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Articular cartilage repair and regeneration provides a substantial challenge in Regenerative Medicine because of
the high degree of morphological and mechanical complexity intrinsic to hyaline cartilage due, in part, to its
extracellular matrix. Cartilage remains one of the most difficult tissues to heal; even state-of-the-art regener-
ative medicine technology cannot yet provide authentic cartilage resurfacing. Mesenchymal stem cells (MSCs)
were once believed to be the panacea for cartilage repair and regeneration, but despite years of research, they
have not fulfilled these expectations. It has been observed that MSCs have an intrinsic differentiation program
reminiscent of endochondral bone formation, which they follow after exposure to specific reagents as a part of
current differentiation protocols. Efforts have been made to avoid the resulting hypertrophic fate of MSCs;
however, so far, none of these has recreated a fully functional articular hyaline cartilage without chondrocytes
exhibiting a hypertrophic phenotype. We reviewed the current literature in an attempt to understand why MSCs
have failed to regenerate articular cartilage. The challenges that must be overcome before MSC-based tissue
engineering can become a front-line technology for successful articular cartilage regeneration are highlighted.

Introduction

NTREATED CARTILAGE INJURIES typically progress into

degenerative joint disease or osteoarthritis (OA) with
its associated clinical manifestations, such as pain and
disability. Patients who suffer from OA form a significant
population for whom there are only a few treatment op-
tions available. However, none of these options prevents
the progressive destruction of the joint surface. Many of
these patients are relatively young, and as life expectancy
improves over the years, the number of patients with OA
will continue to increase, with their number projected to
rise drastically during the next two decades. Thus, these
patients would be expected to outlive the useful life of a
total joint replacement, the current ‘‘definitive’” therapy
for OA."? Such patients are potential candidates for cell-
based or tissue engineering (TE)-based treatment solutions,
such as biological cartilage regeneration/repair and joint
resurfacing.

Our group and others have been studying chondrogenesis
and basic aspects of cartilage repair for at least three de-
cades. While substantial progress has been made toward
understanding the cellular and molecular control of the
chondrogenic program, the current state of the art of TE
cartilage repair still falls short of clinical expectations. Al-
though chondrocytes have been extensively studied and
used in TE cartilage, the introduction of culture-expanded
mesenchymal stem cells (MSCs) generated a considerable

interest in their use within the orthopedic community. Car-
tilage constitutes one of the potential differentiation lineages
that MSCs can follow. Therefore, MSCs are considered a
cell source for cartilage repair. It is necessary to rely on
external factors (mainly inductive morphogens) to push
MSC:s to develop into specific phenotypes, and even then,
the resulting tissue differs significantly from articular car-
tilage in terms of structure, chemical composition, cell
phenotype, and function. Abundant experimental evidence
from several groups suggests that a transient cartilage typ-
ical of endochondral processes, such as bone formation and
fracture healing, rather than hyaline articular cartilage, is the
default lineage intrinsic to marrow-derived MSCs.>™ In this
article, we focus on MSC-based cartilage TE and review the
major unresolved issues that underlie the shortcomings in
current articular cartilage TE. Principally, over and above,
producing simple hyaline cartilage, the natural three-
dimensional subarchitecture of articular cartilage, must be
achieved. The goal of this review was to identify the
shortcomings in current cartilage TE, so that we can con-
tinue to progress toward clinically relevant technologies.

Significance
MSCs do not make hyaline cartilage

Whether MSCs can function therapeutically as an exogenous
cell source or can mobilize endogenous chondroprogenitor
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cells that function to resurface, repair, or regenerate joint
tissue is still uncertain. Since the work of Johnstone et al.,
Barry et al., and Pittenger et al., it is known that bone
marrow-derived MSCs (BM-MSCs) can form a cartilage-
like tissue in vitro under the guidance of specific cocktails of
growth factors.® The resulting differentiated tissue can be
classified as cartilage in that it expresses many biomolecules
typical of hyaline cartilage, such as type II collagen and the
proteoglycan, aggrecan. However, the proportion of the
chemical constituents tends to be wrong for true weight-
bearing hyaline articular cartilage. For example, in TE
cartilage, collagen content is generally less than 50% of
what is found in native healthy adult cartilage, with negative
implications for tensile strength and load-carrying cap-
abilities.'*"”

Similarly, the stratified ultrastructure and spatial organi-
zation of native cartilage are completely absent, resulting in
poor mechanical properties. While it was once thought that
articular chondrocytes were a uniform population, it is now
obvious that there are differences in morphology, prolifer-
ative capacity, and rates of extracellular matrix (ECM)
synthesis controlled by where the chondrocyte resides in the
depth of the cartilage tissue.'® Native articular cartilage has
a stratified ultrastructure with biochemical composition and
biophysical properties specific to each of its zones. Articular
cartilage typically comprises three horizontal zones: super-
ficial, middle, and deep.m’17 Each zone has a distinct matrix
composition, local oxygen tension, and biomechanical ca-
pacities. For example, superficial zone chondrocytes are
flattened discoid and secrete surface zone protein (SZP), a
proteoglycan that decreases the friction between the two
articular plates.'® The middle zone is characterized by a
seemingly random fibrillar structure and matrix producing-
rounded chondrocytes.'”?° The deep zone makes up about
30% of the cartilage volume and consists of large diameter
collagen fibrils oriented perpendicularly to the articular
surface. Chondrocytes in the deep zone are larger, elon-
gated, and tend to arrange themselves in columns.?'

Several decades-old clinical treatments for articular car-
tilage defects are based on the known capacity of MSCs to
differentiate down the chondrogenic lineage. For instance,
microfracture or marrow stimulation relies on creating a
passage between the articular space and the underlying bone
marrow that would allow the migration of MSCs into the
cartilage defect. Even with direct access to MSCs, this
technique typically results in fibrocartilage formation
(which often temporarily reduces clinical symptoms), which
is not the correct articular cartilage phenotype. It is possible
that local microenvironmental conditions at the defect may
interfere with the natural healing capacity of the MSCs and
their differentiation potential.?>>3

In MSC-based aggregate-culture chondrogenesis, a wide
range of hypertrophy-associated genes are expressed at the
RNA and protein levels, including type X collagen, alkaline
phosphatase (ALP), and matrix metalloproteinases (MMPs),
and cellular hypertrophy is evident as well.***~° The ex-
pression of these genes in MSC-derived chondrocytes
mimics a hypertrophic phenotype and is a potential limita-
tion to their application in articular cartilage TE.”*>2%733
Joint articular cartilage does not normally undergo hyper-
trophy, except under severe pathological conditions.3#40 In
fact, this sequence of events and the morphology of the
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resulting cartilage are more reminiscent of the early phases
of endochondral ossification as seen in the skeletal devel-
opment or fracture repair, where it is a prelude to pro-
grammed cell death and mineralization.%-25-29-33.38:41-43
Completing the terminal differentiation motif, mineraliza-
tion of the cartilage ECM has been noted in in vitro ag-
gregate cultures,43 and Pelttari er al. showed that, after
ectopic implantation in SCID mice, MSC-derived cartilage
aggregates mineralize, vascularize, and form ossicles, fur-
ther supporting an intrinsic endochondral bone formation
behavior of MSCs.?’ Overall, this is undesirable from a
cartilage TE/repair perspective, and maintaining a stable,
prehypertrophic cellular phenotype is therefore essential for
the long-term stability of a TE product in the joint in vivo.

Several recent studies have focused on delineating culture
conditions and factors that control the terminal hypertrophic
progression of MSC-derived chondrocytes.**#7 Transforming
growth factor beta (TGF-P) is necessary to induce chon-
drogenesis in human MSCs (hMSCs) and, as in growth-plate
chondrocytes,*® it inhibits hypertrophy for at least 7 weeks
in MSC-based aggregates. However, chondrogenic MSCs
under TGF-B stimulation still express many hypertrophy-
related genes, such as gype X collagen, ALP, MMP13, VEGF,
PTHRI1, and RUNX? 304950 Varghese et al. showed that the
presence of chondroitin sulfate (CS) in the scaffold material
prevents or delays the lineage progression to the hypertrophic
phenotype.** The mechanism remains unclear, but direct in-
teractions between the cells and the CS, or CS effects on
growth factor storage/binding or presentation, may play a
critical role.

While it is plausible that the hypertrophic phenotype
constitutes the default differentiation pathway of bone
marrow-derived MSCs, it may also be that biochemical
cues, such as TGF-B, must be very tightly controlled, both
quantitatively and temporally. These dynamics are predi-
cated on developmental events; however, the actual process
of formation and maintenance of stable articular cartilage in
adults is still not well understood. Biomarkers that correlate
with cell hypertrophy, vascular invasion, matrix calcifica-
tion, and bone formation in vivo will all become potentially
powerful tools to monitor this progression when these
markers are delineated.”*’

Realistically, we are still far from achieving the com-
plexity that is associated with the generation of new carti-
lage, especially considering that the generation of stable
articular cartilage during embryonic and postnatal devel-
opment is far from being understood at the cellular and
molecular levels. Hyaline cartilage has been widely studied,
given its important function during development as a
framework for future skeletal elements that arise following
endochondral ossification (transient cartilage) and its func-
tion at the joint interfaces (permanent cartilage). However,
other types of cartilage are present throughout the body at
specific locations (Fig. 1), such as fibrocartilage (e.g., be-
tween intervertebral discs) and elastic cartilage (e.g., ex-
ternal ear). Hypertrophic cartilage represents a lineage stage
in differentiation or disease in each cartilage subtype that
will be replaced by vasculature and marrow and eventually
bone tissue.’! This cartilage classification is based on mo-
lecular and structural differences.”® The controlling details
of how these different cartilages are formed are not fully
understood (Fig. 2).
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FIG. 1. Cartilage development. Oversimplified scheme of cartilage development highlighting the generation of different types of
cartilages derived from the cranial neural crest (craniofacial cartilage), paraxial mesoderm (axial cartilage), and lateral plate mesoderm
(appendicular cartilage). Cartilage diversification may not be entirely dependent on tissue development; it seems probable that
environmental factors are involved in cartilage determination. For example, hyaline cartilage can be derived from three different
developmental lineage paths, whereas its functional specification is determined by its specific anatomic location. Thus, we suggest that
these hyaline cartilages are influenced by site-specific and different physiological and physical or mechanical signals. Color images

available online at www liebertpub.com/teb

The question is: do different cartilages develop from
distinct chondroprogenitor subtypes, which are develop-
mentally restricted, or are their molecular, morphological,
and functional differences determined by the site-specific
environment (e.g., load bearing), or both? Furthermore, are
some of the components present during in vitro MSC
chondrogenesis restricting their differentiation potential or
is the end-stage phenotype restricted by developmental
factors (e.g., cell history), which will eventually preclude
their use as articular cartilage precursors? These unanswered
questions strongly suggest that cells that differentiate from
MSCs have a potential limitation of only being able to
contribute to the endochondral ossification process (Fig. 2).

In contrast, it is possible that MSCs may retain devel-
opmental plasticity such that they could be guided toward
the desired chondrogenic phenotype. To date, we and others
have not been able to discover the required microenviron-
mental conditions in vitro needed to control this hypothe-
sized plasticity. Supportive of the importance of the
proposed environmental component during cartilage devel-
opment is the fact that different types of cartilages are de-
rived through different developmental routes (Fig. 1). For
example, hyaline cartilage emerges both from the cranial
neural-crest (e.g., nasal septal cartilage) and from lateral
plate mesoderm (e.g., articular cartilage), and most likely,
their distinctive features are acquired later due to anatomic
site-specific and different physiological and physical signals.
The hypothetical restricted potential of MSCs to differentiate
toward a stable hyaline cartilage-like chondroprogenitor
phenotype is illustrated in Figure 2. Alternately, we could

hypothesize that this differentiation pathway can be achieved
by specific microenvironmental signaling. If marrow MSCs
are, indeed, restricted from molecularly differentiating toward
the joint-type hyaline cartilage phenotype, it may be possible
to bypass these restrictions using reprogramming technology
or an embryonic stem cells (ESCs)-based approach (discussed
in the “from pluripotency towards multipotency’ section).
Other complexity issues to manage to obtain site-specific
stable cartilage from MSCs are the molecular and cellular
differences exhibited by each anatomic cartilage. These dif-
ferent site-specific cartilages may require quite different en-
vironmental signals to generate one or the other cartilages
(Fig. 1). We would argue that we are closer to knowing how
to generate fibrocartilage from MSCs than articular cartilage.
In vitro and in vivo studies have shown that the tissue elab-
orated by chondrogenically differentiated MSCs has fea-
tures characteristic of fibrocartilage.”>>* Although this
fibrocartilage is different from, for example, the one found
in meniscus, Vangsness et al. recently reported on meniscus
regeneration upon intra-articular injection of MSCs.>

MSCs are heterogeneous

MSCs are an attractive source of cells for cartilage TE due
to their ease of isolation and high capacity of in vitro expan-
sion. MSCs have the potential to differentiate into chon-
drocytes, osteoblasts, myocytes, tendinocytes, ligamentocytes,
and other mesodermal cell types.>® Furthermore, they have
immunoregulatory properties and can escape immune recog-
nition while depressing immune mechanisms (reviewed in
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FIG. 2. Chondrogenic lineage progression of mesenchymal stem cells (MSCs). MSCs appear to be limited to follow an
endochondral ossification program, which will end in vascular penetration, marrow deposition, and ossification of this
cartilaginous tissue. Differentiation toward the stable hyaline cartilage phenotypes is theoretically restricted. However, it is
possible that reproducing the complex environmental signals that are required for pathway switching has not been dis-
covered. Bypassing these restrictions may be possible using reprogramming technology (induced pluripotent stem [iPS]) or
embryonic stem cells (ESCs) as a new start state. Dashed arrows indicate possible routes, although evidence is lacking about
the detailed differentiation pathway. Figure made with images available at Servier Medical Art (www.servier.fr). Color

images available online at www.liebertpub.com/teb

Ghannam et al.57). However, what is currently termed an
MSC, especially from bone marrow, is not a homogeneous
population of cells, which may, in itself, affect our ability to
obtain optimal reproducible results in cartilage TE.

The cells vary in number in the tissue, for example, in
bone marrow, the frequency of MSC colony-forming units-
fibroblast is on the order of 1 cell in 10*~10> mononuclear
cells.”® However, numbers vary among donors, with donor
age and health and with the tissue source. This becomes a
key issue, as large numbers of cells are typically needed for
TE, and side effects of in vitro expansion include significant
phenotypic drift and rapid senescence.

Bone marrow and adipose tissue (termed ASCs, reflecting
behavioral differences) are the main sources for therapeutic
MSCs, with BM-MSCs being considered the gold standard
source for musculoskeletal TE approaches. However, MSCs
have been derived from a variety of tissues, including sy-
novium, periosteum, dental pulp, umbilical cord vein, pla-
centa, and others.”® Many studies have shown the feasibility of
MSCs from different tissue sources to generate cartilage.®®%*
However, it is important to consider that MSC from those
different sources are not necessarily equivalent. Indeed, they
have shown significant functional differences,“’66 and most
certainly require specific optimal chemical and temporal
protocols for their chondrogenic differentiation.

Other progenitor cells with potential applications for car-
tilage TE are related to MSCs, for example, the multipotent
adult progenitor cells or marrow-isolated adult multilineage
inducible (MIAMI) cells. These cells have been described as
pluripotent subpopulations within the bone marrow that can
be isolated using complex cell culture methods, providing a
new level of local heterogeneity.®”® There is substantial
donor-to-donor variability in the proliferation, differentiation
potential, metabolic demands, and biosynthetic activity even
with cell preparations obtained from a given tissue
source.®®”” There is also intrinsic heterogeneity that results
from different harvest sites or different cell differentiation
stages, which affects (often reducing) the efficiency of the
chondrogenic induction process. Heterogeneity of MSC cul-
tures (even the in vivo heterogeneity) may dictate the dif-
ferentiation behavior of distinct subsets of MSCs, thus
reflecting the intrinsic capabilities of generating the appro-
priate cartilage matrix by the whole cell population. This may
be the result of the in vivo microenvironmental histories at the
source tissue that control their functions (pericytes vs. stem/
progenitors), as we discuss below. In summary, MSCs from
different anatomic locations, or even subpopulations within
the same tissue, most likely have very dissimilar proliferation
and differentiation potentials and differing requirements for,
and responses to inductive stimuli, making it absolutely
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necessary to optimize culture conditions and differentiation
protocols for each cell source, especially for the chondrogenic
lineage. For emphasis, there are many different chemical and
mechanical properties of cartilage throughout the bodys; it is
not logical that MSCs could lineage-progress to fabricate
these diverse cartilaginous tissues without unique and se-
quential signaling customized for each class of MSCs. For
example, although TGF-f alone can induce marrow-derived
MSCs, fat-derived MSCs require both TGF- and bone
morphogenetic protein-6.”"

Regarding pericytes as MSC progenitors, one possibility
is the presence of cellular and chemical components in their
perivascular niche that may have an inhibitory effect on the
differentiation properties of MSCs. Thus, the purification of
distinct subsets of MSCs may enhance their particular cap-
abilities by eliminating interfering cells with limited po-
tential, or even cells with inhibitory activities. We, and
others, have shown that MSCs grown in the presence of
fibroblast growth factor-2 (FGF-2) are specifically primed
for subsequent chondrogenic differentiation and massive
ECM formation; this effect may be related to a preselection
of a subpopulation of cells that have increased chondrogenic
potential.”* We have unpublished data showing upregulation
of Sox9 mRNA and protein in cells exposed to FGF-2. Thus,
some of the intrinsic variability of MSCs can be reduced by
growth factor treatment.”>”*

New Dynamic and Developmental-Based Approaches
for MSC Chondrogenic Differentiation

A review of current cartilage TE practice suggests that the
most frequently used approach is to use a single culture
medium formulation to isolate and expand MSCs, followed
by a single chondrogenic medium formulation used to drive
the entire differentiation process in vitro. This “‘fire and
forget” approach to in vitro chondrogenesis, expected to
carry differentiation from induction to implantation-ready
tissue, has clearly reached its limits. This simple approach
likely induces a very general (albeit unnatural) cartilage
differentiation pathway in MSCs, resulting in their failure to
form the highly specific hyaline cartilage phenotype.
Moreover, the hyaline cartilage of the hip, knee, and ankle
joints are all quite different, thus requiring a site-specific
cartilaginous tissue. It is thought that the condensation step
of endochondral bone formation is being mimicked as the
initial step of MSC chondrogenic differentiation in micro-
mass or pellet cultures,” but attempts to recapitulate em-
bryonic development and lineage progression in in vitro
chondrogenesis have been unsuccessful so far.

It seems likely that a more sophisticated approach will be
needed, one based on an understanding of the molecular
events involved in chondrogenesis induction, lineage pro-
gression, and maintenance of the chondrocyte phenotype. It
also appears likely that a study of events during embryo-
genesis could be informative, in which the developmental
phenomena can provide empirical basis for the design of
MSC differentiation protocols. Moreover, most protocols
that induce MSCs to differentiate into chondrocytes are based
on static culture conditions that have been optimized in terms
of morphogen concentration and cell density, which drasti-
cally differs from the ever-changing embryonic milieu; a true
mimic methodology, a dynamic, changing microenviron-
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mental approach is required. It seems likely that a choreo-
graphed temporal sequence of stimuli will be necessary to
induce a functional and phenotypically stable chondrocytes
and the formation of adult articular cartilage tissue.

Such methods will depend on how much of the data from
cartilage developmental biology can be translated to an
in vitro setting; insufficient information is currently avail-
able to allow the control of this intricate and dynamic pro-
cess that would result in the generation of a stratified hyaline
cartilage tissue.”® Restoration of the zonal organization of
native articular cartilage is now considered by some to be
critical for the success of the cartilage TE approaches.'’*°
There are enormous differences in the zonal organization
and structure of human articular cartilage, depending on the
different microenvironmental factors to which the cells are
exposed and the cartilage zone where they reside. Therefore,
an engineered construct should have a strict localization-
based design, which considers the importance of chon-
drocyte properties, such as cell physiology, morphologies,
orientation, and biosynthetic activities.'”-”7-7® Tt seems rea-
sonable to suggest that location-specific chondrocytes would
be optimal to reconstruct a specific cartilage zone.”® This
requirement includes a new challenge to MSC-based TE
cartilage in which subtle differences in cell properties found
within the different layers of the cartilage should be mim-
icked to recreate a functional stratification. Attempts have
been made to use different chondrocyte populations to mi-
mic cartilage regional cellular variation.”®”° Using a mul-
tilayered hydrogel system, and a method to isolate
chondrocytes from three different layers of articular carti-
lage, Kim et al. showed that recreation of the stratification
of native articular cartilage is possible.”® This method could
be useful for an MSC-based technology; for example, using
multilayered constructs in combination with multiple sub-
population of MSCs (even MSCs from different tissue
sources). In this regard, it has been suggested that MSCs
derived from synovium, infrapatellar fat pad, and muscle are
promising cell sources for creating a superficial zone of
articular cartilage by TE, since they can be induced to se-
crete SZP.®*82 As SZP plays a critical role in articular
cartilage physiology, the localization of SZP-secreting cells
at the surface of a TE cartilage construct may be critical for
a successful biomimetic approach.®? In this regard, Lee et al.
demonstrated that MSCs isolated from synovium and infra-
patellar fat pad produce SZP after chondrogenic induction
and can maintain this activity after passaging. Therefore,
these MSCs could be used as a potential source for superficial
zone cartilage TE, allowing controlled localization of SZP.*'

Overall, although it may be possible to provide culture
conditions that are complex enough to, in part, recreate the
composition of the in vivo milieu at a given time, the dy-
namic complexity needed to recreate the events during ar-
ticular cartilage development is far from being understood.
As we gradually incorporate new data into our understand-
ing of cartilage development, the site-specific efficiency of
the biomimetic process can be perfected. We still need to
understand how microenvironmental cues, such as soluble
factors, ECM molecules, physical stimuli, and cell-cell and
cell-ECM interactions, control the lineage progression and
the eventual stem cell fate.

Sequential addition or removal of growth factors are al-
ready being considered in an attempt to exploit cascade
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effects, for example, exposure to a first set of culture con-
ditions alters the cell’s receptor profile priming the cells for
exposure to a second or subsequent set of conditions.?*%
We have found that a sequential exposure of hMSCs to
members of the FGF family of morphogens has a significant
cascade effect on cell expansion, chondrogenic differentia-
tion, and hypertrophic differentiation, allowing for control
of the chondrogenic differentiation program (unpublished
data). The persistent effect of FGF-2 exposure in the ex-
pansion medium on chondrogenesis, even after withdrawal
of the FGF-2, is one example of a cascade effect that crosses
over between expansion and differentiation conditions.”*
Finally, combining bioactive factors with an instructive
scaffold may be required.

Cell Optimization

In the marrow space, MSCs can be at various stages of
differentiation, or even adopting different transient pheno-
types depending on their physical location and function.®¢%’
It is currently clear that the typical, in vitro starting popula-
tion of isolated MSCs is highly heterogeneous. Overcoming
this heterogeneity may be a useful way of optimizing the
cellular starting material for TE. Using specific cell surface
markers, characteristic of specific and different phenotypes, it
may be possible to obtain enriched populations with desirable
traits using a cell-sorting approach. Thus, the cells could be
presorted according to their differentiation potential before
beginning dynamic chondrogenic induction. Several possible
sorting strategies are emerging.

Our unpublished data and a recent report by Gharibi and
Hughes suggest that FGF-2 stimulation during cell expansion
alters the distribution of CD146" cells suggesting that
CD146 could serve as a sorting criterion to select cells with
maximized chondrogenic potential.*® Rada er al. showed that
CD105" and CD29" MSCs have greater chondrogenic po-
tential over other MSC subpopulations.® Moreover, Arufe
et al. found that the CD2717 subpopulation expressed the
highest level of type II collagen and aggrecan at 28 days of
chondrogenic induction compared with other MSC subpop-
ulations.®® Moreover, a recent report showed that CD2717
MSC:s have greater chondrogenic potential, both in vitro and
in vivo, compared with the expanded MSC culture.”

All these findings confirm that hMSC derived from different
tissue sources constitutes a heterogeneous cell population
comprising several subpopulations, each one having particular
phenotypic and functional characteristics. The distinctive
phenotypes may parallel the stage of differentiation and, more
importantly, determine functional aspects related to the cells’
physical location in the bone marrow and their ultimate
functional fate. Collectively, this information supports the use
of selection protocols that query the actual cellular phenotype
before their use as cartilage matrix building units.

Hybrid Cultures

The study of the molecular control of in vitro chon-
drogenesis relies on the addition of purified or recombinant
proteins to the culture medium. However, this mode of de-
livery guarantees inhomogeneous penetration and distribu-
tion of these additives within the growing cell aggregate.
Additionally, the effects of cell-to-cell communication
during differentiation events, while likely critical, are not
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fully understood. MSC-adult hyaline chondrocyte coculture
has been shown to provide chondro-instructive and other
signals both by a trophic effect and by direct cell-to-cell
contact. These interactions bidirectionally modulate the bi-
ology and phenotype of both cell types: chondrocytes pro-
liferate and maintain a differentiated phenotype with
enhanced matrix synthesis, whereas MSCs are pushed into
the chondrogenic pathway.’" Interestingly, the trophic effect
exerted by MSCs seems to be independent of the tissue
source for the cells.”® Coculture-mediated chondroinduction
is also influenced by cellular interaction with the ECM via
integrins and by cell-to-cell contact via gap junctions or
transmembrane proteins, such as cadherins.”3

Using different coculture systems, various groups have
identified intercellular communication through soluble dif-
fusible factors that promote chondrogenic differentiation of
MSCs and enhance the chondrogenic potential of dediffer-
entiated chondrocytes. The newly differentiated chondrocytes
may further induce chondrogenic differentiation of resident
MSCs, resulting in the formation of more chondrocytes.”®
These systems include cartilage explants,* freshly isolated
Chondrocytes,94 and chondrocyte-conditioned Inf:dium,95 as
the source of the bioactive factors. Thus, Ahmed et al. inves-
tigated phenotypic stability of MSCs in a coculture study
where the presence of rat cartilage pieces suppressed type X
collagen gene expression in rat MSCs.** Similarly, Giovannini
et al. showed that MSCs cocultured with articular chon-
drocytes, but in the absence of dexamethasone and TGF-f1,
did not express hypertrophy markers even after 6 weeks. In-
terestingly, in the presence of dexamethasone and TGF-f1,
articular chondrocytes failed to downregulate hypertrophy
markers.*® Bian ez al. showed that hMSCs and human chon-
drocytes, cocultured at a ratio of 4:1 and encapsulated in
hyaluronic acid hydrogels, decreased their expression of cell
hypertrophy markers, such as type X collagen.”® Another study
provided evidence that chondrocyte-secreted PTHrP mediated
an antihypertrophic effect in MSCs.”’

Despite the fact that coculture methods have been developed
to study in vitro chondrogenesis, the mechanisms underlying
these cellular interactions are only beginning to be understood,
in part, due to technical difficulties related to determining the
specific relation between the acting factors and the observed
response. It is, in particular, not always clear which direction of
interaction between MSCs and chondrocytes dominates and
how the cell-type ratios influence chondrocyte function and
chondrogenic differentiation of MSCs. Although these phe-
nomena are understudied, they appear important for future
improvement of cartilage TE strategies.

In Search of the True Articular Hyaline
Cartilage Progenitor

As stated above, it is not clear that bone marrow is the
ideal source of MSCs for cartilage repair. This is rooted in
the intrinsic endochondral ossification potential of BM-
MSCs, which results in an undesirable cellular phenotype
(hypertrophic) that is not useful for articular cartilage repair.
Therefore, despite the many theoretical advantages of
MSC:s, the search for a true cartilage stem or progenitor cell
continues. Such a progenitor would be useful for under-
standing the molecular and genetic signature that a true
hyaline cartilage progenitor should possess. Furthermore, if
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current techniques allow us to isolate and expand these cells,
it would then be possible to design proper cell therapy ap-
proaches based on cells that have well-defined intrinsic
properties. However, the identity and physical location of
this progenitor cell remains a subject of study.

Adult intra-articular tissues (cartilage, synovium, etc.)
provide a potential reservoir of chondroprogenitors. There is
strong evidence of a cartilage stem cell in the superficial
layers of hyaline cartilage.”®* The superficial layer of the
cartilage is the first that is lost in degenerative joint disease,
which has implications for understanding the progression of
the disease, but unfortunately, it also curtails the supply of
regenerative cells for research. The deep zones of cartilage
have also been shown to be a possible reservoir of chon-
droprogenitor cells, based on identification of cells that have
proliferative capacity and can rebuild cartilage tissue.'®
These studies have shown that isolation of native cartilage
progenitors can be accomplished by a combination of tech-
niques, which relies on differential progenitor properties,
such as colony-forming capabilities, differential adhesion
properties, and specific marker expression.”®'°! Recently,
equine chondroprogenitors from the superficial zone have
been isolated and compared with BM-MSCs, showing that
these superficial cells have superior capabilities for cartilage
repair, principally in terms of lacking the expression of hy-
pertrophic markers, such as Runx-2 and type X collagen.*’
The presence of chondroprogenitor-like cells has also been
described in other locations within the joint, such as the peri-
chondrium,'*>'** synovium,****'% perichondrial groove of
Ranvier,'” and infrapatellar fat pad.'”'%® All these cells
resemble MSCs, suggesting that these locations could be
reservoirs of MSC-like cells, which may have useful phys-
iological functions within the joint.

From Pluripotency (ES, Induced Pluripotent Stem
Cells) Toward Multipotency

The reason that MSCs from different sources do not make
articular hyaline cartilage has not been fully addressed. One
explanation could be that the developmental origins of adult
MSCs and articular chondrocytes are different. It is possible
that authentic articular cartilage chondrogrogenitors are
only transiently present during development.'® Recently, Wu
et al. described early human cartilage committed cells. They
used laser-capture microdissection and microarray analysis of
human limbs from 5 to 6 weeks of development to identify
cells that have a very specific molecular profile, not found in
chondrocytes at later stages.'” These data are in agreement
with the fact that formative chondrogenesis is largely com-
pleted before birth.''® The recent proposition of a neural crest
origin for BM-MSCs suggests that the observed chondrogenic
potential of these cells might be closer to a craniofacial car-
tilage. This is structurally and functionally different from the
limb joint hyaline cartilage resulting from the embryonic
mesodermal chondroprogenitors (Fig. 1).!'""''? The develop-
mental restrictions that MSCs and other adult progenitor cells
may have to generate a functionally hyaline cartilage may be
overcome using less compromised stem cells. Chondrogenesis
from pluripotent stem cells, such as ESCs and induced plu-
ripotent stem cells (iPSCs), has been explored extensively.
Several protocols have been developed to induce chondro-
genic differentiation from ESCs and iPSCs.'*~'!7
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The relative success rate in obtaining the correct or native
chondrocyte and ECM phenotype using ESCs seems to be
greater compared with MSC-based protocols. However,
these conclusions depend on how the final outcome is as-
sessed. It seems probable that the final chondrocyte phe-
notype obtained from ESCs depends more on the culture
system rather than on the cell source (embryoid bodies,
purified ESCs, ESC-derived MSCs).'"® 2% Although ESCs
as a cell source for cartilage repair have been shown to be
promising, their clinical application remains controversial
due to ethical concerns related to their isolation, along with
arisk of teratoma formation and tissue rejection.'?' This makes
application to human therapy unlikely in the short term.

Genetic reprogramming of adult somatic cells (e.g., der-
mal fibroblast) to restore multidifferentiation capacity is
possible by overexpressing transcription factors specifically
associated with pluripotency, such as Oct4, Kif4, c-Myc,
and Sox2.'** These iPSCs are emerging as a cell source for
cartilage TE, as these cells have the same potentials as ESCs
and lack some of their shortcomings. Numerous in vitro
approaches have been developed to generate chondrogenic
cells from iPSCs based on protocols previously established
for ESC differentiation as well as novel approaches.'**~'%3

Interestingly, some of these studies have found that an
initial differentiation of ESCs or iPSCs toward an interme-
diate phenotype, not necessarily an adult MSC-like one, and
only then toward chondrogenic differentiation appears to be
an efficient approach to generate articular-like chondro-
cytes.'*12® These observations suggest that the mesoder-
mal stem cell-like phenotype is a crucial stage in cartilage
differentiation. It is possible that different developmental
potentials and restrictions (or immature intermediate stages)
exist within these mesodermal lineages (e.g., in embryonic
MSCs vs. adult MSCs).

Protocols for the generation of MSC-like cells from plu-
ripotent cells usually do not describe whether the cells are of
mesodermal or neural crest origin, thus these cultures may be
composed of several different types of cells.'*’ It is important
to stress that these progenitors are not comparable to adult
hMSCs. Importantly, these embryonic progenitors respond to
specific morphogens in ways that adult hMSCs cannot. Indeed
an “‘adult”” hMSC has yet to be derived from iPS technology.

Recent studies have shown that somatic stem cells may be
more suitable than adult differentiated cells for genetic and
nongenetic reprogramming, given that they need fewer re-
programming factors and that the efficiency of iPSC gen-
eration is higher. For instance, mouse BM-MSCs have been
successfully used to create iPSC lines.'**'** Kunisato ef al.
showed that iPSC generation from BM-MSCs is more effi-
cient compared with mouse epidermal fibroblasts, whereas
Niibe et al. showed that purified BM-MSC cultures generate
high-quality iPSCs.'?°~13! If iPSCs generated from MSCs
are to be the biological source of new cartilage, then we
must understand and control the intrinsic properties of the
initial population to be reprogrammed to an iPSC, that is, we
must start from a homogenous and well-characterized
cell population. Additionally, the differentiation protocol
has to be specified so that iPSCs can generate functional
chondrocytes that can coordinate the formation of site-
appropriate (i.e., ankle vs. knee articular cartilage) ECM.

Despite the enormous potential of both ESCs and iPSCs,
their clinical use is still subject to our ability to control their
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phenotype. This is related not only to their final phenotype
(articular cartilage) but also to the risk of teratoma forma-
tion and immune rejection.'** Thus, although these cells
have a great potential to be used for cartilage regeneration,
purification and differentiation protocols should be even
more highly controlled than for adult stem cells. To cir-
cumvent these difficulties, it could be useful to partially
reprogram somatic cells toward an intermediate state (i.e.,
chondrogenic committed cells), to avoid the generation of
fully pluripotent cells.

A more direct approach has been developed in which
chondrogenic cells were generated directly from somatic
cells without producing iPSCs. For this, the authors used a
combination of reprogramming factors (c-Myc and Klf4)
with a chondrogenic factor (Sox9) resulting in chondrogenic
cells that formed histologically homogenous hyaline carti-
lage."**'3* The authors suggested that c-Myc and KIf4 are
involved in epigenetic events in the somatic cells, enabling
Sox9 to direct cells to the chondrogenic lineage during the
induction of the reprogrammed cells. Moreover, the gener-
ated cells were nontumorigenic and have stable karyotypes.
Overall, these technologies could contribute to the devel-
opment of efficient approaches for site-specific articular
cartilage regeneration. However, we must not ignore the fact
that articular cartilage is not a final, homogeneous, and
definitive cellular phenotype; rather cartilage is an archi-
tectural phenomenon. Thus, obtaining the chondropro-
genitor does not guarantee the successful formation of
stratified cartilage necessary for a clinical application.

MSC/Pericytes

The concept that a pericyte, a cell embedded within the
abluminal basement membrane of blood vessels,'*” pos-
sesses the potential to give rise to cells of multiple lineages
was first introduced almost two decades ago.'*®~'*® More-
over, in 1965, Urist made the striking observation that a
young perivascular connective-tissue cell responded to sol-
uble signals coming from cells invading decalcified matrix
(free macrophages), inducing them to differentiate into os-
teoprogenitors. Furthermore, in a different microenvi-
ronmental setting (compaction of cells in closed vascular
channel), the same cells could also give rise to chon-
droprogenitor cells.'*® Besides the known functions of
pericytes, the suggestion that they may be resting stem/pro-
genitors cells participating in neoangiogenesis and wound
healing was apparent almost 30 years ago.'*> Diefenderfer
and Brighton reported data based on molecular analysis that
pericytes, besides their osteogenic role, also had a chon-
drogenic nature based on the presence of aggrecan and type
IT collagen mRNA."** Farrington-Rock er al. later showed
that microvasculature-derived pericytes could differentiate
into chondrocytes in vitro and in vivo. They, thus, demon-
strated for the first time that pericytes express the master
chondrogenic transcription factor Sox9, supporting the hy-
pothesis that pericytes may serve as a reservoir of primitive
precursor cells that can contribute to neochondrogenesis.'*’

It has been suggested, and subsequently shown, that
MSCs present in bone marrow and many other organs are a
subset of perivascular cells in vivo.'**'**714® The potential
of pericytes to differentiate toward mesenchymal pheno-
types may be restricted by the perivascular microenviron-
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ment; they may become permissive when pericytes exit this
restrictive microvasculature ECM and become MSCs based
on the microenvironmental conditions they experience
in vivo."*>'"*7 How these events are related to articular
cartilage repair/regeneration is not known, and whether
pericytes directly contribute to chondro-dynamics is still an
open question. Moreover, their function may be different in
developing tissues compared to their role in adult tissues,
taking into consideration that it is unlikely that an adult
tissue milieu would provide the appropriate cues to allow a
regenerative response compared to a reparative one. It can
be envisioned, based on the events during osteochondral
development, that unique anatomical locations, together
with highly controlled local microenvironmental cues (e.g.,
matrix and cellular interactions, soluble factors, oxygen
tension) determine the precise differentiation phenotype that
the MSC/pericyte can acquire in vivo. It has not yet been
possible to mimic these conditions reliably in vitro or in
different TE and Regenerative Medicine approaches.

Conclusions

The main challenges that remain with MSC-based artic-
ular cartilage TE, such as quality and durability of the de
novo generated tissue, its resistance to an endochondral
ossification program, and its effective integration into the
anatomic-specific host tissue, may be due to the intrinsic
inability of MSCs to differentiate into articular cartilage or
may be a reflection of our poor understanding of the un-
derlying MSC biology. MSCs can be isolated from many
human vascularized tissues as they reside as perivascular
cells, including various locations within the joint that may
be considered as potential reservoir of chondroprogenitor
cells. Until now exogenously administered as well as en-
dogenously mobilized MSCs have failed to contribute to
durable and phenotypically correct (i.e., anatomic site-
specific) articular cartilage regeneration, observations that
might cast doubt on the usefulness of MSCs in regeneration
of hyaline articular cartilage. This apparent lack in potential
of MSCs to give rise to stable cartilage may come from
restrictions imposed during embryonic development.
Therefore, it is possible that their functions and responses in
developing tissues are quite different from adult tissues.
ESC and iPSC technology have provided evidence that these
restrictions may be circumvented, which would allow us to
obtain cells with an intrinsic potential to regenerate site-
specific articular cartilage.

Whether adult marrow MSCs are suitable for such site-
specific articular cartilage TE or have an intrinsic endo-
chondral bone formation program is still an open question,
but the latter seems likely. Moreover, whether adult MSCs
have lost their intrinsic ability to differentiate into articular
cartilage or whether we are not currently able to recreate the
developmental milieu to which they are exposed during
embryology are also unanswered and challenging questions.
We suggest that, at the very least, regenerating stable ar-
ticular cartilage using MSCs will require us to implement
more rigorous methodologies to precisely mimic morpho-
genetic events of embryonic development of cartilage, yet
note that more information as to how this process success-
fully guides stem cells to differentiate into a cartilage phe-
notype is still needed.
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