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Abstract

In this paper a fast method of selecting a neural network architecture for
pattern recognition tasks is presented. We demonstrate that our proposed
method of selecting both input features and hidden neurons avoids the pitfalls
exhibited by other methods reported in the literature. It is also shown that the
resulting network architecture is extremely lean while at the same time signif-
icantly improving the network performance. The resulting solution provides
a very useful tool which is now being incorporated in the operations system
used for large image database surveys.

1 Introduction

Pattern recognition neural networks are used to obtain a non-linear function mapping
between the input pattern space and the output decision space. In anL-layer feed-forward
network (in which the inputs are not considered a layer)there areN =

PL

l=1(nl�1+1)nl
free parameters (weights and biases) that try to model this mapping, wherenl is the
number of units in layerl. For example, a 25 input, 25 unit hidden layer and 2 unit
output layer neural network has 702 free parameters. These parameters are estimated
from the training input/output patterns. It is very important that enough training examples
are available to estimate these parameters reliably. A generally accepted guideline is to
have at least five to ten times the number of training patterns as free parameters. So in the
above example a conservative number of samples would be 3500.

If we fail to have an adequate number of training examples there is a danger the
network will learn the training set rather than build a statistical model of the process
which generated the data, i.e. it will over-fit the data and lose its ability to generalise. The
network will be unsuccessful in classifying previously unseen patterns correctly.

It is rarely possible to obtain the required amount of training samples and therefore
some techniques are required to find an optimal network size, often referred to as com-
plexity. This can be done by trying to find irrelevant parameters in the network structure
and deleting them. It may be that some of the hidden units are not contributing to the
output of the network and therefore will not be missed. Some of the feature inputs might
contain highly correlated information or even irrelevant information. These can be deleted
without a loss in network performance. For example, having a feature input which mea-
sured the daily amount of rainfall in China when classifying medical images will add no
useful information to the classification problem.
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Reducing network size not only helps improve generalisation. It also increases the
computational speed of the system. This is usually very important for most applications.
There is roughly a linear relationship between network size and computational speed.
Cutting the number of units by half doubles the computational speed. It may also decrease
the amount of storage required and the feature extraction time.

In this paper a fast method of selecting a neural network architecture is presented. We
show that the proposed method avoids the pitfalls exhibited by other methods in the liter-
ature, mainly the potential loss of very discriminative features if the input data is highly
correlated. We also demonstrate that if the proposed approach is applied to prune both
the input features and the hidden neurons the resulting architecture is extremely lean and
at the same time significantly enhances the network performance. The resulting solution
provides a very useful tool which is now being incorporated in the operations system used
for Seismic image database surveys. The problems encountered with searching through
such large image databases and the search technique applied in this paper are described
in more detail in [8].

In the next section several of the more common neural network complexity techniques
are discussed. In section three theInput Selection Algorithmis presented and some results
on some synthetic and seismic datasets given. This algorithm is then extended to select
an optimum number of hidden units. Finally, some conclusions are drawn in section five.

2 Neural Network Complexity

Detailed reviews of the various network complexity techniques can be found in the books
by Bishop[1] andHaykin [4] and in articles byReed[11] andMao [6]. However, some
of the more important techniques are given below.

2.1 Network Growing Techniques

In general, this class of algorithms starts with a small network and adds units or con-
nections until an adequate performance level is obtained. Algorithms such as theThe
Upstart Algorithm[1] and theThe Tiling Algorithm[1] only work on Boolean networks.
The cascade correlation algorithm [2] helps to find the optimal number of hidden units to
use in a network. Traditional feature selection algorithms such as theSequential Floating
Forward Selection[10] and theSequential Forward Selectionalgorithm [10] can be seen
as network growing algorithms as they selectively add feature inputs to the network based
on a defined criterion function.

2.2 Network Pruning Techniques

This class of algorithms starts with a fully trained large network and then attempts to
remove some of the redundant weights and/or units. Hopefully, this is done in such a
way that the error of the network is not significantly degraded and the generalisation will
improve. Generally this involves computing a saliency measure of the individual network
weights or units. The saliency can be thought of as a measure of importance of the element
to the network when making a classification decision. A low saliency value implies that
the weight/node is not contributing much to the networks performance. If this is the case
then this element can be deleted from the network.
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TheSequential Backward Selection[10] andSequential Floating Backward Selection
[10] algorithms start with a network with a large number of nodes and heuristically re-
move the input nodes according to the value of the criterion function.Optimal Brain
Damage[5] attempts to remove redundant weights from a trained network by computing
the Hessian matrix of the error with the network weights. This was modified byHassibi
and Stork[3] in theOptimal Brain Surgeonsuch that it did not assume a diagonal Hessian
matrix.

In Skeletonization, Mozer and Smolensky[9] estimate the relevance of a unit to a
network. They define a saliency measure which is the difference in the error function
before and after the unit has been removed.Mao et al[7] defined a similar node saliency
measure which was the amount of increase in the error function when a node is removed
from the network. However, he considered the errorE as a function of all the outputs in
the network.

Ruck et al[12] proposed a node saliency measure that analysed the sensitivity of the
network outputs with changing inputs. If the outputs changed dramatically for a small
input change this feature was considered important to the problem.

Setiono et al[14] suggested that instead of using a saliency measure which is a func-
tion of the network weights that one could use the network classification performance on
a validation dataset directly. In his algorithm the drop in the error on a verification dataset
was observed whilst setting different weight values in the network to zero.

2.3 Regularization Techniques

Regularization attempts to reduce the number of effective parameters in a network. This
is achieved by adding a penalty term to the network error function when training the
network. This term can be considered as complexity measure of the network. A survey
of regularization techniques was performed byMao [6]. In general a regularization term
is defined as follows.

~E = E + �
 (1)

where� determines the fraction of the penalty term
 required to find the solution.
Although Regularization techniques will not directly reduce the size of the network they
do reduce the number of effective parameters of the network. This leads to a smoother net-
work mapping with the benefit that the generalisation of the network will increase. How-
ever it is also possible to use Regularization techniques with pruning algorithms which
then allow the network size to decrease.

Setino et al[13] proposed a regularization term which encouraged large weights not
to take on very large values and small weights to converge to zero.
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3 Input Selection Algorithm

We define an input saliency measure which is the sum of the magnitude of the trained
weights connecting that input to the hidden layer. The higher this sum the more important
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the feature input. If regularization is used whilst training this assumption is valid. The
algorithm which uses this measure to prune the network requires two labelled datasets, a
training datasetDtr and a verification dataset,Dver . The user also needs to specify an
error levelEuser he/she is prepared to accept on the verification dataset.

TheISAcan then be defined as follows:

� Step 1Train the network on all the featuresY = (y0
1
; y0

2
:::y0d) in datasetDtr using

the back-propagation algorithm with the penalty term given by equation 2.

� Step 2Calculate the saliency,Sq , for each input node using equation 3.

Sq =

Pn1
i=1

�
w1

qi

�2
n0

(3)

� Step 3Find the index,min, of the minimum value ofSq and setY = Y �fy0ming.

� Step 4Retrain the network using this reduced feature sub-set and calculateEver on
the verification dataset.

If (Ever � Euser) then goto step 2,

else setY = Y + fy0ming, retrain the network and stop.

3.1 The Experiments

In this set of experiments the suggested method of feature input selection by the analysis
of the average squared weight magnitude of the inputs is compared to the results obtained
by the Sequential Backward Selection algorithm[10].

In all the experiments, the criterion function used for selecting features via the SBS
algorithm was the Mean Square Error on the same verification dataset.

3.1.1 Experiment One

In this experiment we want to investigate if the important features in a given pattern
recognition problem do tend to have larger weight values.

To do this, two 6-dimensional normally distributed classes were synthetically gen-
erated with the parameters shown in Table 1. Each feature was generated such that the
features are statistically independent. The distance between the mean values of class A
and class B is larger for feature 1 than feature 2 and that in turn exceeds the distance for
feature 3 etc. This implies that feature 1 is the most important feature for this classification
task. Next is feature 2 then feature 3 etc...

Next a neural network was trained using the on-line back-propagationalgorithm (BPP)
with the penalty term given by equation 2. This was repeated 20 times for different net-
work initialisations. Next the saliency for each input was computed as given by equation
3. The average node saliency for each input is given in Table 2.

The results clearly show that the saliencies have the same order as the feature impor-
tance, i.e.

S1 > S2 > S3 > S4 > S5 > S6.
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This suggests that the assumption that important features form stronger connections
into the network is correct. It also supports the premise that the use of this saliency
measure will help to determine which features to select.

Feature 1 2 3 4 5 6

Class A 2.5(1.0) 2.0(1.0) 1.5(1.0) 1.0(1.0) 0.5(1.0) 0.0(1.0)
Class B 0.0(1.0) 0.0(1.0) 0.0(1.0) 0.0(1.0) 0.0(1.0) 0.0(1.0)

Table 1: Table showing the class statistics of sythentically generated data. Number in
brackets shows standard deviation.

Input 1 2 3 4 5 6

SaliencySi 5.68(0.29) 2.85(0.24) 1.12(0.10) 0.62(0.07) 0.39(0.06) 0.28(0.05)

Table 2: Average saliency for each input into the network

3.1.2 Experiment Two

In this experiment we want to investigate what will happen if two highly correlated fea-
tures are present in the feature set. Two six dimensional classes were generated using the
parameters shown in table 3. This time featuref6a was an exact copy of featuref1a ex-
cept some random noise was added tof6a. Next the network was trained using theBPP.
The node saliency was then computed for every input and ranked. This was repeated for
20 different network initialisations. The average saliency ranks can be seen in table 4.

From Table 4 we can see that the saliency measures are ranked

S2 > S6 > S1 > S3 > S4 > S5.

This does not match the feature ranking order of

f1 == f6; f2; f3; f4; f5

The network still uses the featuresf1a andf6a in obtaining a solution but instead of
taking all the information from one feature and ignoring the second correlated feature its
takes half the information from each feature. This can be seen in the approximately equal
average magnitude weight values for input 1 and 6 (2:21 and2:78 respectively).

This supports the ISA algorithm in that only one input feature should be thrown away
at a time and after this the network must be retrained and input saliencies recomputed. In
Rucks [12] algorithm which uses a similar measure more than one feature is thrown away
at one time. This algorithm is dangerous as very discriminative features could be thrown
away.

3.1.3 Results on the Seismic Data

A total of 25 texture features were generated for each pixel on the seismic images shown
in figure 1(a),(d),(g) and (j). From each of the seismic images two datasetsL andT
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Feature 1 2 3 4 5 6

Class A 2.5(1.0) 2.0(1.0) 1.5(1.0) 1.0(1.0) 0.5(1.0) 2.5(1.0)
Class B 0.0(1.0) 0.0(1.0) 0.0(1.0) 0.0(1.0) 0.0(1.0) 0.0(1.0)

Table 3: Table showing the class statistics of sythentically generated data.

Input 0 1 2 3 4 5

SaliencySi 2.21(0.13) 3.17(0.26) 1.32(0.09) 0.77(0.07) 0.28(0.04) 2.78(0.14)

Table 4: Average saliency measure for each input node when trained using the syntheti-
cally generated dataset 2.

were obtained. The regions of the seismic images which were used to obtain these train-
ing/testing datasets are shown in figure 1.

Next Sequential Backward Selection was performed on all 8 datasets and the features
were ranked in the reverse order being thrown away. This experiment was then repeated
20 times for different network initialisations.

Then ISA was performed on the eight datasets. Again the features were ranked ac-
cording to when they were thrown away. The experiments were repeated a total of 20
times.

Next classification of the datasets was performed, first using all 25 features, then using
the top 10 ranked SBS selected features and finally using the top 10 ISA selected features.
The results of this classification can be seen in table 5.

Image Training Set Test Set All Features SBS ISA

DO.pgm L0 T0 81:15(1:05) 82:01(0:99) 80:81(0:85)

T0 L0 97:70(0:24) 96:98(0:90) 93:00(1:74)

D1.pgm L1 T1 85:34(2:11) 75:00(1:87) 77:31(2:04)

T1 L1 82:32(0:76) 89:75(0:38) 88:99(0:42)

D2.pgm L2 T2 85:39(2:20) 87:72(1:34) 90:11(2:83)

T2 L2 50:07(0:27) 51:60(0:41) 47:74(1:25)

D3.pgm L3 T3 72:82(1:28) 75:86(2:76) 76:39(1:52)

T3 L3 74:51(1:53) 68:30(1:48) 77:00(2:88)

AVERAGE 78:66(13:84) 78:40(14:20) 78:91(14:21)

Table 5: Table showing correct classification percentages on seismic imagesD0-D3, using
all 25 features, the best 10 SBS selected features and the best 10 ISA selected features.

The results in table 5 show that even though the dimensionality has been halved the
average classification performance has not been affected at all.

The computational time to select the best 10 features by theSBSis just under 2000
CPU units whilst for theISA it is just under 250 units, an increase of factor 10.

The disadvantage of this method is that no guidance is given to how many hidden
units should be used.
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(a) Seismic imageD0.pgm (b) Region showing the loca-
tion of samples in datasetL0

(c) Region showing the loca-
tion of samples in datasetT0

(d) Seismic imageD1.pgm (e) Region showing the loca-
tion of samples in datasetL1

(f) Region showing the loca-
tion of samples in datasetT1

(g) Seismic imageD2.pgm (h) Region showing the loca-
tion of samples in datasetL2

(i) Region showing the loca-
tion of samples in datasetT2

(j) Seismic imageD3.pgm (k) Region showing the loca-
tion of samples in datasetL3

(l) Region showing the loca-
tion of samples in datasetT3

Figure 1: The Seismic images and their corresponding label images.
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4 The Unit Selection Algorithm

In this section we extend theISAalgorithm so that it also selects the number of units in
the hidden layer.

Again the algorithm requires two labelled datasets, a training datasetDtr and a verifi-
cation dataset,Dver. The user also needs to specify an error levelEuser he/she is prepared
to accept on the verification dataset.

TheUSAthen proceeds as follows:

� Step 1Construct a network withd inputs. Set the number of hidden units,n1 = d.
Train this network on the complete feature setY = fy0

1
; y0

2
:::y0dg using theBPP.

� Step 2Calculate the saliency,Sq , for each input node using equation 4.

Sq =

Pn1
i=1 (wqi)

2

n0
(4)

� Step 3Calculate the saliency,Si, for each hidden node using equation 5.

Si =

Pn2
j=1 (wij)

2

n1
(5)

� Step 4Find the minimum value ofSq and the minimum value ofSi.

If min(Sq) < min(Si),

– SetY = Y � fy0ming

– SetINP = True

– Goto step 5.

else ifmin(Si) � min(Sq)

– Setn1 = n1 � 1

– SetINP = False

– Goto step 5.

� Step 5Retrain the network and calculateEver on the verification dataset.

If (Ever < Euser) then goto step 2,

else

– If(INP ) setY = Y + fy0ming retrain the network and stop.

– Else setn1 = n1 + 1 retrain the network and stop.
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Image Training Set Test Set #Inputs #Hidden Units Classification %

DO.pgm L0 T0 2:05(0:22) 2:00(0:00) 75:39(3:75)

T0 L0 3:90(0:31) 2:05(0:22) 97:01(1:46)

D1.pgm L1 T1 4:95(0:83) 1:25(0:44) 80:11(1:86)

T1 L1 2:00(0:00)) 1:00(0:00) 81:62(0:21)

D2.pgm L2 T2 4:50(0:76) 1:35(0:48) 89:70(3:40)

T2 L2 25:00(0:00) 1:00(0:00) 80:31(1:41)

D3.pgm L3 T3 6:80(1:51) 4:00(0:85) 77:39(6:30)

T3 L3 3:55(0:51) 2:00(0:00) 73:79(3:46)

AVERAGE 6:59(7:16) 1:83(0:99) 81:92(7:97)

Table 6: Table showing average network size and correct classification percentages on
seismic imagesD0-D3after usingUnit Selection Algorithm.

4.1 The Experiments

The USA was run on the eight seismic datasets obtained from the images shown on figures
1(a),(d),(g) and (j). The classification of the test dataset was then performed using the
reduced network. As always, this was repeated a number of times to obtain an average
performance. The results can be seen in table 6.

Table 6 shows that theUnit Selection Algorithmhas performed very well. The average
classification performance on the seismic images has increased from78:66(13:84)% us-
ing all 25 features and 25 hidden units to81:92(7:97)%whilst using on average6:59(7:16)
inputs and1:83(0:99) hidden units.

It is interesting to note that for training setT2 and test setL2 the performances in-
crease from just under50:0% to over80:0% by reducing the number of hidden units to 1
from 25 whilst maintaining all its inputs. This is an increase of30:0%.

TheUSAdoes take longer to run than theISAalgorithm but this is to be expected as we
are now selecting hidden units as well as inputs. However, it is still very computationally
advantageous over the traditional techniques. The CPU time taken to reduce a [25, 25, 2]
network to a [10, 10, 2] network is 450u compared with 2000u to get to the same stage
with theSBSalgorithm.

5 Conclusions

In this paper a new algorithm that reduces the network complexity was introduced and
was successfully applied to the problem of searching through Seismic image datasets.
The algorithm significantly reduced the network size such that the network had only� 20
free parameters instead of702 (less than3%). A corresponding increase in classification
performance of unseen patterns was observed using the reduced network size.

Also, reducing the network size also dramatically reduces the amount of time required
to classify unseen patterns. This is particularly important in our application of classifying
seismic datasets as these are typically of the order of tens of gigabytes in size.
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