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Abstract

Radial basis function (RBF) methods have broad applications in numerical analysis and

statistics. They have found uses in the numerical solution of PDEs, data mining, machine

learning, and kriging methods in statistics. This work examines the use of radial basis func-

tions in scattered data approximation. In particular, the experiments in this paper test the

properties of shape parameters in RBF methods, as well as methods for finding an optimal

shape parameter. Locating an optimal shape parameter is a difficult problem and a topic of

current research. Some experiments also consider whether the same methods can be applied

to the more general problem of selecting basis functions.

1 Introduction

Radial basis function (RBF) methods are an active area of mathematical research. The initial

motivation for RBF methods came from geodesy, mapping, and meteorology. They have since

found applications in other areas, such as the numerical solution of PDEs, machine learning, and

statistics. In the 1970s, Rolland Hardy suggested what he called the multiquadric method for ap-

plications in cartography because he was not satisfied with the results of polynomial interpolation.

His new method for fitting data could handle unevenly distributed data sites with greater consis-

tency than previous methods [Har90]. The method of RBF interpolation used in this paper is a

generalization of Hardy’s multiquadric and inverse multiquadric methods.

Many RBFs are defined by a constant called the shape parameter. The choice of basis function

and shape parameter have a significant impact on the accuracy of an RBF method. This paper

investigates methods for selecting basis functions and their shape parameters. Leave one out cross

validation, generalized cross validation, and a maximum likelihood estimator are used to select

shape parameters in Section 2. In Section 3, those methods are applied to the problem of selecting

basis functions.

1.1 Interpolation of Scattered Data

A radial function is a function that is radially symmetric around some point xc called the func-

tion’s center. For a kernel K : R
s × R

s → R with input vectors x = [x1, x2, ..., xs]
T and xc =

[(xc)1, (xc)2, ..., (xc)s]
T , K is a radial function if it can be defined as K(x, xc) = κ(r), where
Copyright © SIAM Unauthorized reproduction of this article is prohibited 190



r = ||x − xc||2 is the Euclidean distance between the points x and xc. To use κ(r) as a basis

function in an RBF method, the center xc is set to a constant point and x is taken to be the input

variable. Note that the univariate function κ is independent from the number of input dimensions

s. As a result, methods that use radial functions for their basis functions are, in principle, easily

adapted to solve problems in higher dimensions.

In a scattered data approximation problem, we are given a set of n distinct data points X =
{x1, x2, ..., xn} in R

s and a corresponding set of n values y1, y2, ..., yn sampled from an unknown

function f such that yi = f(xi). We can then choose a radial function κ and a set of centers,

{xc1 , xc2 , ..., xcm} for some m ∈ N, to obtain a basis {κ(‖ ·−xc1‖), κ(‖ ·−xc2‖), ..., κ(‖ ·−xcm‖)}.

This basis can then be used to construct an approximation f̃ of the function f .

For example, the left side of Figure 1 shows the graph of a function f : R
2 → R. The right

side of Figure 1 shows a set of 8 data points sampled from that function at scattered locations in

[1, 2]× [1, 2].

Figure 1: Sample data from test function f(x) = x1 · sin2(x1) · e−x2
2 on the domain [1, 2]× [1, 2].

One option is to center an RBF on each data site. In that case, the approximation will be

constructed from n radial basis functions, and there will be one basis function with xc = xi for

each i = 1, 2, ..., n. The approximation f̃ is then constructed from a linear combination of those n

RBFs, so that

f̃(x) =
n

∑

j=1

cjκ(||x − xj||2) (1)

with constant coefficients cj . In an interpolation, the constants cj are determined by ensuring that

the approximation will exactly match the given data at the data points. This is accomplished by

enforcing f̃(xi) = yi, which produces the system of linear equations

Kc = y, (2)

where K =











κ(||x1 − x1||2) κ(||x1 − x2||2) · · · κ(||x1 − xn||2)
κ(||x2 − x1||2) κ(||x2 − x2||2) · · · κ(||x2 − xn||2)

...
...

. . .
...

κ(||xn − x1||2) κ(||xn − x2||2) · · · κ(||xn − xn||2)











,
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c = [c1, c2, ..., cn]
T , and y = [y1, y2, ..., yn]

T .

The coefficients cj are then found by solving the linear system Kc = y. With the coefficients

defined, the only choice remaining is how to define κ. Choosing an appropriate RBF is an important

decision, and there are numerous choices available.

1.2 Basis Functions Used

The choice of basis functions will determine which methods are available for solving (2), and

whether such a solution even exists. If the interpolation matrix K is symmetric positive definite,

then the linear system has a unique solution. One property of a positive definite matrix is that all

of its eigenvalues are positive. Therefore, a positive definite matrix is invertible. Additionally, nu-

merical methods such as Cholesky factorization can be used to solve a symmetric positive definite

linear system more efficiently than methods designed for a general linear system [TB97, p. 172].

If one basis function is centered on each data site (as shown above), then one immediate result

of using radial basis functions is that the interpolation matrix K is symmetric. This is clear from

(2) because ||xi − xj||2 = ||xj − xi||2 means that Kij = Kji.

The interpolation matrix K is positive definite if

tTKt > 0 (3)

for every non-zero vector t = [t1, t2, ..., tn]
T ∈ R

n . Similarly, a symmetric kernel K : Rs ×R
s →

R is a positive definite kernel if

m
∑

i=1

m
∑

j=1

K(xi, xj)titj > 0 (4)

for any distinct points x1, x2, ..., xm in R
s and every non-zero vector t ∈ C

m, ∀m ∈ N . In an RBF

interpolation with one basis function centered on each data site, (3) is a result of (4). Therefore, if

K is a positive definite kernel, then the matrix K defined in (2) is a positive definite matrix [Fas07,

p. 37].

If the RBF chosen is a reproducing kernel, then the interpolant produced by an RBF interpo-

lation also exhibits other useful properties. These include a series of optimality results which can

be found in [Fas07, p. 159]. Also, reproducing kernels are always at least positive semi-definite

functions [Aro50], meaning that

m
∑

i=1

m
∑

j=1

K(xi, xj)titj ≥ 0

for any distinct points x1, x2, ..., xm and any constants t = [t1, t2, ..., tm]
T ∈ C

m, ∀m ∈ N. If it can

be shown that the inequality above is an equality only when t = 0, then the reproducing kernel in

question is also a positive definite function.

Table 1 lists some common RBFs which are used in the following experiments. As before,

the variable r stands for ‖x − xc‖2
. With the exception of the multiquadric, all of the RBFs listed

are positive definite reproducing kernels. The multiquadric is not positive definite or a repro-

ducing kernel, but it is conditionally negative definite. In an RBF interpolation, it gives rise to
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Name Definition

Gaussian κ(r) = e−(εr)2

Multiquadric κ(r) =
√

1 + (εr)2

Inverse Multiquadric κ(r) = 1√
1+(εr)2

C0 Matérn κ(r) = e−εr

C2 Matérn κ(r) = e−εr · (1 + εr)

C4 Matérn κ(r) = e−εr ·
(

3 + 3εr + (εr)2
)

Table 1: Some common radial basis functions.

a matrix of size n with one positive eigenvalue, and n − 1 negative eigenvalues. Therefore, an

RBF interpolation which uses multiquadric basis functions has a unique solution, but that solution

cannot necessarily be computed using methods specialized for solving positive definite systems.

The multiquadric and inverse multiquadric are both part of the generalized multiquadric family

of RBFs defined by κ(r) = (1 + (εr)2)
β
. A detailed investigation of generalized multiquadrics

can be found in [Che09]. While this paper focuses primarily on the shape parameter ε, [Che09]

investigates the parameter β of the generalized multiquadric.

1.3 Shape Parameters

Many RBFs, including all of the ones studied here, have a variable ε in their definitions. This

variable ε is called the shape parameter. For the RBF definitions listed in Table 1, a smaller shape

parameter corresponds to a “flatter” or “wider” basis function. The limit as ε → 0 is often referred

to as the “flat” limit, because ε = 0 corresponds to a constant basis function.

ε = 3 ε = 1 ε = 0.4

Figure 2: Gaussian RBFs with different shape parameters plotted on the same domain.

Figure 2 shows three Gaussian RBFs with different shape parameters. The RBFs are graphed

with two-dimensional inputs on the same domain. As we will see below, changing the shape

parameter of an RBF alters the interpolant, and can have a significant impact on the accuracy of

the approximation.
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2 Choosing a Shape Parameter

Different shape parameters correspond to different approximations resulting from RBF interpola-

tion. Finding the shape parameter that will produce the most accurate approximation is a topic of

current research. The experiments in this section investigate methods for optimizing shape param-

eters with respect to error in an RBF interpolation.

For an example, Figure 1 shows a graph of the function f(x) = x1·sin2(x1)·e−x2
2 and 8 data sites

sampled from that function. Figure 2 shows three Gaussian RBFs with different shape parameters.

Figure 3 contains graphs of three different interpolants resulting from an RBF interpolation using

the data from Figure 1 and translates of the basis functions from Figure 2. Each interpolant is

defined by (1) with the coefficients cj computed using (2). The interpolants are different because

the RBFs used to construct them have a different shape parameter, as noted above each graph of

Figure 3. The function f is graphed in green alongside each interpolant for reference.

ε = 3 ε = 1 ε = 0.4

RMS Error: 6.29 · 10−2 RMS Error: 1.14 · 10−2 RMS Error: 7.60 · 10−3

Figure 3: RBF interpolants using different shape parameters (approximated function shown in

green).

The term “RMS error” listed underneath each graph is the “root mean squared error” of the

approximation. The RMS error is the square root of the mean squared error, or
√

√

√

√

1

P

P
∑

j=1

[f̃(pj)− f(pj)]
2,

where P is the number of points being used to compute error and the pj’s are those points. In this

case, the RMS error was computed using 64 points distributed in a uniform grid on [1, 2] × [1, 2].
The RMS error will also be used to evaluate error in the following experiments.

Even from visual inspection, it can be seen that changing the shape parameter used in the basis

functions has an impact on the accuracy of the resulting approximation. Of the three interpolants

shown in Figure 3, the one with the smallest shape parameter appears to be the most accurate.

To get a more complete picture of the interpolant’s behavior with respect to the shape parameter,

Figure 4 shows the RMS error plotted against the shape parameter of the Gaussian RBFs used to

construct the interpolant.

The graph in Figure 4 indicates that the lowest RMS error was computed with a shape param-

eter between 0.4 and 0.5. It has been observed that accuracy improves with most decreases in ε.
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Figure 4: Error for example problem.

However, the smallest error is not found at ε = 0. A minimum error is often found at some “small”

value of ε, as is the case in this example. While this is typical, results change based on f , the basis

functions chosen, and the data set used to construct the approximation.

In addition to accuracy, a prominent concern in numerical computations is stability. As a

follow-up to the first example, the following example illustrates the relation between the shape

parameter and numerical instability. This example attempts to approximate the same function

(from Figure 1) using Gaussian RBFs, but in this case we use n = 120 randomly distributed

data sites to construct the approximation. This means that the interpolant will contain 120 basis

functions, with one centered on each of the 120 data sites. As a result, the interpolation matrix K

will be a 120× 120 matrix. Figure 5 shows the RMS error from a follow-up to the example above.

The graph in Figure 5 appears unstable for most values of ε shown. Specifically, it appears that the

problem is unstable for approximately ε < 3.

Figure 5: Error for example problem with 120 randomly distributed data sites.

The problem of increased instability as ε decreases is well known. This is particularly sig-

nificant because highest accuracy is often found at some “small” shape parameter, which may be

in the unstable region. This conflict between accuracy and stability is sometimes referred to as

the “trade-off principle” [Fas07, p. 138]. This “trade-off principle” is linked to the choice of ba-
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sis. Recently, methods have been developed to stably compute interpolants with small parameters

by using an alternate basis, such as Contour-Padé and RBF-QR, e.g. [FW04, Pir07]. However,

those methods are not investigated in this paper. The following experiments use the “RBF-Direct”

method, which is the method described in Section 1.

2.1 Predictors

As seen above, varying the shape parameter of the basis functions can have a significant impact

on the accuracy of an RBF interpolation. A method for finding a good shape parameter is needed.

One strategy is to minimize a “predictor function” which mimics the interpolation error. Several

functions have been derived for that purpose. Three such functions will be used in the following

experiments.

Leave One Out Cross Validation

Cross validation attempts to test the accuracy of a method by separating the available data into

two or more parts. One part of the data set is used to construct an approximation, and error is

measured using a different part of the data set. Leave one out cross validation (LOOCV) uses

n − 1 points from the data set to construct an approximation, then checks that approximation’s

error at the remaining data site. The procedure is repeated leaving out each data site once, and the

resulting set of errors are used to estimate the method’s relative accuracy [Wah90].

For this paper, the sum of the squares of the errors is used for the LOOCV so that

LOOCV (ε) =
n

∑

i=1

|f̃i(xi)− yi|2,

where f̃i is the interpolant formed when excluding the point xi and using basis functions with

shape parameter ε. However, computing the LOOCV by solving n linear systems, each with a

dense matrix, would require O(n4) operations. The computational complexity of solving a linear

system with a dense matrix is only O(n3), therefore incorporating LOOCV as stated above into an

RBF interpolation algorithm would increase the computational complexity of the algorithm using

it.

In [Rip99], Shmuel Rippa showed that

f̃i(xi)− yi =
ci

K
−1
ii

,

where ci is the i’th coefficient of the interpolant f̃ constructed using the full data set and K
−1
ii is

the i’th diagonal element of K−1. The vector c can be found by solving Kc = y, and the diag-

onal elements of K−1 can be computed using a matrix factorization. As a result, computing the

LOOCV using Rippa’s formula has computational complexity O(n3). For the following experi-

ments, LOOCV will be computed using the formula

LOOCV (ε) =
n

∑

i=1

[
ci

K
−1
ii

]2.
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Generalized Cross Validation

Generalized cross validation (GCV) is a variation of leave one out cross validation which replaces

the diagonal elements of K−1 with their average. GCV is similar to LOOCV, but has some invari-

ance properties which LOOCV lacks. As with LOOCV, the computational complexity of GCV is

O(n3). Further information on generalized cross validation can be found in [Wah90, p. 52]. In the

following experiments, GCV is calculated using the equation

GCV (ε) =

∑n
i=1 c

2
i

[ 1
n

∑n
i=1 K

−1
ii ]

2
.

Maximum Likelihood Estimator

Another method for predicting which shape parameter ε will minimize the error of an RBF inter-

polation is to use a maximum likelihood estimator (MLE). Assuming that f is a Gaussian process,

maximizing the likelihood function is equivalent to minimizing

yTK−1y · [det(K)] 1n

[Ste99, p. 169]. This formula rapidly approaches 0 as n increases, causing numerical error. The re-

sulting numerical error can be prevented by taking the logarithm of the function in its computation

and applying the identity

det(K) =
n
∏

i=1

λi(K),

where λi(K) is the i’th eigenvalue of K. Additionally, computing K
−1 can be avoided because

K
−1y = c.

For the following experiments, the function

MLE(ε) = log[yT c] +
1

n

n
∑

i=1

log[λi(K)]

will be minimized to find the maximum likelihood estimate for the value of ε which minimizes the

error of the interpolant. Computing the coefficients c and computing the eigenvalues of a matrix

each require O(n3) operations. Therefore, computing the value of this function for a single shape

parameter ε has computational complexity O(n3).

2.2 Experiment 1: Selecting ε Using Predictors

This set of experiments investigates the use of LOOCV, GCV, and MLE as methods for locating

a shape parameter ε for use in an RBF interpolation. In addition to the value of ε located by each

method, it is also important that the value can be found efficiently. Since the predictors must be

minimized to locate the appropriate shape parameter, issues such as multiple local minima are

a potential concern. These experiments analyze the LOOCV, GCV, and MLE by plotting them

alongside the RMS error for a given problem.
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In each experiment, a scattered data approximation problem is repeatedly solved using RBF

interpolation with differing shape parameters. For each interpolant, an RMS error is computed

using ns evaluation points, where n is the number of data sites used to construct the approximation

and s is the number of input variables for f . These evaluation points are uniformly distributed on

the domain given for the problem. Values for LOOCV, GCV, and MLE are computed using the

formulas defined in Section 2.1. The results are then plotted with the predictor functions scaled

and translated vertically to fit alongside the graph of RMS error. To make the minima easier to

identify, a point of the same color as each predictor’s curve is placed on the RMS error curve at

the value of ε which minimizes the associated predictor function. Each graph is also accompanied

by a table listing the ε at which each curve is minimized and the RMS error of an interpolant using

that shape parameter.

Curve ε When Minimized RMS Error

RMS Error 5.74 · 10−1 9.402 · 10−3

LOOCV 1.36 · 10−2 1.243 · 10−2

GCV 2.06 · 10−2 1.242 · 10−2

MLE 9.33 · 10−1 1.391 · 10−2

Figure 6: Error and predictors for RBF interpolation of f(x) = x1 · sin2(x1) · e−x2
2 on [1, 2]× [1, 2]

using Gaussian RBFs with n = 8 data sites.

Figure 6 graphs the RMS error and relative values of predictors when attempting to approxi-

mate the function f(x) = x1 · sin2(x1) · e−x2
2 on the domain [1, 2] × [1, 2] using n = 8 data sites

distributed as depicted in Figure 1. The RMS error was computed using 64 uniformly distributed

points in [1, 2]× [1, 2]. In this experiment, the MLE locates the value of ε closest to the value of ε

that minimizes the error. However, the LOOCV and GCV both locate a value of ε which produces

smaller RMS error than the value located by the MLE. Each predictor appears to have a single

local minimum in this problem.

Figure 7 graphs the RMS error and relative values of predictors for a variation on the previous

problem using inverse multiquadric RBFs with n = 120 randomly distributed data sites on the

domain [1, 2]× [1, 2]. Unlike the previous experiment, the results in Figure 7 show instability. The

MLE notably appears to remain smooth through much of the instability. The LOOCV and GCV

begin to increase as soon as the instability begins, with their minima being found near the edge of
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Curve ε When Minimized RMS Error

RMS Error 3.79 · 10−1 2.887 · 10−7

LOOCV 1.23 6.473 · 10−6

GCV 1.23 6.473 · 10−6

MLE 4.06 · 10−1 3.958 · 10−7

Figure 7: Error and predictors from RBF interpolation of f(x) = x1 ·sin2(x1) ·e−x2
2 on [1, 2]× [1, 2]

using inverse multiquadric RBFs with 120 data sites.

the unstable region. They also become unstable as ε decreases, causing them to have numerous

local minima. While the MLE remains stable through much of the instability, it has an additional

minimum near ε = 0.01 at the left side of the graph. This local minimum corresponds to an

RMS error larger than 10−3, so even using the MLE to select a shape parameter could encounter

difficulties.

Changing basis functions can have a significant impact on both the accuracy and stability of

the interpolation. Figure 8 shows the RMS error and relative values of predictors for the same

problem as in Figure 7, but in this case C2 Matérn basis functions are used. The result is a much

less accurate, but more stable interpolation. Using C2 Matérn basis functions the errors using shape

parameters found by the predictors are on the order 10−4, compared to 10−6 and 10−8 when using

inverse multiquadric basis functions. However, Figure 7 also shows that minimizing the predictors

may be difficult when solving this problem using inverse multiquadric basis functions, especially if

LOOCV or GCV is used to choose a shape parameter. This is particularly important because many

of the local minima for the predictors in Figure 7 correspond to RMS errors above 10−4. Although

the smallest RMS errors found when using C2 Matérn basis functions are not as small, each of the

predictors has a single minimum with error of order 10−4. As a result, error on the order of 10−4

will be easily found when using C2 Matérn basis functions in this approximation.

2.3 Experiment 2: Locating Instability using Error Bounds

Given the importance of stability to the performance of shape parameter optimization methods, it

would be useful to have an efficient method for predicting instability. Some attention has been

given to developing bounds on the condition number of the matrix K. The following bound for a
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Curve ε When Minimized RMS Error

RMS Error 8.12 · 10−1 5.151 · 10−4

LOOCV 5.92 · 10−3 5.598 · 10−4

GCV 4.49 · 10−3 5.599 · 10−4

MLE 6.25 · 10−2 5.543 · 10−4

Figure 8: Error and predictors from RBF interpolation of f(x) = x1 ·sin2(x1) ·e−x2
2 on [1, 2]× [1, 2]

using C2 Matérn RBFs with 120 data sites.

Gaussian kernel is recounted from [Fas07, p. 135].

For a positive definite matrix,

Cond(K) =
λmax

λmin

,

where λmax and λmin are the largest and smallest eigenvalues of K. If the RBF κ is positive definite,

then λmax ≤ n · κ(0). For a Gaussian kernel,

λmin ≥ Cs(
√
2ε)−se−40.71s2/(qxε)2q−s

x ,

where qx =
1
2
mini 6=j(‖xi − xj‖2

) and s is the dimension of x. The constant Cs is given by

Cs =
1

2Γ( s+2
2
)

(

Ms√
8

)s

, where Ms = 12

(

πΓ2( s+2
2
)

9

)

1

s+1

and Γ(·) is the Gamma function.

For a Gaussian kernel in one dimension, this simplifies to

Cond(K) ≤ CondBound(K) =
2εnqx · e40.71/(qxε)2

√
π

.

To investigate the potential usefulness of this bound in an algorithm, the following graphs plot

the ratio
CondBound(K)

Cond(K)
for varying values of ε with n = 10 and varying values of n with ε = 10. For

this test, we use a uniform point distribution on the domain [0, 10].
These graphs show that in this case
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Figure 9: Ratio
CondBound(K)

Cond(K)
for varying values of ε with n = 10 (left) and varying values of n with

ε = 10 (right).

• The bound becomes significantly less tight as ε decreases.

• The bound becomes significantly less tight as n increases.

This bound is loose for small ε and large n, the places where the highest accuracy is generally

found. Therefore, this bound will not be very useful.

2.4 Experiment 3: Locating Instability Using Positive Definiteness of the

Interpolation Matrix

Even when reproducing kernels are known to be positive definite functions, numerical error may

cause the interpolation matrix to not be numerically positive definite. Many numerical algorithms

for solving positive definite systems integrate a method for verifying numerical positive definite-

ness into the solver. Some examples include MATLAB’s backslash operator and the integrated

MATLAB function chol(). Therefore, if numerical positive definiteness is an accurate predictor

of instability, that factor could be used efficiently in optimization algorithms.

To investigate this possibility, we consider graphs of RMS error plotted against the shape pa-

rameter ε for a given approximation problem, such as Figure 4 and Figure 5. However, the follow-

ing graphs will also indicate whether the interpolation matrix, K from (2), is numerically positive

definite. To identify the numerical positive definiteness of K, the error curve is colored blue when

K is numerically positive definite, and the error curve is colored red when K is not numerically

positive definite as calculated by MATLAB.

Figure 10 shows the RMS error and numerical positive definiteness of the interpolation matrix

for RBF interpolations approximating f(x) = x1 · sin2(x1) · e−x2
2 on [1, 2]× [1, 2] for many values

of ε. The n = 120 randomly distributed data sites used to construct the interpolants are the same

data sites used in producing Figure 5. From Figure 10, it appears that the interpolation matrix K

is numerically positive definite for all shape parameters greater than ε ≈ 2.14, and that K is not

numerically positive definite for shape parameters smaller than ε ≈ 2.14. In this case, it appears

that a stable linear system coincides with a numerically positive definite interpolation matrix.
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Figure 10: Error for RBF interpolation of f(x) = x1 ·sin2(x1)·e−x2
2 on [1, 2]×[1, 2] using Gaussian

RBFs with shape parameter ε and 120 randomly distributed data sites.

Figure 11: Error for RBF interpolation of f(x) = 1
25x2+1

on [−1
2
, 1
2
] using Gaussian RBFs with

shape parameter ε and 80 randomly distributed data sites.

Figure 11 shows the RMS error and numerical positive definiteness of the interpolation matrix

for RBF interpolations approximating f(x) = 1
25x2+1

on [−1
2
, 1
2
] for many values of ε. Gaussian

RBFs with n = 80 randomly distributed data sites are used to construct the interpolants. In this

case, it appears that the interpolation matrix K is numerically positive definite for all shape pa-

rameters greater than ε ≈ 20, and that K is not numerically positive definite for shape parameters

smaller than ε ≈ 20. However, the problem appears to remain stable for shape parameters greater

than ε ≈ 16. The discrepancy is particularly significant in this example, because as ε decreases

from 20 to 16, the RMSE error drops from 10−5 to 10−6.

Figure 12 shows the RMS error and numerical positive definiteness of the interpolation matrix

for RBF interpolations approximating f(x) = x1

x2
· sin(x1) + x3 on [1, 2]× [1, 2]× [1, 2] for many

values of ε. The interpolants are constructed using Gaussian RBFs with n = 80 randomly dis-

tributed data sites. Due to memory constraints, the RMS error for this problem is computed using
(

n
4

)s
evaluation points, uniformly distributed on [1, 2]× [1, 2]× [1, 2]. This problem appears to be

unstable for shape parameters smaller than ε ≈ 0.3. However, the interpolation matrix K remains

numerically positive definite for shape parameters greater than ε ≈ 0.25.
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Figure 12: Error for RBF interpolation of f(x) = x1

x2
· sin(x1) + x3 on [1, 2]× [1, 2]× [1, 2] using

Gaussian RBFs with shape parameter ε and 80 randomly distributed data sites.

One notable observation is that, in each graph, the interpolation matrix K appears to make

only a single transition between being numerically positive definite and not numerically positive

definite. Additionally, this transition occurs near the observed transition from a stable interpolation

problem to an unstable interpolation problem. Numerical positive definiteness of the interpolation

matrix may be useful for efficiently predicting instability.

2.5 Experiment 4: Continuity when Adding New Data Sites

Previous experiments have investigated how changing the shape parameter of RBFs affects the

accuracy of an RBF approximation of a function f using a fixed data set. This section investigates

how adding and removing data sites from an RBF interpolation changes the relation between RMS

error of the interpolant and the shape parameter of the basis functions used. Adding or removing

data sites will add or remove terms from the interpolant and also result in a new set of coefficients

c. To investigate the effects of changing the data set, the following experiments will compute an

RBF interpolation for a given problem using many different shape parameters, then new points are

added to the data set and the process is repeated.

For the following experiments, we are given a function f : Rs → R and a set of data N sites

X = {x1, x2, ..., xN} along with values of f at those data sites. At each step, the first n data sites

from X are used to construct interpolants using many values of ε, and an RMS error is computed for

each interpolant. In this case, the RMS error for the interpolants is computed using N s evaluation

points, uniformly distributed on the given domain.

Figure 13 displays the RMS error for interpolants attempting to approximate f(x) = x1 ·
sin2(x1) · e−x2

2 on [1, 2]× [1, 2] using Gaussian RBFs. The first 8 data sites used are the data sites

shown in Figure 1, and at each step, 4 additional data sites are added at random points in [1, 2] ×
[1, 2]. The colors in Figure 13 represent RMS error. Although this problem becomes unstable as n

increases, the RMS error appears to be continuous with respect to both changes in ε and changes

in the data set as data sites are added or removed.

The predictor methods mentioned in Section 2.1 each have computational cost O(n3). There-

fore, changing n has a significant impact on the efficiency of computing the values of predictors.

Given the apparent continuity of the RMS error with respect to changes in the data set, algorithms
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Figure 13: Error for RBF interpolation of f(x) = x1 ·sin2(x1)·e−x2
2 on [1, 2]×[1, 2] using Gaussian

RBFs with shape parameter ε and n data sites.

attempting to optimize the shape parameter ε may benefit from including steps which use a subset

of the problem’s full data set.

3 Choosing a Kernel

In a typical RBF interpolation, the radial basis functions used are translations of a single radial

kernel K(x, xc) = κ(‖x − xc‖2
). Section 2 explored methods for choosing a shape parameter

to produce minimal error when using a given kernel. As seen in Section 2.2, the choice of basis

functions can have a significant impact on the accuracy and stability of an interpolation. This

section considers the problem of choosing a kernel for use in an RBF interpolation.

The graph in Figure 14 shows the RMS error for RBF interpolations of a single problem us-

ing different kernels for many values of each kernel’s shape parameter ε. The kernels used are

the six kernels defined in Table 1 (in Section 1.2). The RMS error shown results from per-

forming an RBF interpolation using the labeled kernel attempting to approximate the function

f(x) = x1 · sin2(x1) · e−x2
2 on the domain [1, 2]× [1, 2] using shape parameter ε and n = 120 ran-

domly distributed data sites. The accompanying table lists the smallest RMS error found for each

kernel and the corresponding shape parameter.

As can be seen in Figure 14, choosing a good kernel is dependent on the shape parameter(s)

used. Depending on the shape parameters considered, any of these six kernels could produce the

smallest error. Therefore, in order to choose a kernel, a shape parameter for each kernel must also

be chosen.

3.1 Experiment 5: Using Predictors to Select a Kernel

The experiments in this section investigate the potential use of predictor functions for choosing

a kernel. An explanation of the predictor functions used can be found in Section 2.1. The fol-

lowing experiment compares both RMS errors and the values of predictors for an interpolation

problem using each of the six kernels defined in Table 1 (in Section 1.2). Rather than comparing
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Kernel ε When Minimized Smallest RMS Error

Gaussian 9.33 · 10−1 1.065 · 10−8

Multiquadric 5.36 · 10−1 2.589 · 10−7

Inverse Multiquadric 5.36 · 10−1 1.214 · 10−7

C0 Matérn 1.09 · 10−1 3.485 · 10−3

C2 Matérn 8.12 · 10−1 5.151 · 10−4

C4 Matérn 4.74 · 10−2 4.890 · 10−5

Figure 14: Error for RBF interpolation of f(x) = x1 · sin2(x1) · e−x2
2 on the domain [1, 2] × [1, 2]

using the specified basis functions with shape parameter ε and 120 data sites.

the predictors for each kernel at arbitrary shape parameters, this experiment considers the problem

of choosing a shape parameter for each kernel independently using predictors. Predictors are then

used to choose between the optimized interpolants.

First, consider the errors in Figure 14. The smallest RMS error was found using a Gaussian

kernel, but if we restrict our focus to the stable region, then the smallest RMS error for inter-

polants using a Gaussian, multiquadric, or inverse multiquadric kernel is on the order of 10−6. The

experiments in Section 2.4 indicate that restricting an interpolation to the stable region might be

accomplished by checking for positive definiteness of the interpolation matrix K. However, the

multiquadric kernel is not a positive definite function, and so that method cannot be used with a

multiquadric kernel.

Figures 15 - 17 show the LOOCV, GCV, and MLE values associated with the same RBF inter-

polations as Figure 14. Each graph is accompanied by a table noting the shape parameters which

minimize the predictor in question for each kernel, as well as the RMS error for an interpolation

using that shape parameter with the associated kernel. The values of the predictors for each kernel

with its chosen shape parameter are then used to rank the optimized interpolants. The final column

lists the order in which the predictor function ranks the accuracy of the optimized interpolants,

with 1st being the most accurate and 6th being the least accurate. As before, key concerns are the

RMS error for an interpolant using the shape parameter which minimizes the predictor and how

easily that minimum can be found.

Figure 15 shows the LOOCV values for each of the interpolants used to construct Figure 14.
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Kernel ε When Minimized RMS Error Ranked by LOOCV

Gaussian 2.30 3.926 · 10−6 3rd

Multiquadric 1.23 3.332 · 10−6 2nd

Inverse Multiquadric 1.07 1.682 · 10−6 1st

C0 Matérn 1.03 · 10−2 3.495 · 10−3 6th

C2 Matérn 1.03 · 10−2 5.594 · 10−4 5th

C4 Matérn 1.89 · 10−1 5.270 · 10−5 4th

Figure 15: LOOCV values for RBF interpolation of f(x) = x1 · sin2(x1) · e−x2
2 on the domain

[1, 2]× [1, 2] using the specified basis functions with shape parameter ε and 120 data sites.

For the optimized interpolants, LOOCV correctly mirrored their relative accuracy. The smallest

RMS errors found using LOOCV were on the order of 10−6, greater than the best errors possible.

However, each curve reaches its minimum while the problem is stable. In this case, restricting our

focus to the stable region would allow minima to be found easily without excluding the minima

listed in Figure 15.

If any two pairings of basis function and shape parameter are chosen, using LOOCV results in

a correct decision in 63.4% of cases. If we restrict our search to the stable region, the more accurate

pairing is chosen in 93.4% of cases, and the incorrect decisions occur when RMS errors are close.

Within the stable region, the largest impact from an incorrect decision was a 57% increase in RMS

error.

Figure 16 shows the GCV values for each of the interpolants used to construct Figure 14. GCV

correctly identified the inverse multiquadric kernel as the most accurate using the shape parameters

it located. However, it incorrectly indicates that the Gaussian kernel produces a more accurate

interpolant than the multiquadric using the shape parameters identified by GCV, when in fact the

Gaussian kernel produced an error more than twice as large. As with LOOCV, the GCV for each

kernel has a single well defined minimum in the stable region, which also appears to be its global

minimum on ε ∈ [10−2, 102].
If any two pairings of basis function and shape parameter are chosen, using GCV results in a

correct decision in 63.3% of cases. If we restrict our search to the stable region, the more accurate
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Kernel ε When Minimized RMS Error Ranked by GCV

Gaussian 2.83 3.970 · 10−5 2nd

Multiquadric 1.52 1.193 · 10−5 3rd

Inverse Multiquadric 1.32 8.687 · 10−6 1st

C0 Matérn 1.03 · 10−2 3.495 · 10−3 6th

C2 Matérn 1.03 · 10−2 5.594 · 10−4 5th

C4 Matérn 1.89 · 10−1 5.270 · 10−5 4th

Figure 16: GCV values for RBF interpolation of f(x) = x1 · sin2(x1) · e−x2
2 on the domain [1, 2]×

[1, 2] using the specified basis functions with shape parameter ε and 120 data sites.

pairing is chosen in 93% of cases. Within the stable region, the largest impact from an incorrect

decision was a 61% increase in RMS error.

Figure 17 shows the MLE values for each of the interpolants used to construct Figure 14. The

MLE correctly identified the Gaussian kernel as producing the most accurate result. However, the

MLE also incorrectly concluded that the multiquadric produced a more accurate interpolation than

the inverse multiquadric. The errors found using the MLE were smaller than those found using

LOOCV and GCV, and were near the smallest errors possible. However, the minima found for

the Gaussian, multiquadric, and inverse multiquadric kernels are in the unstable region. Therefore,

restricting the search to the stable region would result in larger RMS errors for the kernels which

produced the most accurate interpolants. Not restricting the search would include numerous local

minima, making it difficult to minimize the predictor function.

If any two pairings of basis function and shape parameter are chosen, using MLE results in a

correct decision in 63.7% of cases. If we restrict our search to the stable region, the more accurate

pairing is chosen in 92.9% of cases. Within the stable region, the worst result of an incorrect

decision was a 60% increase in RMS error.

In this experiment, each of the predictor functions correctly identified which kernel produced

the smallest RMS error when using the shape parameters identified by the same predictor function.

Overall, the errors found by using GCV to choose a shape parameter were not as small as those

found using LOOCV or MLE. GCV and MLE were less accurate than LOOCV in selecting a
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Kernel ε When Minimized RMS Error Ranked by MLE

Gaussian 7.58 · 10−1 4.964 · 10−8 1st

Multiquadric 5.00 · 10−1 4.339 · 10−6 2nd

Inverse Multiquadric 4.35 · 10−1 5.283 · 10−7 3rd

C0 Matérn 1.56 · 10−2 3.494 · 10−3 6th

C2 Matérn 6.25 · 10−2 5.543 · 10−4 5th

C4 Matérn 1.77 · 10−1 5.238 · 10−5 4th

Figure 17: MLE values for RBF interpolation of f(x) = x1 · sin2(x1) · e−x2
2 on the domain [1, 2]×

[1, 2] using the specified basis functions with shape parameter ε and 120 data sites.

kernel using those optimized shape parameters. Within the problem’s stable region, each method

was accurate when comparing shape parameters and kernels. Although incorrect decisions were

made, in each case the impact of an incorrect decision was less than an order of magnitude.

4 Conclusions

Implementing radial basis function (RBF) methods requires choosing which basis functions to use,

and many basis functions are defined by a shape parameter which must also be chosen. The choices

made have a tremendous impact on the accuracy of the results and the numerical stability of the

method used. The experimental results in this work indicate that leave-one-out cross validation

(LOOCV), generalized cross validation (GCV), and maximum likelihood estimation (MLE) may

be reasonable methods for selecting both basis functions and shape parameters. However, LOOCV

and GCV are not accurate when the problem is unstable. Section 2.4 suggests an efficient method

for avoiding such instability for interpolations using a numerically positive definite interpolation

matrix in the case of LOOCV and GCV. Further, Figure 13 suggests that it may be possible to use

a small data set to choose the shape parameter for a superset of that data.

Although MLE often produced the most accurate results, its behavior in unstable regions does

not mirror the stability of the underlying interpolant. Without a method to avoid unstable behavior

in the MLE, its improved accuracy cannot be achieved without risking inaccurate results caused
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by potential instability.
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