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Abstract— Existing high-dimensional motion planning algo-
rithms are simultaneously overpowered and underpowered. In
domains sparsely populated by obstacles, the heuristics used by
sampling-based planners to navigate “narrow passages” can be
needlessly complex; furthermore, additional post-processing is
required to remove the jerky or extraneous motions from the
paths that such planners generate. In this paper, we present
CHOMP, a novel method for continuous path refinement that
uses covariant gradient techniques to improve the quality of
sampled trajectories. Our optimization technique converges
over a wider range of input paths and is able to optimize higher-
order dynamics of trajectories than previous path optimization
strategies. As a result, CHOMP can be used as a standalone
motion planner in many real-world planning queries. The
effectiveness of our proposed method is demonstrated in ma-
nipulation planning for a 6-DOF robotic arm as well as in
trajectory generation for a walking quadruped robot.

I. INTRODUCTION

In recent years, sampling-based planning algorithms have

met with widespread success due to their ability to rapidly

discover the connectivity of high-dimensional configuration

spaces. Planners such as Probabilistic Roadmap (PRM) and

Rapidly-exploring Random Tree (RRT) algorithms, along

with their descendents, are now used in a multitude of

robotic applications [15], [16]. Both algorithms are typically

deployed as part of a two-phase process: first find a feasible

path, and then optimize it to remove redundant or jerky

motion.

Perhaps the most prevalent method of path optimization

is the so-called “shortcut” heuristic, which picks pairs of

configurations along the path and invokes a local planner to

attempt to replace the intervening sub-path with a shorter

one [14], [5]. “Partial shortcuts” as well as medial axis

retraction have also proven effective [11]. Another approach

used in elastic bands or elastic strips planning involves

modeling paths as mass-spring systems: a path is assigned

an internal energy related to its length or smoothness, along

with an external energy generated by obstacles or task-

based potentials. Gradient based methods are used to find

a minimum-energy path [20], [4].

In this paper, we present Covariant Hamiltonian Optimiza-

tion for Motion Planning (CHOMP), a novel method for

generating and optimizing trajectories for robotic systems.

The approach shares much in common with elastic bands

planning; however, unlike many previous path optimization

techniques, we drop the requirement that the input path be

Fig. 1. Experimental robotic platforms: Boston Dynamics’s LittleDog (left),
and Barrett Technology’s WAM arm (right).

collision free. As a result, CHOMP can often transform a

naı̈ve initial guess into a trajectory suitable for execution on

a robotic platform without invoking a separate motion plan-

ner. A covariant gradient update rule ensures that CHOMP

quickly converges to a locally optimal trajectory.

In many respects, CHOMP is related to optimal control of

robotic systems. Instead of merely finding feasible paths, our

goal is to directly construct trajectories which optimize over

a variety of dynamic and task-based criteria. Few current

approaches to optimal control are equipped to handle obsta-

cle avoidance, though. Of those that do, many approaches

require some description of configuration space obstacles,

which can be prohibitive to create for high-dimensional

manipulators [25]. Many optimal controllers which do handle

obstacles are framed in terms of mixed integer programming,

which is known to be an NP-hard problem [24], [9], [17],

[27]. Approximately optimal algorithms exist, but so far, they

only consider very simple obstacle representations [26].

In the rest of this document, we give a detailed derivation

of the CHOMP algorithm, show experimental results on

a 6-DOF robot arm, detail the application of CHOMP to

quadruped robot locomotion, and outline future directions of

work. The accompanying video in the conference proceed-

ings also contains examples of running CHOMP on both

robot platforms.1

II. THE CHOMP ALGORITHM

In this section, we present CHOMP, a new trajectory

optimization procedure based on covariant gradient descent.

1This video may be viewed at
http://www.youtube.com/watch?v=HVRbEa6px4Y.
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An important theme throughout this exposition is the proper

use of geometrical relations, particularly as they apply to

inner products. This is a particularly important idea in

differential geometry [8]. These considerations appear in

three primary locations within our technique. First, we find

that in order to encourage smoothness we must measure the

size of an update to our hypothesis in terms of the amount of

a particular dynamical quantity (such as total velocity or total

acceleration) it adds to the trajectory. Second, measurements

of obstacle costs should be taken in the workspace so as to

correctly account for the geometrical relationship between

the robot and the surrounding environment. And finally, the

same geometrical considerations used to update a trajectory

should be used when correcting any joint limit violations that

may occur. Sections II-A, II-D, and II-F detail each of these

points in turn.

A. Covariant gradient descent

Formally, our goal is to find a smooth, collision-free,

trajectory through the configuration space Rm between two

prespecified end points qinit, qgoal ∈ Rm. In practice, we

discretize our trajectory into a set of n waypoints q1, . . . , qn

(excluding the end points) and compute dynamical quantities

such as velocity and acceleration via finite differencing. We

focus presently on finite-dimensional optimization, although

we will return to the continuous trajectory setting in section

II-D. Section II-E, discusses the relationship between these

settings.

We model the cost of a trajectory using two terms: an

obstacle term fobs, which measures the cost of being near

obstacles; and a prior term fprior, which measures dynamical

quantities of the robot such as smoothness and acceleration.

We generally assume that fprior is independent of the

environment. Our objective can, therefore, be written

U(ξ) = fprior(ξ) + fobs(ξ).

More precisely, the prior term is a sum of squared derivatives.

Given suitable finite differencing matrices Kd for d =
1, . . . , D, we can represent fprior as a sum of terms

fprior(ξ) =
1

2

D
∑

d=1

wd ‖Kd ξ + ed‖
2
, (1)

where ed are constant vectors that encapsulate the contri-

butions from the fixed end points. For instance, the first

term (d = 1) represents the total squared velocity along the

trajectory. In this case, we can write K1 and e1 as

K1 =



















1 0 0 . . . 0 0
−1 1 0 . . . 0 0
0 −1 1 . . . 0 0

...
. . .

...

0 0 0 . . . −1 1
0 0 0 . . . 0 −1



















⊗ Im×m

e1 =
[

−qT
0 , 0, . . . , 0, qT

n+1

]T
.

where ⊗ denotes the Kronecker (tensor) product. We note

that fprior is a simple quadratic form:

fprior(ξ) =
1

2
ξT A ξ + ξT b + c

for suitable matrix, vector, and scalar constants A, b, c. When

constructed as defined above, A will always be symmetric

positive definite for all d.

Our technique aims to improve the trajectory at each

iteration by minimizing a local approximation of the function

that suggests only smooth perturbations to the trajectory,

where equation 1 defines our measure of smoothness. At

iteration k, within a region of our current hypothesis ξk,

we can approximate our objective using a first-order Taylor

expansion:

U(ξ) ≈ U(ξk) + gT
k (ξ − ξk), (2)

where gk = ∇U(ξk). Using this expansion, our update can

be written formally as

ξk+1 = arg min
ξ

{

U(ξk) + gT
k (ξ − ξk) +

λ

2
‖ξ − ξk‖

2
M

}

,

(3)

where the notation ‖δ‖2
M denotes the norm of the displace-

ment δ = ξ−ξk taken with respect to the Riemannian metric

M equal to δT M δ. Setting the gradient of the right hand

side of equation 3 to zero and solving for the minimizer

results in the following more succinct update rule:

ξk+1 = ξk −
1

λ
M−1gk

It is well known in optimization theory that solving a regu-

larized problem of the form given in equation 3 is equivalent

to minimizing the linear approximation in equation 2 within

a ball around ξk whose radius is related to the regularization

constant λ [3]. Since under the metric A, the norm of non-

smooth trajectories is large, this ball contains only smooth

updates δ = ξ − ξk, Our update rule, therefore, serves

to ensure that the trajectory remains smooth after each

trajectory modification.

B. Understanding the update rule

This update rule is a special case of a more general rule

known as covariant gradient descent [2], [29], in which the

matrix A need not be constant.2 In our case, it is useful to

interpret the action of the inverse operator A−1 as spreading

the gradient across the entire trajectory so that updating by

the gradient decreases the cost and while retaining trajectory

smoothness. As an example, we take d = 1 and note that A is

a finite differencing operator for approximating accelerations.

Since AA−1 = I , we see that the ith column/row of A−1 has

zero acceleration everywhere, except at the ith entry. A−1gk

can, therefore, be viewed as a vector of projections of gk

onto the set of smooth basis vectors forming A−1.

CHOMP is covariant in the sense that the change to the

trajectory that results from the update is a function only of

2In the most general setting, the matrix A may vary smoothly as a
function of the trajectory ξ.
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the trajectory itself, and not the particular representation used

(e.g. waypoint based)– at least in the limit of small step

size and fine discretization. This normative approach makes

it easy to derive the CHOMP update rule: we can under-

stand equation 3 as the Lagrangian form of an optimization

problem [1] that attempts to maximize the decrease in our

objective function subject to making only a small change

in the average acceleration of the resulting trajectory– not

simply making a small change in the parameters that define

the trajectory in a particular representation.

We gain additional insight into the computational benefits

of the covariant gradient based update by considering the

analysis tools developed in the online learning/optimization

literature, especially [28], [12]. Analyzing the behavior of

the CHOMP update rule in the general case is very difficult

to characterize. However, by considering in a region around

a local optima sufficiently small that fobs is convex we can

gain insight into the performance of both standard gradient

methods (including those considered by, e.g. [20]) and the

CHOMP rule.

We first note that under these conditions, the overall

CHOMP objective function is strongly convex [22]– that

is, it can be lower-bounded over the entire region by a

quadratic with curvature A. The authors of [12] show how

gradient-style updates can be understood as sequentially

minimizing a local quadratic approximation to the objec-

tive function. Gradient descent minimizes an uninformed,

isotropic quadratic approximation while more sophisticated

methods, like Newton steps, compute tighter lower bounds

using a Hessian. In the case of CHOMP, the Hessian need not

exist as our objective function may not even be differentiable,

however we may still form a quadratic lower bound using

A. This is much tighter than an isotropic bound and leads to

a correspondingly faster minimization of our objective– in

particular, in accordance with the intuition of adjusting large

parts of the trajectory due to the impact at a single point we

would generally expect it to be O(n) times faster to converge

than a standard, Euclidean gradient based method that adjusts

a single point due an obstacle.

Importantly, we note that we are not simulating a mass-

spring system as in [20]. We instead formulate the problem

as covariant optimization in which we optimize directly

within the space of trajectories; we posit that trajectories have

natural notions of size and inner product as measured by their

dynamical quantities. In [19], a similar optimization setting is

discussed, although, more traditional Euclidean gradients are

derived. We demonstrate below that optimizing with respect

to our smoothness norm substantially improves convergence.

In our experiments, we additionally implemented a version

of this algorithm based on Hamiltonian Monte Carlo [18],

[29]. This variant is a Monte Carlo sampling technique

that utilizes gradient information and energy conservation

concepts to efficiently navigate equiprobability curves of an

augmented state-space. It can essentially be viewed as a

well formulated method of integrating gradient information

into Monte Carlo sampling; importantly, the samples are

guaranteed to converge to a stationary distribution inversely

proportional to the exponentiated objective function.

Hamiltonian Monte Carlo provides a first step toward a

complete motion planner built atop these concepts. However,

as we discuss in section V, while the algorithm solves

a substantially larger breadth of planning problems than

traditional trajectory optimization algorithms, it still falls

prey to local minima for some more difficult problems when

constrained by practical time limitations.

C. Obstacles and distance fields

Let B denote the set of points comprising the robot body.

When the robot is in configuration q, the workspace location

of the element u ∈ B is given by the function

x(q, u) : R
m × B 7→ R

3

A trajectory for the robot is then collision-free if for every

configuration q along the trajectory and for all u ∈ B, the

distance from x(q, u) to the nearest obstacle is greater than

ε ≥ 0.

If obstacles are static and the description of B is geometri-

cally simple, it becomes advantageous to simply precompute

a signed distance field d(x) which stores the distance from a

point x ∈ R
3 to the boundary of the nearest obstacle. Values

of d(x) are negative inside obstacles, positive outside, and

zero at the boundary.

Computing d(x) on a uniform grid is straightforward.

We start with a boolean-valued voxel representation of the

environment, and compute the Euclidean Distance Transform

(EDT) for both the voxel map and its logical complement.

The signed distance field is then simply given by the

difference of the two EDT values. Computing the EDT is

surprisingly efficient: for a lattice of K samples, computation

takes time O(K) [10].

When applying CHOMP, we typically use a simplified

geometric description of our robots, approximating the robot

as a “skeleton” of spheres and capsules, or line-segment

swept spheres. For a sphere of radius r with center x, the

distance from any point in the sphere to the nearest obstacle

is no less than d(x) − r. An analogous lower bound holds

for capsules.

There are a few key advantages of using the signed

distance field to check for collisions. Collision checking is

very fast, taking time proportional to the number of voxels

occupied by the robot’s “skeleton”. Since the signed distance

field is stored over the workspace, computing its gradient via

finite differencing is a trivial operation. Finally, because we

have distance information everywhere, not just outside of

obstacles, we can generate a valid gradient even when the

robot is in collision – a particularly difficult feat for other

representations and distance query methods.

Now we can define the workspace potential function c(x),
which penalizes points of the robot for being near obstacles.

The simplest such function might be

c(x) = max
(

ε − d(x), 0
)
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Fig. 2. Potential function for obstacle avoidance

A smoother version, shown in figure 2, is given by

c(x) =







−d(x) + 1
2 ε, if d(x) < 0

1
2 ε

(d(x) − ε)2, if 0 ≤ d(x) ≤ ε

0, otherwise

D. Defining an obstacle potential

We will switch for a moment to discussing optimization

of a continuous trajectory q(t) by defining our obstacle

potential as a functional over q. As we show in the next

section, we could also derive the objective over a prespecified

discretization, but we find that the properties of the objective

function more clearly present themselves in the functional

setting.

To begin, we define a workspace potential c : R3 → R

that quantifies the cost of a body element u ∈ B of the robot

residing at a particular point x in the workspace.

Intuitively, we would like to integrate these cost values

across the entire robot. A straightforward integration across

time, however, is undesirable since moving more quickly

through regions of high cost will be penalized less. Instead,

we choose to integrate the cost elements with respect to an

arc-length parameterization. Such an objective will have no

motivation to alter the velocity profile along the trajectory

since such operations do not change the trajectory’s length.

We will see that this intuition manifests in the functional

gradient as a projection of the workspace gradients onto the

two-dimensional plane orthogonal to the direction of motion

of a body element u ∈ B through the workspace.

We therefore write our obstacle objective as

fobs[q] =

∫ 1

0

∫

B

c

(

x
(

q(t), u
)

)
∥

∥

∥

∥

d

dt
x
(

q(t), u
)

∥

∥

∥

∥

du dt

Since fobs depends only on workspace positions and veloc-

ities (and no higher order derivatives), we can derive the

functional gradient as ∇̄fobs = ∂v
∂q

− d
dt

∂v
∂q′

, where v denotes

everything inside the time integral [7], [19]. Applying this

formula to fobs, we get

∇̄fobs =

∫

B

JT ‖x′‖
[

(

I − x̂′x̂′T
)

∇c − cκ
]

du (4)

where κ is the curvature vector [8] defined as

κ =
1

‖x′‖2

(

I − x̂′x̂′T
)

x′′

and J is the kinematic Jacobian ∂
∂q

x(q, u). To simplify the

notation we have suppressed the dependence of J , x, and c

Fig. 3. Left: A simple two-dimensional trajectory traveling through an
obstacle potential (with large potentials are in red and small potentials in
blue). The gradient at each configuration of the discretization depicted as a
green arrow. Right: A plot of both the continuous functional gradient given
in red and the corresponding Euclidean gradient component values of the
discretization at each way point in blue.

on integration variables t and u. We additionally denote time

derivatives of x(q(t), u) using the traditional prime notation,

and we denote normalized vectors by x̂.

This objective function is similar to that discussed in

section 3.12 of [19]. However, there is an important dif-

ference that substantially improves performance in practice.

Rather than integrating with respect to arc-length through

configuration space, we integrate with respect to arc-length

in the workspace. This simple modification represents a

fundamental change: instead of assuming the geometry in

the configuration space is Euclidean, we compute geomet-

rical quantities directly in the workspace where Euclidean

assumptions are more natural.

Intuitively, we can more clearly see the distinction by

examining the functional gradients of the two formulations.

Operationally, the functional gradient defined in [19] can be

computed in two steps. First, we integrate across all body

elements the configuration space gradient contributions that

result from transforming each body element’s workspace

gradient through the corresponding Jacobian. Second, we

project that single summarizing vector orthogonally to the

trajectory’s direction of motion in the configuration space.

Alternatively, our objective performs this projection directly

in the workspace before the transformation and integration

steps. This ensures that orthogonality is measured with

respect to the workspace geometry.

In practice, to implement these updates on a discrete

trajectory ξ we approximate time derivatives using finite

differences wherever they appear in the objective and its

functional gradient. (The Jacobian J , of course, can be

computed using the straightforward Jacobian of the robot.)

E. Functions vs functionals

Although section II-A presents our algorithm in terms

of a specific discretization, writing the objective in terms

of functionals over continuous trajectories often enunciates

its properties. Section II-D exemplifies this observation.

As figure 3 demonstrates, the finite-dimensional Euclidean

gradient of a discretized version of the functional

fobs(ξ) =
n

∑

t=1

U
∑

u=1

1

2

(

c
(

xu(qt+1)
)

+ c
(

xu(qt)
)

)

·

∥

∥xu(qt+1) − xu(qt)
∥

∥
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converges rapidly to the functional gradient as the resolution

of the discretization increases. (In this expression, we denote

the forward kinematics mapping of configuration q to body

element i using xu(q).) However, the gradient of any finite-

dimensional discretization of the fobs takes on a substantially

different form; the projection properties that are clearly

identified in the functional gradient (equation 4) are no longer

obvious.

We note that the prior term can be written as a functional

as well:

fprior[ξ] =
D

∑

d=1

∫ 1

0

‖q′(t)‖2dt,

with functional gradient

∇̄fprior[ξ] =
D

∑

d=1

(−1)dq(2d)

In this case, a discretization of the functional gradient g =
(∇̄fprior[ξ](ǫ), . . . , ∇̄fprior[ξ](ǫ)(1−ǫ))T exactly equals the

gradient of the discretized prior when central differences are

used to approximate the derivatives.

F. Smooth projection for joint limits

Joint limits are traditionally handled by either adding a

new potential to the objective function which penalizes the

trajectory for approaching the limits, or by performing a

simple projection back onto the set of feasible joint values

when a violation of the limits is detected. In our experiments,

we follow the latter approach. However, rather than simply

resetting the violating joints back to their limit values, which

can be thought of as a L1 projection on to the set of feasible

values, we implement an approximate projection technique

that projects with respect to the norm defined by the matrix

A in section II-A.

At each iteration, we first find the vector of updates v that

would implement the L1 projection when added to the trajec-

tory. However, before adding it, we transform that vector by

the inverse of our metric A−1. As discussed in section II-A,

this transformation effectively smooths the vector across the

entire trajectory so that the resulting update vector has small

acceleration. As a result, when we add a scaled version of

that vector to our trajectory ξ, we can simultaneously remove

the violations while retaining smoothness.

Our projection algorithm is listed formally below. As

indicated, we may need to iterate this procedure since

the smoothing operation degrades a portion of the original

projection signal. However, in our experiments, all joint limit

violations were corrected within a single iteration of this

procedure. Figure 4 plots the final joint angle curves over

time from the final optimized trajectory on a robotic arm (see

section III). The fourth subplot typifies the behavior of this

procedure. While L1 projection often produces trajectories

that threshold at the joint limit, projection with respect to

the acceleration norm produces a smooth joint angle trace

which only briefly brushes the joint limit as a tangent.

Smooth projection:

1) Compute the update vector v used for L1 projection.

2) Transform the vector via our Riemannian metric ṽ =
A−1v.

3) Scale the resulting vector by α such that ξ̃ = ξ + αṽ

entirely removes the largest joint limit violation.

4) Iterate if violations remain.

III. EXPERIMENTS ON A ROBOTIC ARM

This section presents experimental results for our im-

plementation of CHOMP on Barrett Technology’s WAM

arm shown in figure 1. We demonstrate the efficacy of our

technique on a set of tasks representative of the type of tasks

that may be commonly encountered in a home manipulation

setting. The arm has seven degrees of freedom, although, we

planned using only the first six in these experiments.3

A. Collision heuristic

The home setting differs from setting such as those en-

countered in legged locomotion (see section IV) in that the

obstacles are often thin (e.g. they may be pieces of furniture

such as tables or doors). Section II-C discusses a heuristic

based on the signed distance field under which the obstacles

themselves specify how the robot should best remove itself

from collision. While this works well when the obstacle is

a large body, such as the terrain as in the case of legged

locomotion, this heuristic can fail for smaller obstacles. An

initial straight-line trajectory through the configuration space

often contains configurations that pass entirely through an

obstacle. In that case, the naı̈ve workspace potential works

tends to simultaneously push the robot out of collision on one

side, but also, to pull the robot further through the obstacle

on the other side.

We avoid this behavior by adding an indicator function

to the objective that makes all workspace terms that appear

after the first collision along the arm vanish (as ordered via

distance to the base). This indicator factor can be written

mathematically as I(minj≤i d(xj(q)), although implementa-

tionally it is implemented simply by ignoring all terms after

the first collision while iterating from the base of the body

out toward the end effector for a given time step along the

trajectory.

Intuitively, this heuristic suggests simply that the

workspace gradients encountered after then first collision of

a given configuration are invalid and should therefore be

ignored. Since we know the base of the robotic arm is always

collision free, we are assured of a region along the arm prior

to the first collision that can work to pull the rest of the arm

out of collision. In our experiments, this heuristic works well

to pull the trajectory free of obstacles commonly encountered

in the home environment.

B. Experimental results

Our first experiment was designed to evaluate the efficacy

of CHOMP and its probabilistic variants as a replacement for

planning on a variety of everyday household manipulation

problems. We chose 15 different configurations in a given

scene representing various tasks such as picking up an object

3The last degree of freedom simply rotates the hand in place.
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Fig. 4. Left: This figure shows the joint angle traces that result from running CHOMP on the robot arm described in section III using the smooth
projection procedure discussed in section II-F. Each subplot shows a different joint’s trace across the trajectory in blue with upper and lower joint limits
denoted in red. The fourth subplot typifies the behavior of projection procedure. The trajectory retains its smoothness while staying within the joint limit.

Fig. 5. Left: the objective value per iteration of the first 100 iterations of
CHOMP. Right: a comparison between the progression of objective values
produced when starting CHOMP from a straight-line trajectory (green), and
when starting CHOMP from the solution found by a bi-directional RRT.
Without explicitly optimizing trajectory dynamics, the RRT returns a poor
initial trajectory which causes CHOMP to quickly fall into a suboptimal
local minimum.

from the table, placing an object on a shelf, or pulling an item

from a cupboard. Using these start/goal points we generated

105 planning problem consisting of planning between all

pairs of end configurations. Figure 6 shows the 15 end

configurations (right) and compares the initial trajectory (left)

to the final smoothed trajectory (middle) for one of these

problems.

For this implementation, we modeled each link of the

robot arm as a straight line, which we subsequently dis-

cretized into 10 evenly spaced points to numerically ap-

proximate the integrals over u in fobs. Our voxel space

used a discretization of 50 × 50 × 50, and we used the

Matlab’s bwdist for the distance field computation. Under

this resolution, the average distance field computation time

was about .8 seconds. For each problem, we ran CHOMP

for 400 iterations (approximately 12 seconds), although the

core of the optimization typically completed within the first

100 iterations (approximately 3 seconds). However, we made

little effort to make our code efficient; we stress that our

algorithm is performing essentially the same amount of work

as the smoother of a two stage planner, without the need for

the initial planning phase.

CHOMP successfully found collision-free trajectories for

99 of the 105 problem.4

We additionally compared the performance of CHOMP

when initialized to a straight-line trajectory through con-

figuration space to its performance when initialized to the

solution of a bi-directional RRT. Surprisingly, when CHOMP

successfully finds a collision free trajectory, straight-line

4We found that adding a small amount (.001) to the diagonal of
A improved performance by avoiding situations where preferring smooth
trajectories caused additional collisions.

initialization typically outperforms RRT initialization. On

average, excluding those problems that CHOMP could not

solve, the log-objective value achieved when starting from

a straight-line trajectory was approximately .5 units smaller

than than achieved when starting from the RRT solution on

a scale that typically ranged from 17 to 24. This difference

amounts for approximately 3% of the entire log-objective

range spanned during optimization. Figure 5 depicts an

example of the objective progressions induced by each of

these initialization strategies.

We note that in our experiments, setting A = I and

performing Euclidean gradient descent performed extremely

poorly. Euclidean gradient descent was unable to successfully

pull the trajectory free from the obstacles.

IV. IMPLEMENTATION ON A QUADRUPED ROBOT

The Robotics Institute fields one of six teams participating

in the DARPA Learning Locomotion project, a competitive

program focusing on developing strategies for quadruped

locomotion on rough terrain. Each team develops software to

guide the LittleDog robot, designed and built by Boston Dy-

namics Inc., over standardized terrains quickly and robustly.

With legs fully extended, LittleDog has approximately 12 cm

clearance off of the ground. As shown in figure 7 above,

some of the standardized terrains require stepping over and

onto obstacles in excess of 7 cm.

Our approach to robotic legged locomotion decomposes

the problem into a footstep planner which informs the robot

where to place its feet as it traverses the terrain [6], and a

footstep controller which generates full-body trajectories to

realize the planned footsteps. Over the last year, we have

come to rely on CHOMP as a critical component of our

footstep controller.

Footsteps for the LittleDog robot consist of a stance phase,

where all four feet have ground contact, and a swing phase,

where the swing leg is moved to the next support location.

During both phases, the robot can independently control

all six degrees of trunk position and orientation via the

supporting feet. Additionally, during the swing phase, the

three degrees of freedom for the swing leg may be controlled.

For a given footstep, we run CHOMP as coordinate descent,

alternating between first optimizing the trunk trajectory ξT

given the current swing leg trajectory ξS , and subsequently

optimizing ξS given the current ξT on each iteration. The

initial trunk trajectory is given by a Zero Moment Point

(ZMP) preview controller [13], and the initial swing leg

trajectory is generated by interpolation through a collection
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Fig. 6. Left: the initial straight-line trajectory through configuration space. Middle: the final trajectory post optimization. Right: the 15 end point
configurations used to create the 105 planning problems discussed in section III-B.

of knot points intended to guide the swing foot a specified

distance above the convex hull of the terrain.

To construct the SDF representation of the terrain, we

begin by scan-converting triangle mesh models of the terrain

into a discrete grid representation. To determine whether a

grid sample lies inside the terrain, we shoot a ray through

the terrain and use the even/odd rule. Typical terrains are

on the order of 1.8 m × 0.6 m × 0.3 m. We set the

grid resolution for the SDF to 5 mm. The resulting SDFs

usually require about 10-20 megabytes of RAM to store.

The scan-conversion and computation of the SDF is created

as a preprocessing step before optimization, and usually takes

under 5 seconds on commodity hardware.

When running CHOMP with LittleDog, we exploit domain

knowledge by adding a prior to the workspace potential

function c(x). The prior is defined as penalizing the distance

below some known obstacle-free height when the swing leg

is in collision with the terrain. Its effect in practice is to add

a small gradient term that sends colliding points of the robot

upwards regardless of the gradient of the SDF.

For the trunk trajectory, in addition to the workspace ob-

stacle potential, the objective function includes terms which

penalize kinematic reachability errors (which occur when the

desired stance foot locations are not reachable given desired

trunk pose) and which penalize instability resulting from the

computed ZMP straying towards the edges of the supporting

polygon. Penalties from the additional objective function

terms are also multiplied through A−1 when applying the

gradient, just as the workspace potential is.

Although we typically represent the orientation of the

trunk as a unit quaternion, we represent it to CHOMP as an

exponential map vector corresponding to a differential rota-

tion with respect to the “mean orientation” of the trajectory.

The exponential map encodes an (axis, angle) rotation as

a single vector in the direction of the rotation axis whose

magnitude is the rotation angle. The mean orientation is

computed as the orientation halfway between the initial

and final orientation of the trunk for the footstep. Because

the amount of rotation over a footstep is generally quite

small (under 30◦), the error between the inner product on

exponential map vectors and the true quaternion distance

metric is negligible.

Timing for the footstep is decided by a heuristic which

is evaluated before the CHOMP algorithm is run. Typical

footstep durations run between 0.6 s and 1.2 s. We dis-

cretize the trajectories at the LittleDog host computer control

cycle frequency, which is 100 Hz. Currently, trajectories

are pre-generated before execution because in the worst-

case, optimization can take slightly longer (by a factor of

about 1.5) than execution. We have made no attempt to

parallelize CHOMP in the current implementation, but we

expect performance to scale nearly linearly with the number

of CPUs.

As shown in figure 7, the initial trajectory for the footstep

is not always feasible; however, the CHOMP algorithm is

almost always able to find a collision-free final trajectory,

even when the initial trajectory contains many collisions.

The Robotics Institute team has been quite competitive in

phase II, the most recent phase of the Learning Locomotion

project. Unlike many of the other teams who seemed to

focus on feedback control, operational control, and other

reactive behaviors, our strategy has been to strongly leverage

optimization. In particular, we credit much of our success

to our use of CHOMP as a footstep controller due to its

ability to smoothly avoid obstacles while reasoning about

long trajectory segments.

V. CONCLUSIONS

This work presents a powerful new trajectory optimization

procedure that solves a much wider range of problems than

previous optimizers, including many to which randomized

planners are traditionally applied. The key concepts that

contribute to the success of CHOMP all stem from utilizing

superior notions of geometry. Our experiments show that

this algorithm substantially outperforms alternatives and im-

proves performance on real world robotic systems.

There are a number of important issues we have not

addressed in this paper. First, in choosing a priori a dis-

cretization of a particular length, we are effectively con-

straining the optimizer to consider only trajectories of a

predefined duration. A more general tool should dynamically

add and remove samples during optimization. We believe

the discretization-free functional representation discussed

in section II-E will provide a theoretically sound avenue

through which we can accommodate trajectories of differing

time lengths.
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Fig. 7. The LittleDog robot, designed and built by Boston Dynamics, Inc., along with sample terrains. Leftmost: Jersey barrier. Middle left: steps. Using
CHOMP to step over a Jersey barrier with LittleDog. Trajectory for the swing foot is shown in darkest gray, swing leg shin/knee in medium gray, and
stance legs/body in light gray. Middle right: The initial trajectory places the swing leg shin and knee in collision with the Jersey barrier. Rightmost: After
75 gradient steps, the trajectory is smooth and collision-free. Note that the trunk of the robot tips forward to create more clearance for the swing leg.

Additionally, while the Hamiltonian Monte Carlo algo-

rithm provides a well founded means of adding randomiza-

tion during optimization, there are still a number of problems

under which this technique flounders in local minima under

finite time constraints. In future work, we will explore

ways in which these optimization concepts can be more

fundamentally integrated into a practical complete planning

framework.

Finally, this algorithm is amenable to new machine learn-

ing techniques. Most randomized planners are unsuitable for

well formulated learning algorithms because it is difficult

to formalize the mapping between planner parameters and

planner performance. As we have demonstrated, CHOMP

can perform well in many areas previous believed to require

complete planning algorithms; since our algorithm explicitly

specifies its optimization criteria, a learner can exploit this

connection to more easily train the cost function in a manner

reminiscent of recent imitation learning techniques [21], [23].

We plan to explore this connection in detail as future work.
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