7nAChRs in LBD to establish an association with
neurodegenerative pathology in this disease.

Parkinson’s Disease
PD is a common neurodegenerative disease in the elderly and
is pathologically characterized by the loss of dopaminergic
neurons in the substantia nigra (SN). However, the origin
of PD and mechanisms of neuronal degeneration are not
fully understood. Compelling evidence indicates that CNS
glia has an initiating role in PD pathophysiology. While
PD patients show significant loss of dopaminergic neurons
in the SN, the degeneration of the BF cholinergic system
is a factor in dementia associated with PD (Maurer and
Williams, 2017). There is some evidence for the contribution
of the BF function to dementia in PD. Administration
of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP) is used to model PD in rodents. A metabolite of
MPTP in astrocytes, 1-methyl-4-phenylpyridinium ion (MPP+),
can block mitochondrial complex I, leading to selective
dopaminergic neurodegeneration, similar to that present in
PD (Jakowec and Petzinger, 2004). LPS administration is
also used to model PD in animals, as it activates glial
cells and induces inflammatory changes and dopaminergic
neurodegeneration (Dutta et al., 2008). In a study using
in vivo and in vitro murine models of PD, microglia and
astrocytes in the SN increased in number and displayed more
activation-associated morphology compared to controls, due
to neuroinflammation triggered by MPTP/MPP+ or LPS (Liu
et al., 2012). Systemic administration of nicotine alleviated
MPTP-induced perturbed behavioral symptoms (by improving
motor coordination) and protected against dopaminergic neuron
loss, as well as microglia and astrocyte activation in the
SN (Liu et al., 2012). Protective effects of nicotine were
abolished by the administration of the α7nAChR-selective
antagonist methyllycaconitine (MLA), indicating α7nAChRs
mediate neuroinflammation and PD-like behaviors in these
models (Liu et al., 2012). Interestingly, in primary cultured
mouse microglia and astrocytes, pre-treatment with nicotine
suppressed MPP+-induced or LPS-induced glial activation and
number, evidenced by decreased production of TNF-α and
inhibition of extracellular regulated kinase1/2 (Erk1/2) and
p38 activation in glia (Liu et al., 2012). These effects were also
reversed by MLA, suggesting a role for microglial and astrocyte
α7nAChR in inflammatory responses relevant to PD. A recent
study assessed the anti-apoptotic effects of an α7nAChR agonist
PNU-282987 in primary cultured astrocytes treated with MPP+
(Hua et al., 2019). They showed that PNU-282987 promoted
the viability of astrocytes, alleviated MPP+ induced apoptosis
by upregulating the expression of the antiapoptotic protein Bcl-
2, and downregulated the expression of the apoptotic protein
Bax and cleaved-caspase-3 (Hua et al., 2019). This suggests that
PNU-282987 may be a potential drug for restoring astroglial
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function in the treatment of PD via astroglial α7nAChR-JNK-
p53 signaling.

Recent literature has described how the vagus nerve may
play an important role in the pathogenesis of PD. Reflecting
our previous discussion on the function of the vagus in the
CAP, disruption in vagal cholinergic signaling could promote
a neuroinflammatory state. Studies using murine models have
shown that in advanced age, vagal visceral sensory innervation
of the gastrointestinal tract is reduced (Phillips and Powley,
2001; West et al., 2019). Additionally, in aging the vagus
nerve is found to reduce in size (Walter et al., 2018) and
afferent fibers are found to regress and undergo dystrophic
changes (Phillips et al., 2010). Further research is required
to understand how changes to vagal afferent fibers might
impact neuroimmune signaling and the CAP. Recent literature
discussing the vagus nerve during aging focuses on its role
in the gut-brain axis and PD. It has been suggested that
truncal vagotomy could reduce the risk of PD development
(Liu et al., 2017). Prodromal gut dysfunction and inflammation
have been found to precede motor symptoms of PD by decades
(Nair et al., 2018). The vagus nerve acts as the main link
between the gut-brain axis and inflammation or a prion-like
cascade of α-synuclein may be propagated to the CNS via

the vagus nerve (Liddle, 2018). Even throughout life, gut
infections by vagal signaling could influence an endophenotype
of microglial cells that promotes neurodegeneration in later
decades (Desplats et al., 2019). A better understanding of
vagal neuroimmune signaling could provide insight into the
progression of PD.

Dementias Associated With Chronic Pain
Chronic pain occurs due to altered neuronal plasticity, and
this includes altered sensitization of peripheral primary sensory
neurons in the dorsal root ganglia and trigeminal ganglia, as
well as the sensitization of central nociceptive neurons in the
spinal cord, trigeminal nucleus, BS, and cortex (Ji et al., 2014).
Clinically, chronic pain is defined as pain lasting more than
3 months and is typically characterized by hyperalgesia (an
increased response to noxious thermal and mechanical stimuli)
and allodynia (nociceptive responses to normally innocuous
stimuli such as light touch; Ji et al., 2014).

Neuroinflammation plays an important role in the induction
and maintenance of chronic pain (Ji et al., 2014). Unlike
acute inflammation that produces transient central sensitization,
chronic pain is associated with producing a long-lasting or
permanent central sensitization that persists even after the
acute inflammation has been resolved (Ji et al., 2014). Chronic
pain affects up to 30% of older adults worldwide (Larsson
et al., 2017). Generally, it is associated with abnormalities in
sensory processes, but it is highly associated with cognitive,
emotional, and social dysfunction (Malfliet et al., 2017).
The Einstein Aging Study showed that chronic pain is
associated with dementia, and 10% of the 1114 elderly
participants in the study developed dementia over 4.4 years
(Katz et al., 2012; Ezzati et al., 2019). Moreover, a recent review
summarized evidence for a possible mechanism of chronic
pain-induced AD pathogenesis through LC-noradrenaline (NE)

system dysfunction and microglial neuroinflammation (Cao M.
et al., 2019). They suggested that chronic pain may induce
pathological activation of the LC-NE system and lead to an
increased NE release in brain areas such as the PFC and
hippocampus, which could then result in chronic pain-induced
microglial pro-inflammatory activation. Thus, this microglial
pro-inflammatory activation may aggravate AD pathogenesis
via decreased Aβ phagocytosis, increased tau seeding, loss of
synaptic function, and cytokine-induced neuron death in these
brain regions (Cao S. et al., 2019).

While the hippocampus appears to play a vital role in
pain perception and processing, this limbic structure shows
high expression of microglial cells (Soleimannejad et al.,
2007; Tan et al., 2020). As mentioned previously, while
microglia contribute to the early development of chronic pain,
dysregulation of astrocyte function is required to sustain
developed chronic pain (Jha et al., 2012). Furthermore,
hippocampal ACh is an important mediator in regulating
chronic pain-induced behavioral deficits and studies have
demonstrated antinociceptive effects of cholinergic compounds
(Jiao et al., 2009; Chen et al., 2016). The compound 3a,4,5,9b-
Tetrahydro-4-(1-naphthalenyl)-3H-cyclopentan[c]quinoline-8-
sulfonamide (TQS) is a α7nAChR PAM. A study using a mouse
model of LPS-induced neuroinflammatory pain demonstrated
that TQS reduced hippocampal microglial activation and
hyperalgesia and allodynia, an effect that was reversed by
pre-treatment with the α7nAChR antagonist MLA (Abbas
and Rahman, 2016). Microglia regulate the transcription of
various pain mediating genes, including the inhibitor of κB
(IκB) mRNA (Abbas et al., 2017). Within the cytoplasm of
resting-state microglia, IκB is bound to NF-κB, preventing
inflammatory signaling (Abbas et al., 2017). When stimulated,
IκB becomes phosphorylated and unmasks NF-κB from an
inactive to an active state (Abbas et al., 2017). Activated NF-κB
then translocates to the nucleus and positively regulates the
transcription of various pain mediating genes (Li and Verma,
2002; Abbas et al., 2017). Increased IκB mRNA and CD11b
mRNA, which is a microglial activation marker in the brain,
are expressed simultaneously during hyperalgesia and allodynia
(Loram et al., 2010; Abbas et al., 2017). Recently, Abbas and
Rahman, demonstrated the α7nAChR PAM decreases IκB and
CD11b gene expression and microglial activation associated with
hyperalgesia and allodynia, by targeting microglial α7nAChR in
the hippocampus (Abbas et al., 2017). Thus, targeting excessive
neuroinflammation could offer new therapeutic approaches
when managing chronic pain related neurological and cognitive
disorders. In addition, these findings suggest that a α7nAChR
PAMmay represent a new treatment approach for allodynia and
hyperalgesia associated with microglial activation during chronic
pain (Abbas and Rahman, 2016; Abbas et al., 2017).

CONCLUSIONS

This review has summarized research on the cholinergic
modulation on glial function, with a particular focus upon
aging and chronic neuroinflammation in the CNS. The BF
provides cholinergic inputs into various brain regions including
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the hippocampus and the cortical areas, regions with important
higher cognitive functions. It has been shown that nicotinic
receptor α7nAChR is expressed on hippocampal neurons, and
is involved in neuroprotective processes. This is evidenced
by the direct activation of neuronal α7nAChR reversing
cholinergic pathway-dependent cognitive deficits. The nicotinic
BF inputs to hippocampal regions not only modulate neuronal
α7nAChR receptors but also have a substantial influence upon
hippocampal glia. Both astrocytes and microglia are involved
in the cholinergic anti-inflammatory pathway via α7nAChR
expression. This has been demonstrated by modulation of
microglial and astrocytic nicotinic receptor activity, which
results in Aβ phagocytosis and cognitive improvement in
neurodegenerative disease states. Expression of GDNF is
stimulated by the activation of α7nAChRs which inhibit
microglial activation, leading to neuronal protection. Wider
and more extensive studies on microglial α7nAChR may lead
to the use of microglial function in the diagnostic screening
of dementias.

The effects of the cholinergic BF projections on
anti-inflammatory and anti-oxidant processes is not a simple
unilateral interaction between BF projections and neurons,
microglia, and astrocytes, but a multilateral integration of these
components. This is evident in the extensive cellular relationship
between microglia and astrocytes. Hence, the disruption of

the cholinergic BF system, via neurodegeneration, energy loss,
infection, or aging, may play a significant role in the development
of neurodegenerative diseases.
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