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Abstract

Spike generation in cortical neurons depends on the interplay between diverse intrinsic conductances. The phase response
curve (PRC) is a measure of the spike time shift caused by perturbations of the membrane potential as a function of the
phase of the spike cycle of a neuron. Near the rheobase, purely positive (type I) phase-response curves are associated with
an onset of repetitive firing through a saddle-node bifurcation, whereas biphasic (type II) phase-response curves point
towards a transition based on a Hopf-Andronov bifurcation. In recordings from layer 2/3 pyramidal neurons in cortical slices,
cholinergic action, consistent with down-regulation of slow voltage-dependent potassium currents such as the M-current,
switched the PRC from type II to type I. This is the first report showing that cholinergic neuromodulation may cause a
qualitative switch in the PRCs type implying a change in the fundamental dynamical mechanism of spike generation.
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Introduction

The ability of neurons to synchronize their spiking activity

depends on their mutual synaptic connectivity and their intrinsic

properties. The intrinsic properties can be revealed by the phase

response curve (PRC) [1], defined as the spike time shift caused by

a small perturbation of the membrane potential as a function of

the time of the perturbation during the spike cycle. The PRC

allows a classification of neurons into two fundamentally different

classes with regard to their spiking behavior [1].

In neurons with a purely positive, or type I, PRC, perturbations

at every phase of the oscillatory cycle cause a time-advance of the

next spike. By convention for a PRC a time-advance is plotted in

the positive and time-delay in the negative directions. For

neuronal models with such purely positive PRCs measured at

relatively low firing rates, the transition from rest to tonic spiking

comes about generically through a saddle-node bifurcation [1]. The

resulting dynamics imply a general absence of subthreshold

oscillations and the onset frequency of firing is arbitrarily low.

The firing frequency – injected current relationship is roughly

linear and the action potentials are all-or-none and well separated

from subthreshold responses. No bistability near the rheobase and

no hysteresis is apparent for this type of membrane excitability. A

large number of biophysical models of cortical pyramidal neurons

has type I excitability [1,2,3].

In neurons with a biphasic, or type II, PRC, perturbations at

early phase positions cause a delay of the next spike, whereas late

perturbations cause an acceleration of the spike time. These

neurons tend to show subthreshold oscillations and a finite onset

frequency of firing. The transition from rest to tonic spiking occurs

via a subcritical Hopf bifurcation. The firing frequency vs. injected

current relationship is non-linear (has a discontinuity near the

onset of firing) and the action potential amplitude can be graded.

For certain parameter regimes bistability between a quiescent and

a tonically firing behavior can appear. The Hodgkin-Huxley

equations with the original parameters describing spiking in the

squid giant axon [4] are type II.

The PRC type is interesting to ascertain since it can provide

insights into the neuron’s synchronization behavior. Theory

suggested that excitatory coupling tends to desynchronize networks

of neurons with type I PRCS [1], and synchronize neurons that

have significant negative regions in the PRC (Type II), and/or with

PRC that have a strong right skew (see Gutkin et al. [5] for further

discussion). Hence the PRC links the biophysics of spike generation

in neurons and their behavior in large networks.

There have been a number of experimental reports of PRCs

measured in cortical neurons. Reyes and Fetz [6] measured PRCs

in layer V cortical pyramidal neurons and found that they had a

characteristically skewed shape and appeared to be mostly type I

(no negative portions in the PRC). Netoff et al. [7] identified PRCs

in stellate cells in the enthorhinal cortex using the dynamic clamp

technique; their results show PRCs qualitatively similar to those

found by Reyes and Fetz [6] but with a small negative component

at the beginning of the firing cycle. Galan et al. [8] measured PRCs

from mitral cells in the olfactory bulb and found PRCs with clear

negative portion at the beginning of the cells firing cycle. Thus,
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motor-cortical pyramidal neurons appear to be of type I,

entorhinal neurons are ‘‘weakly’’ type II and olfactory bulb

neurons are solidly type II. Further recent data shows that certain

CA3 pyramidal neurons appear to be type II [9]. In vitro

recordings in the somatosensory cortex indicate that fast spiking

interneurons are of type II [10]. A recent in vitro study showed

that pyramidal neurons in layer V are predominantly type I, while

layer 2/3 pyramids are predominantly type II [11] depending on

the basal firing rate of the neuron as predicted in Gutkin et al [5].

These earlier studies, with the notable exception of the last, have

not asked the question of what intrinsic cellular and functional

mechanisms might control the change between the two PRC

classes in a given cell or in mathematical terms what might cause a

transition from one bifurcation class to another.

Here we address this issue and focus on the cholinergic

modulation of slow potassium currents. Acetylcholine is a central

nervous system neuromodulator that is of significant behavioral

and functional importance. The level of acetylcholine is elevated

during awake, vigilant states and it is associated with a globally

desynchronized EEG, increased power in higher frequency bands

[12] and increased synaptic plasticity [13,14]. Most in vitro models

of fast cortical oscillations use cholinergic neuromodulation

[15,16]. Whereas data shows that acetylcholine down-regulates

slow potassium currents that underlie spike frequency adaptation

and after-hyperpolarization [17], previous theoretical work

showed that modulation of such currents can convert neurons

from type I to type II [2]. The switch should primarily depend on

K-currents that activate below the firing threshold of the cell, such

as the muscarine-sensitive M-current (associated with the CHRM

gene). This points to a link between the dynamics of spike

generation at the cell level and cholinergic neuromodulation on

the systemic level. Hence we experimentally explored the possible

connection between cholinergically down-regulated potassium

currents and PRC type of cortical pyramidal neurons.

Methods

Electrophysiology
We recorded from layer II/III pyramidal neurons in the slices of

the mouse visual cortex. All animal experiments were done in

accordance with ethical guidelines of the Salk Institute. Mice

(B6D21/Hsd B6, ‘‘black 6’’, Harlan, San Diego, age P28 to P35)

were anesthetized with halothane and decapitated. The occipital

forebrain was removed and glued to a plastic block. Coronal slices of

the visual cortex (300 mm) were cut with a Series 1000 Vibratome

(Pelco) or a custom-made slicer in ice-cold artificial cerebrospinal

fluid (ACSF , NaCl 125 mM, KCl 2.5 mM, NaH2PO4 1.25 mM,

NaHCO3 25 mM, CaCl2 2mM, MgCl2 1.3 mM, Dextrose

10 mM). Slices were allowed to recover in ACSF at 35uC for at

least 30 minutes before the start of recordings.

Recordings were performed under IR-DIC videomicroscopy

[18] in oxygenated ACSF (flow 3 ml/min) at 32uC. Whole-cell

patch clamp recordings were performed with electrodes ranging

from 5 to 8 MV. The pipette solution contained KMeSO4

140 mM, HEPES 10 mM, NaCl 1.5 mM and EGTA 0.1 mM.

The voltage signal was recorded with an Axoclamp-2A

amplifier (Axon Instruments, Foster City, CA, USA), low pass

filtered at 30 kHz and digitized at 32 kHz with a PCI-MIO-16E-4

DAQ board (National Instruments, Austin, TX, USA). Data

acquisition software was custom written in Lab View 6.1 (National

Instruments, Austin, TX, USA).

Glutamatergic ionotropic synaptic transmission was blocked

with DNQX (20 mM) and APV (50 mM) in all experiments.

GABAergic ionotropic transmission was blocked with biccuculine

(10 mM) in the majority of experiments. All drugs were purchased

from Sigma (Dallas, TX, USA).

Action potential firing was evoked by injecting DC current via

the patch-electrode, from 210 pA in the case of spontaneous

spiking caused by the application of carbachol, to 150 pA.

Continuous stretches spanning 32 seconds were recorded. In

addition, short (10 to 20 ms) depolarizing (10 to 30 pA) current

pulses were injected every 100 to (in most cases) 1000 ms to

perturb the regular spiking process. Experiments were continued

after at least 5 minutes after bath application of the cholinergic

agonist carbachol (10, 20 or 50 mM). DC current injection was

adjusted to achieve similar firing rates as before drug application.

Input resistance, resting potential and spike amplitude were

monitored throughout the experiment and data acquired after

significant changes in these parameters (independently of phar-

macological manipulations) were discarded. Also, when entrain-

ment of the spikes by the current pulses was observed, all the data

from that neuron was discarded. We further monitored that there

were no long-lasting trends in the cells firing rate (or equivalently

inter-spike interval duration), see Figure 1A,B. Finally, we

excluded cells which spiked in doublets (this occurred in 2 cells

after the application of carbachol), since such a spiking pattern

invalidates the analysis used here.

Data Analysis
Spike times were determined by searching for upward threshold

crossings (220 mV) of the voltage trace. The analysis is illustrated

in Figure 1C,D. From these spike times (t), the interspike intervals

(ISIs) were determines as the difference between tn and tn+1. The

change of the ISI length (Dt ISI) for ISIs containing a perturbing

pulse was determined by subtracting its length from the mean of

the lengths of the 10 previous ISIs. We determined the PRC by

plotting Dt ISI/ISI of all ISIs containing a perturbing pulse as a

function of the relative time of the pulse, with ISI duration

normalized to 0 to 2 p (Fig. 2). We then binned the values for Dt

ISI/ISI, according to the relative pulse time (10 bins/2 p), for

single cells and across cells and calculated the mean and standard

deviation for each bin. Spike time shifts were considered

significant when a mean difference test, based on Student’s t-test,

gave p,0.01.

Cellular properties Vrest, Rin and spike frequency adaptation

(defined as as ISI1/ISI3 in a train of at least 4 spikes in response to

the first 500 ms current pulse) were measured at the beginning of

the experiment and after cholinergic effects had stabilized, before

the determination of the PRCs under cholinergic conditions. The

values under control and cholinergic conditions were consistent

from trial to trial. As they were quite variable in between neurons,

the differences across these populations were not significant (mean

difference test as above).

Results

We recorded from 9 cortical layer II/III pyramidal neurons and

determined their PRCs. On average, 2020 ISI without and 570

ISIs with perturbing current pulses were used for the determina-

tion of the PRCs. Of these neurons, 5 initially had a type I (purely

positive) and 4 a type II (biphasic) PRC.

Out of 4 type II neurons, all changed to type I after bath-

application of the cholinergic agonist carbachol, see example in

Figure 2A. In these 4 neurons, carbachol increased (toward

positive) the PRC at early phases (bins 1/5 p to 3/5 p) and

decreased at it late phases (.9/5 p).

Carbachol did not change the PRC type in any of the 5 type I

neurons, Figure 2B. The increases (.9/5 p) and decreases (1/5 p

Cholinergic Modulation of PRCs
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to 2/5 p, 4/5 p to p, 6/5 p to 7/5 p) of the PRC as a result of

carbachol application did not show a phase-dependent trend.

We wanted to ascertain if the changes observed in the PRCs were

due to the cholinergic down-regulation of slow voltage-dependent

potassium currents and not due to changes in the stimulus

amplitude. During our experiments, current pulse amplitude was

kept constant, which lead to a slightly higher voltage pulse

amplitude when the neurons were under the influence of carbachol.

The voltage amplitude increased slightly as one would expect when

the cross-membrane conductance is decreased by action of

carbachol (Fig. 2, inset). Our numerical investigations [19] have

shown that moderate increases in the pulse amplitude, such as

observed in the experiment, lead to a scaling of the PRC amplitude,

but not a change in type of the PRC.

We then asked if the changes in the PRC could be correlated

with alteration in basic physiological properties of the neurons

recorded. We saw that in 4 of the type II neurons, carbachol could

induce persistent spiking that continued after a supra-threshold

current injection (500 ms) (Fig. 3A, right). This would be

consistent with carbachol down-regulating slow potassium currents

that are responsible for controlling the neurons excitability. The

application of carbachol also changed the input resistance (Rin),

resting potential (Vr) and adaptation (see Methods). The results are

summarized in Figure 3B. In the type II neurons that changed to

type I in response to carbachol, Rin on average increased from 195

to 296 MV, Vr from 276.5 to 263.5 mV and the adaptation

decreased from 3.05 to 1.04. In neurons with a type I PRC before

and after the application of carbachol, Rin increased from 249 to

269 MV and Vr and the adaptation decreased from 269.9 to

274 mV and 1.72 to 0.99, respectively. When pooling all data,

Rin increased from 229 to 318 MV, Vr from 271.8 to 267 mV

and the adaptation decreased from 1.99 to 1.09. These results

show that a specific combination of effects on Rin, Vr and

adaptation (increase, increase and decrease) is correlated with a

switch from type II to type I PRC. However we could not tell if

such a pattern is sufficient to explain or predict the changes in the

PRC type. While from trial to trail the changes in the above

parameters due to carbachol were consistent, we could not

ascertain the significance of such changes across the cell

population due to strong variability between neurons.

We then wanted to ascertain that the PRC change due to

carbachol could be seen across the whole cell population. When

pooling the data from all neurons that showed the type II to I

transition, we found that the PRC increased in early phases and

decreased in the late phases, Figure 4A. In the averaged PRC for

the IRI cells no trend in the PRC change was seen, yet several

bins were significantly decreased by carbachol, Figure 4B. The

latter was consistent with a decreased skew of the PRC.

When the firing frequency increases, the PRC of a neuron can

shift from type II to type I (e.g. see [11]). This may occur when the

time constants of the adaptation current responsible for type II

behavior becomes too slow in relation to the spiking dynamics [5].

We thus had to assure that the observed switch in PRC type was

not due to a higher firing frequency during the PRC determina-

tion under carbachol (2.6 vs. 4.9 Hz of the ISIs with a

perturbation). We repeated the analysis including only ISIs

ranging from 2.5 (400 ms) to 5 Hz (200 ms). The average firing

frequencies of the ISIs included in this analysis was 3.8/4.1 Hz,

and the qualitative switch of PRC type was still observed (Fig. 5).

Discussion

We have shown that cortical pyramidal neurons can switch their

PRC type, and thus most likely the type of bifurcation leading to

spiking in response to cholinergic neuromodulation. This is the

first demonstration of a qualitative switch in the basic principle

underlying the transition from rest to action potential firing in any

cell type. In the neurons that initially had a type II PRC it changed

to type I after the application of carbachol. It did not change in the

5 neurons with initially a type I PRC. No case of a switch from

type I to type II in response to carbachol was observed.

We observed heterogeneity in the properties PRC of cortical

pyramidal neurons. Not all the recorded neurons changed their

PRC type. A similar heterogeneity was also observed in the values

of the neurophysiological parameters Rin, Vr and adaptation and

their changes induced by acetylcholine.

Figure 1. Determining PRCs from the perturbations of tonically
spiking neurons. (A) ISIs during 500 ms of spiking recorded in a layer
II pyramidal neuron. (B) ISI return map (ISIn vs. ISIn+1). The lack of a
geometrical structure points to the absence of a higher-order
periodicity giving rise to the ISI fluctuations. (C) Voltage trace during
32 s of continuous spiking. (D) Expansion of (A). The perturbing pulses
are indicated by arrows. The average duration of the 10 preceding ISIs
(excluding other ISIs containing pulses) was subtracted from the ISI
containing a perturbing pulse. The difference is Dphase. (E) The phase
of the perturbing pulse (x-axis) and Dphase (y-axis) were plotted to
determine the PRC.
doi:10.1371/journal.pone.0003947.g001
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Furthermore, in some neurons the concentrations of carbachol

used induced persistent firing that lasted after the current injection

stimulus was removed. We suggest that such persistent firing is

consistent with carbachol blocking currents that control the neurons

excitability and possibly uncovering slow depolarizing currents. For

example, effects we observed might be due the persistent sodium

current that would activate slowly with spiking and persistently keep

the cell above the firing threshold for an extended period after the

current injection is removed. We note here that this kind of

persistent firing appears to be dynamically different than the

bistability that is associated with type II dynamics. For the latter no

persistent depolarizing currents are required and one could switch

between the quiescent and firing states by only a brief stimulus.

Finally, numerical work shows that persistent sodium currents

cannot explain type II behavior (results not shown).

The fact that type II neurons showing a strong carbachol-

dependent decrease in spike-frequency adaptation switched their

PRC type is consistent with the theoretical finding that decreasing

an adaptation current can switch the type of bifurcation leading

from rest to tonic spiking [2]. We suggest that the cholinergic

decrease in a potassium current, possibly IM, was responsible for

the transition from type II to type I. In fact, the cholinergic agonist

we used acts through the muscarinic metabotropic acetylcholine

receptors [20] that in turn control a number of cells parameters.

Carbachol effects include the down-regulation of a number of slow

K-currents as well as possibly non-specific currents such as the

mixed ion current generating the leak. In principle all of those

could be involved in the PRC switch we observed. However

previous theoretical work showed that slow K-currents that

depend on occurrence of spikes to activate (e.g. the IKAHP(Ca))

are not sufficient to cause the switch [2]. We also conducted a

more careful numerical study of the possible carbachol effects on

numerous currents as well as change is in the input resistance etc

[19]. Our results also show that the M-current down-regulation is

Figure 2. Change of PRCs due to cholinergic neuromodulation in single neurons. Left column: control conditions. Center column: bath
application of carbachol. Right column: difference between the charbachol and control conditions. Top plots: raw data. Bottom plots: mean6s.e.m. of
binned data. Filled symbols: significant changes in comparison to the ISIs without a perturbation. Data from example neurons (A) showing a
transition from a type II to a type I PRC and (B) remaining with a type I PRC. Insets: voltage averages of the perturbing pulses in the absence (thin
line) and presence (thick line) of carbachol. Average amplitudes were (A) 3.2/3.5 mV (54/60 sweeps) and (B) 3.2/3.8 mV (67/67 sweeps).
doi:10.1371/journal.pone.0003947.g002

Cholinergic Modulation of PRCs
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Figure 3. Electrophysiological properties and excitability in pyramidal neurons in the absence (left column) and presence (right
column) of carbachol. (A) Spiking in response to the injection of a current pulse (500 ms). (B) Change of Vrest, Rin and adaptation in response to
the bath-application of carbachol in neurons which showed a transition from type II to type I PRC (top) and in neurons which did not (bottom).
doi:10.1371/journal.pone.0003947.g003

Cholinergic Modulation of PRCs
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Figure 4. PRCs averaged over all neurons showing (A) a transition from a type II to a type I PRC in response to the bath-application
of carbachol or (B) remaining with a type I PRC. Figure conventions as in Fig. 3.
doi:10.1371/journal.pone.0003947.g004

Figure 5. Charbachol induced PRC type I switch with mean firing rate normalized. PRCs averaged over all neurons showing a transition
from a type II to a type I PRC in response to the bath-application of carbachol, but only including ISIs ranging from 400 (2.5 Hz) to 200 ms (5 Hz).
Figure conventions as in Fig. 3.
doi:10.1371/journal.pone.0003947.g005
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sufficient to cause the switch. At this point we cannot completely

exclude that down-regulating other low-voltage activated potassi-

um currents may not cause the observed effect, hence we are

pursuing further studies with more selective M-current blockers.

However the main results stands: cholinergic modulation consis-

tent with down-regulation of the muscarine sensitive slow K-

current converts type II neurons into type I.

Finally, in the type I neurons a decrease of adaptation was

observed, but they were already of the PRC type associated with a

small amount of adaptation current and their PRC type also did

not change.

Given that about half of the pyramidal neurons in a cortical

column switch their PRC type, would likely influence the

synchronization properties of the neuronal network. Acetylcholine

is known to promote the appearance of oscillations in the gamma-

frequency range in vitro [21]. The switch in the spike generating

dynamics, observed experimentally as a change in the PRC type,

may be an important factor in this change.

An important question is what the above results mean for the

synchronization of neurons in the cortex in vivo. This has to be

addressed in the context of the complete cortical network, which in

addition to the pyramidal neurons, contains a number of types of

GABAergic interneurons. Different types of synchronous oscilla-

tions (delta, theta, gamma) result from different dynamics

involving different currents and cell types [22,23]. The gamma

oscillations, which are evoked by elevated acetylcholine [21] are

driven by synchronized interneural networks [15]. These inter-

neurons then entrain the pyramids. Without interneural help, a

network of reciprocally excitatory connected layer II pyramidal

neurons would not synchronize when the acetylcholine concen-

tration is high. This is predicted by theoretical results which show

that neurons with a type I PRC (like layer II pyramids under the

influence of acetylcholine) coupled with excitatory synapses don’t

synchronize [2]. On the other hand when such neurons are type II

(e.g. without carbachol) they are predicted to synchronize and

particularly well at lower firing rates.

The picture which thus emerges is that networks of cortical layer

II pyramidal neurons synchronize well when subjected to no

acetylcholine and even better when exposed to low concentrations

of this neuromodulator [19]. This type of synchronization breaks

down when the cholinergic neuromodulation becomes strong.

Under such conditions, the pyramidal neurons are entrained into a

gamma-rhythm by inhibitory interneurons.

This picture is consistent with the patchy and local nature of

gamma oscillations, into which pyramidal neurons are forced by

local interneural circuits, and the more global nature of low-

frequency oscillations (delta, theta), which result from the

properties of the pyramidal neurons and their networks themselves

[5,22,23].

These results raise the possibility of a link between neuromo-

dulation of the spike-generating process of individual neurons and

changes in the large-scale network behavior and associated

cognitive states in the mammalian cortex.
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