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Abstract

In this paper, we address the problem of automatically
generating human-like descriptions for unseen images,
given a collection of images and their corresponding
human-generated descriptions. Previous attempts for
this task mostly rely on visual clues and corpus statis-
tics, but do not take much advantage of the semantic in-
formation inherent in the available image descriptions.
Here, we present a generic method which benefits from
all these three sources (i.e. visual clues, corpus statis-
tics and available descriptions) simultaneously, and is
capable of constructing novel descriptions. Our ap-
proach works on syntactically and linguistically moti-
vated phrases extracted from the human descriptions.
Experimental evaluations demonstrate that our formu-
lation mostly generates lucid and semantically correct
descriptions, and significantly outperforms the previous
methods on automatic evaluation metrics. One of the
significant advantages of our approach is that we can
generate multiple interesting descriptions for an image.
Unlike any previous work, we also test the applicabil-
ity of our method on a large dataset containing complex
images with rich descriptions.

1 Introduction

An image can be described either by a set of keywords (Guil-
laumin et al. 2009; Feng , Manmatha, and Lavrenko 2004;
Makadia, Pavlovic, and Kumar 2010), or by a higher level
structure such as a phrase (Sadeghi and Farhadi 2011) or
sentence (Aker and Gaizauskas 2010; Kulkarni et al. 2011;
Yang et al. 2011). The keyword based approach is inspired
by the web search engines but has its own limitations, e.g.
an image tagged with {black, car, dog} does not convey the
complete meaning (whether it has a black car and dog, or a
car and a black dog, and what are their state(s) and relative
position); whereas, the sentence “a dog is sitting on a black
car” implicitly encodes the relationships between words.

Previous attempts for generating descriptions for unseen
images (Kulkarni et al. 2011; Yang et al. 2011; Li et al. 2011;
Farhadi et al. 2010; Ordonez, Kulkarni, and Berg 2011) rely
mostly on few object detectors (a detector locates in an im-
age one or more instances of a specific semantic category),
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§ “This is a picture of one tree, one road and one

person. The rusty tree is under the red road. The

colorful person is near the rusty tree, and under

the road.” (Kulkarni et al. 2011)

§ “The person is showing the bird on the

street.” (Yang et al. 2011)

§ “Black women hanging from a black tree. Col-

ored man in the tree.” (Li et al. 2011)

§ “An American eagle is perching on a thick

rope.” (Ours)

Figure 1: Descriptions generated by four different ap-
proaches for an example image from the UIUC Pascal sen-
tence dataset.

classifiers and corpus statistics, but do not utilize the se-
mantic information encoded in available descriptions of im-
ages. Either they use these descriptions to restrict the set of
prepositions/verbs (Kulkarni et al. 2011; Yang et al. 2011;
Li et al. 2011; Yao et al. 2008), or pick one or more com-
plete sentences and transfer them to a test image unal-
tered (Farhadi et al. 2010; Ordonez, Kulkarni, and Berg
2011). While the former may result in quite verbose and
non-humanlike descriptions, in the latter it is very unlikely
that a retrieved sentence would be as descriptive of a partic-
ular image as a generated one (Kulkarni et al. 2011). This
is because a retrieved sentence is constrained in terms of
objects, attributes and spatial relationship between objects;
whereas a generated sentence can more closely associate the
semantics relevant to a given image (Figure 1).

Image descriptions not only contain information about the
different objects present in an image, but also tell about their
states and spatial relationships. Even for complex images,
this information can be easily extracted, hence leveraging
the gap between visual perception and semantic grounding.
With this motivation, we present a generative approach that
gives emphasis to textual information rather than just relying
on computer vision techniques. Instead of using object de-
tectors, we estimate the content of a new image based on its
similarity with available images. To minimize the impact of
encountering noisy and uncertain visual inputs, we extract
syntactically motivated patterns from known descriptions
and use only those for composing new descriptions. Extract-
ing dependency patterns from descriptions rather than us-
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(1) Input Image (2) Neighbouring Images with

Extracted Phrases

(3) Triple Selection and Sentence Generation

Figure 2: Overview of our approach for an example image from the Pascal dataset. (1) Given an unseen image, (2) find K
images most similar to it from the training images, and using the phrases extracted from their descriptions, (3) generate a
ranked list of triples which is then used to compose description for the new image.

ing it as an n-gram language model is inspired by Aker and
Gaizauskas (2010). These patterns have a predefined struc-
ture (e.g. (subject, verb), (attribute, subject), etc), and
can easily be mapped to generate a syntactically and gram-
matically correct description.

The main strength of our approach is that it works on these
patterns which carry a bigger chunk of information, com-
pared to predicting individual bits such as objects, attributes,
verb, preposition, etc. in a piece-wise manner and then com-
bining them at a later stage as done by previous methods.

To summarize, our contributions are: (i) A novel approach
for generating human-like descriptions for images that effec-
tively uses available textual information. Instead of relying
on trained object detectors or classifiers, our method cap-
tures the semantics of an image using the information en-
coded in its description. (ii) Extensive evaluations to test the
applicability of our model on the IAPR TC-12 benchmark1

(to our best knowledge, this is the first study devoted to com-
pose descriptions for complex images with rich and com-
plicated descriptions). (iii) Producing state-of-the-art perfor-
mance on the Pascal sentence data set2, and setting a base-
line for the IAPR TC-12 benchmark.

2 Related Work

Generating natural language descriptions for images is an
emerging area of research with few attempts directly ad-
dressing this problem. Most of these approaches (Kulkarni et
al. 2011; Yang et al. 2011; Li et al. 2011; Ordonez, Kulkarni,
and Berg 2011; Farhadi et al. 2010) rely on trained detectors
and classifiers to determine the content of an image. Some
of these approaches (Kulkarni et al. 2011; Yang et al. 2011;
Li et al. 2011) explore the use of corpus to smooth the er-
rors in the detections. In Yang et al. (2011), these detec-
tions are used as parameters of an HMM where the hidden
nodes are related to the sentence structure and the emis-
sions are related to the image detections. In Kulkarni et

1http://www.imageclef.org/photodata
2http://vision.cs.uiuc.edu/pascal-sentences/

al. (2011), a CRF-based model; whose nodes correspond
to image entities (such as objects, attributes and preposi-
tions); is used to predict the best labelling for an image. For
sentence generation, either templates (Kulkarni et al. 2011;
Yang et al. 2011; Yao et al. 2008) are used, or complete sen-
tences from the available descriptions (Farhadi et al. 2010;
Ordonez, Kulkarni, and Berg 2011) are transferred.

Aker and Gaizauskas (2010) use GPS meta data to access
web-documents relevant to an image, and generate image
description by summarizing these documents. But their do-
main is limited to static objects such as buildings and moun-
tains, and cannot be applied to dynamic objects in daily life
like people, cars, etc. In Feng and Lapata (2010), assum-
ing that a relevant document is available for a given image,
the output (keywords) of an image annotation model is com-
bined with the document properties to generate captions for
images in the news domain.

Conceptually, our work closely relates to Sadeghi and
Farhadi (2011). They hypothesize that a visual phrase (e.g.
“person riding horse”) is more meaningful than individual
objects. To detect phrases, they use specific phrase detectors
trained on few hundreds of images. In contrast, we extract
this information from image descriptions. Also, we work on
significantly larger number of phrases compared to them.

3 Our Approach

Given a dataset of images and their corresponding human-
generated descriptions, our task is to describe an unseen im-
age. We extract linguistically motivated phrases from these
descriptions; and given a new image, the phrases present in
its neighbouring images are ranked based on image simi-
larity. These are then integrated to get triples of the form
( ((attribute1, object1), verb), (verb, prep, (attribute2,
object2)), (object1, prep, object2) ), which are used for
sentence generation (Figure 2).

3.1 Phrase Extraction

The key component of our approach is to effectively use the
information in the ground-truth descriptions, and for that we
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Sentence Phrases w/o Synonym Phrases w/ Synonym

A black and white
pug is looking at the
camera.

(

pug
(subj)

)

,
(

camera
(obj)

)

,

(

pug
(subj)

, look
(verb)

)

,

(

black
(attr)

, pug
(subj)

)

,

(

white
(attr)

, pug
(subj)

)

,

(

look
(verb)

, at
(prep)

, camera
(obj)

)

(

dog
(subj)

)

,
(

camera
(obj)

)

,

(

dog
(subj)

, look
(verb)

)

,

(

black
(attr)

, dog
(subj)

)

,

(

white
(attr)

, dog
(subj)

)

,

(

look
(verb)

, at
(prep)

, camera
(obj)

)

Table 1: Example sentence with extracted phrases. In “Phrases w/ Synonym”, ‘pug’ is replaced by its most frequently used form
‘dog’ (determined using WordNet).

need to extract relation tuples from text automatically. For
this purpose, we process the descriptions using the Stan-
ford CoreNLP toolkit3. We use “collapsed-ccprocessed-
dependencies” which is intended to be more useful for rela-
tion extraction task (Marneffe and Manning 2008), as depen-
dencies involving prepositions and conjuncts are collapsed
to reflect direct relation between content words.

We extract syntactically motivated phrases from human-
generated image descriptions, and map each sentence
to a list of phrases like (subject, verb), (object, verb),
(verb, prep, object), etc. We look at an image as a
collection of such phrases in the visual domain, and
hypothesize that similar appearing images have iden-
tical phrases. Previous approaches obtain relations of
the form (object, action, scene) (Farhadi et al. 2010),
(object1, object2, verb, scene, prep) (Yang et al. 2011), or
((attribute1, object1), prep, (attribute2, object2)) (Kulka-
rni et al. 2011) by combining the outputs of individual
detectors with some heuristic and/or corpus statistics to pre-
dict the involved action/preposition(s). But such predictions
can be quite noisy (e.g., (person, under, road) (Kulkarni
et al. 2011)), resulting in absurd sentences. In contrast, our
phrases implicitly encode ordering preference information,
and hence generate semantically meaningful descriptions.

In practice, we extract 9 distinct types of phrases
from human-generated descriptions : (subject), (object),
(subject, verb), (object, verb), (subject, prep, object),
(object, prep, object), (attribute, subject), (attribute,
object), (verb, prep, object). Each noun (subject/object) is
expanded up to at most 3 hyponym levels using its corre-
sponding WordNet synsets. To explore the possibilities of
generating varied and interesting descriptions, we also ex-
periment without considering synonyms (e.g. Figure 3, row
3). Table 1 shows phrases extracted from a sample sentence.

3.2 Image Features

We assign each image a unique signature using a set of
global (colour, texture and scene) and local (shape) features
similar to Makadia, Pavlovic, and Kumar (2010) and Guil-
laumin et al. (2009). Each feature is represented by a multi-
dimensional vector. The colour features include histograms
in the RGB and HSV colourspaces. While RGB is the stan-
dard colourspace used in the digital displays, HSV encodes
some visual properties important for humans such as bright-
ness and colour saturation. To extract texture properties, we

3http://nlp.stanford.edu/software/corenlp.shtml

use Gabor and Haar descriptors. For scene characteristics,
we use the GIST feature. This feature entails a set of percep-
tual properties such as roughness, ruggedness, naturalness,
etc. Finally, for shape we use the SIFT descriptors. These are
well-known for extracting shape properties that are invariant
to object size, scale, translation, rotation and illumination.
In order to extract some information about the spatial layout
of an image, we also compute all but the GIST features over
3 equal horizontal as well as vertical partitions of an image,
which are then concatenated into a single vector. We found
that such features were useful in distinguishing between im-
ages which differ in their spatial layout (e.g., the images in
the first and third column of Figure 3). To compute distance
between two feature vectors, we use L1 distance for colour,
L2 for texture and scene, and χ2 for shape features.

3.3 Google Counts

In data-driven learning techniques, text corpus is employed
to estimate the statistical behaviour of different n-grams. In
our case, the number and diversity of phrases is huge, and it
is unlikely to predict their general behaviour using only the
available descriptions. To address this, we use the number of
approximate search results reported by Google for an exact
match query on each phrase similar to Kulkarni et al. (2011).

3.4 Model for Predicting Phrase Relevance

Let T be the set of images with their descriptions and Y be
the set of distinct phrases extracted from these descriptions
(Section 3.1). Each image J ∈ T is represented by a set
of feature vectors {f

1,J
, . . . , f

n,J
} (Section 3.2), and associ-

ated with phrases YJ ⊂ Y computed from its description.

Given any test image I , our goal is to determine the
joint probability P (yi, I) of associating a phrase yi ∈ Y ,
∀i ∈ {1, . . . , |Y|} with it. As per our hypothesis, an image
inherits the characteristics of images similar to it. This simi-
larity is defined based on distance of I from any other image
J in the feature space, which is calculated as

D
I,J

= w1d1I,J + . . .+ wndnI,J = w · dI,J , (1)

where D
I,J

is the distance between image I and J ,
d

1I,J , . . . , dnI,J are real-valued base distances between the
corresponding features of both images (using distance func-
tions discussed in Section 3.2), and w1, . . . , wn are the (pos-
itive) real-valued weights in their linear combination.

If T K
I ⊂ T is the set of K ≤ |T | nearest neighbours of I

obtained using Eq. 1, we define P (yi, I) as (Jeon, Lavrenko,
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Table 2: An illustration of the Phrase Integration algorithm.

and Manmatha 2003):

P (yi, I) =
∑

J∈T K
I

PT (J)PF (I|J)PY(yi|J). (2)

Our prediction model constitutes of three parts: PT , PF and
PY . PT (J) denotes the probability of selecting some image
J ∈ T K

I . We model it as a uniform prior, with PT (J) =
1
K

.
PF (I|J) is the density function that gives the likelihood of
generating image I given its neighbouring image J . This is
defined as a function of distance between the two images:

PF (I|J) =
exp(−D

I,J
)

∑

J ′∈T K
I

exp(−D
I,J′

)
. (3)

Such a definition of image similarity provides two advan-
tages: first it smoothly varies with the distance; and second,
it helps in optimizing the weight vector w (Section 3.5).
In our experiments, we also tried other similarity measures
(such as (1−D

I,J
)) but did not achieve any improvements.

PY(yi|J) is formulated as a multiple-Bernoulli distribu-
tion (Feng , Manmatha, and Lavrenko 2004) as

PY(yi|J) =
µiδyi,J +Ni

µi +N
. (4)

Here, δyi,J = 1 if the phrase yi is present among the phrases
associated with J and zero otherwise, Ni is the Google count
of the phrase yi, N is the sum of Google counts of all phrases
of the same type as that of yi (Section 3.3), and µi > 0
is a smoothing parameter. For µi ≪ Ni, PY(yi|J) ≈ Ni

N
and hence depends only on the Google counts. Whereas, for
µi ≫ N , PY(yi|J) ≈ δyi,J which means that only the infor-
mation in the image descriptions is relied upon. We will dis-
cuss in Section 3.5 how to optimally determine µi to make
the best use of both these sources of textual information.

3.5 Parameter Learning

The two types of parameters in our phrase prediction model
are feature weights wk’s (Eq. 1) and smoothing weights µl’s
(Eq. 4). Given an image I with its computed phrases YI ⊂Y ,
we want to learn these parameters such that (i) the probabil-
ity of predicting any phrase not in YI should be minimized,
and (ii) the probability of predicting phrases present in YI

should be greater than any other phrase. With this aim, we
define the error function as follows:

e =
∑

I,yj

P (yj , I)+λ
∑

(I,yj ,yi)∈M

(P (yj , I)−P (yi, I)). (5)

Here, yi ∈ YI , yj ∈ Y \ YI , M is the set of all triplets of the
form ( I, yj , yi ) which violate the second condition stated
above, and λ > 0 takes care of the trade-off between the two
competing error terms. To estimate the parameters (i.e., w
and µl’s), we use a gradient descent method. Note that the set
M is not fixed and may change at each iteration. In practice,
we determine the parameters w and µl’s ∀l ∈ {1, . . . , |Y|}
in an alternating manner.

3.6 Phrase Integration

Using Eq. 2, we get probability scores for all the phrases
in Y for a given test image I . We integrate these phrases
to get triples of the form t= { ((attribute1, object1), verb),
(verb, prep, (attribute2, object2)), (object1, prep, object2
) } (Table 2). Score of each triple is calculated as

tscore =
∏

yi∈St

P (yi, I). (6)

where St = { (object1), (attribute1, object1), (object1,
verb), (verb, prep, object2), (object2), (attribute2,
object2), (object1, prep, object2) }. During integration,
we look for matching elements in different phrases, as is ap-
parent by the indices; e.g. (object1), (attribute1, object1),
(object1, verb), and (object1, prep, object2) have the same
object. This restricts the number of feasible triples. These
triples are then used for sentence generation. Note that the
distinction between object and subject (Section 3.1) will
make no difference here; but during generation they are
treated separately.

3.7 Sentence Generation

The output of our phrase integration step is a ranked list of
triples. One major challenge in generation is to determine
the appropriate content. While Yang et al. (2011) perform
content selection to deal with noisy inputs from detectors,
Li et al. (2011) use n-gram frequencies for correct ordering
preference of words. In our approach, a triple consists of the
phrases extracted from the human-generated descriptions.
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Hence all such phrases are likely to be clean and relevant,
and so we require no explicit content selection or word re-
ordering. Once we have determined the content of our sen-
tences (i.e. triple), the task of generation is to frame it into a
grammatical form and output the result.

For the Pascal dataset, we use the triple with the high-
est score (Eq. 6) for generation. As the available descrip-
tions for IAPR TC-12 images contain multiple sentences,
we pick the top 3 triples; and instead of generating a sepa-
rate sentence for each triple, we aggregate them by applying
Syntactic Aggregation (Reape and Mellish 1999) to enhance
text fluency and readability. For aggregation, the following
two rules are used: (a) the subject grouping rule, and (b) the
predicate grouping rule. The descriptions shown in Figure 4
are generated by applying aggregation. The description gen-
erated without aggregation for the first image will be “In
this image, a dark-skinned person is climbing with a pick-
axis. The dark-skinned person is posing with a green chile.
A green garden is surrounded with a striped chair.” Aggre-
gation combines the actions associated with ‘dark-skinned
person’ in a single sentence, hence making the description
more readable. (The datasets are discussed in Section 4.1.)

For Linguistic Realisation, we use SimpleNLG (Gatt and
Reiter 2009). It is a surface realizer for a simple grammar
and has significant coverage of English syntax and morphol-
ogy. As our triples have a syntactically and linguistically
motivated structure, their mapping to a sentence is straight-
forward using SimpeNLG. It offers several advantages for
our task. These include setting various features such as tense
(verb), voice (sentence), aspect (verb), etc. Though the sen-
tences generated in our case follow a template-like struc-
ture, use of SimpleNLG saves the manual effort of writing
individual templates. Note that our sentence generation ap-
proach is domain independent unlike Yao et al. (2008) which
requires domain specific hand-written grammar rules.

4 Experiments

4.1 Datasets

We use the UIUC Pascal Sentence dataset and the IAPR TC-
12 Benchmark to test the performance of our approach. The
UIUC Pascal sentence dataset (Rashtchian et al. 2010) was
first used by Farhadi et al. (2010) for the image descrip-
tion task, and since then it has been used as a test-bed by
most of the previous methods addressing the same problem.
It comprises of 1, 000 images each containing 5 independent
human-generated sentences.

The IAPR TC-12 benchmark was first published for
cross-language retrieval by Grubinger et al. (2006). It has
20, 000 images each captioned with free-flowing text of up
to 5 sentences. Contrary to the Pascal dataset, it has varied
images with large number of distinct object categories and
complicated descriptions which makes it an extremely chal-
lenging dataset for our task.

4.2 Experimental Details

Similar to Yang et al. (2011), we partition the dataset into
90% training and 10% testing set to determine the param-
eters (for each dataset). This is repeated to generate results

Dataset B-1 B-2 B-3 Rouge-1

Pascal w/ syn. 0.41 0.11 0.02 0.28

Pascal w/o syn. 0.36 0.09 0.01 0.21

Pascal Human (std.) 0.64 0.42 0.24 0.50

IAPR TC-12 w/ syn. 0.21 0.07 0.01 0.14

IAPR TC-12 w/o syn 0.15 0.06 0.01 0.11

Table 3: Our automatic evaluation results for sentence gen-
eration. Higher score means better performance. B-n means
n-gram BLEU score.

for all the images. Note that Kulkarni et al. (2011) use a dif-
ferent partitioning. They rely on object detectors which are
trained using thousands of images, whereas our method uses
only the available data.

For each dataset, we extract all possible phrases from the
available descriptions and perform two experiments. In the
first experiment, we compute triples from all these phrases
and use them to generate image descriptions. In the second
experiment, each object/subject in the above phrases is re-
placed by its synonym (the most frequently used form of the
word; determined using WordNet synsets). These phrases
are then used to obtain triples and hence image descriptions.
Table 1 shows phrases extracted from a sample description.
For Pascal dataset, we extract 12, 865 distinct phrases. After
considering synonyms, these reduce to 10, 429. Similarly,
for IAPR TC-12 dataset, 38, 123 phrases are extracted which
map to 29, 985 phrases after using synonyms.

4.3 Evaluation

Automatic Evaluation BLEU (Papineni et al. 2002) and
Rouge (Lin and Hovy 2008) are popular metrics in the field
of machine translation and text summarization respectively.
These compare system generated sentences w.r.t. human
generated sentences. As our task can be viewed as summa-
rizing an image and translating it into text, we use these met-
rics to evaluate our approach. We consider the BLEU n-gram
(n=1,2,3) and Rouge-1 precision scores because the descrip-
tions generated are short. Since there is a large scope of vari-
ation in description of the same image by different people as
compared to translating or summarizing text, these two met-
rics could penalize many correctly generated descriptions.
However, we report our results on these metrics as a stan-
dard evaluation method in Table 3. For Pascal dataset, we
also show the average BLEU and Rouge scores using the
available human generated descriptions for each image in a
leave-one-out manner.

Human Evaluation To quantify the aspects that are not
addressed by automatic evaluation metrics, human evalua-
tion becomes necessary for our problem. We collect human
judgements on 100 and 500 images from the Pascal and
IAPR TC-12 datasets respectively. Two aspects are verified
in human evaluation : Readability of descriptions and Rel-
evance of (generated) text with given image. Human eval-
uators assign a score on a likert scale of {1, 2, 3} for each
aspect per image, where 1 is good, 2 is ok and 3 is bad. We
adopt the definition and guideline used by Li et al. (2011):
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A car with a canoe on top is

parked on the street near a

moped.

A brown cat sleeping on a

sofa.

A man and woman are pos-

ing for the camera.

A man walking a dog on the

beach near large waves.

A black and white photo of a

glass bottle of Coca Cola.

A black ferrari is parked in

front of a green tree.

An adult hound is laying on

an orange couch.

A blond woman is posing

with an elvis impersonator.

An osprey is flying over a

dirty water.

A motor racer is speeding

through a splash mud.

A sporty car is parked on a

concrete driveway.

A sweet cat is curling on a

pink blanket.

An orange fixture is hanging

in a messy kitchen.

A water cow is grazing along

a roadside.

A motor person is covering in

a splash mud.

Figure 3: Example images from the Pascal dataset alongwith their descriptions. The descriptions in the second row are (one of
the five) human-generated descriptions, in the third row are those generated by our method without considering synonyms, and
those in the fourth row after considering synonyms. The ones in “italics” are bad results as judged by human evaluators.

Dataset Readability Relevance

Pascal w/ syn. 1.19 1.57

Pascal w/o syn. 1.24 1.76

IAPR TC-12 w/ syn. 1.38 2.32

IAPR TC-12 w/o syn 1.41 2.55

Table 4: Our human evaluation results for sentence genera-
tion. Lower score means better performance.

Readability: How grammatically correct is the generated
sentence?

(1) Mostly perfect English phrase or sentence.
(2) There are some errors, but mostly comprehensible.
(3) Terrible.

Relevance: How relevant is the generated description to
the given image?

(1) Very relevant.
(2) Reasonably relevant.
(3) Totally off.

Table 4 summarizes our human evaluation results. The
scores given by two human evaluators were identical on 82%
and 64% of the instances on the two test sets respectively.

4.4 Comparison with Previous Methods

To compare our approach with Kulkarni et al. (2011),
we generate triples of the form ((attribute1, object1),
prep, (attribute2, object2)) following their protocol (i.e.,
by considering same sets of objects, attributes and prepo-
sitions). Similarly, triples of the form ((object1, verb),
(verb, prep, object2), (object1, prep, object2)) are gener-
ated to compare with Yang et al. (2011). Results of compar-
ison (using automatic evaluation) are shown in Table 5.

4.5 Discussion

In our experiments (Table 3, Table 4), we found that con-
sidering synonyms always perform better than without syn-
onyms. A possible reason is using synonyms reduces the
number of distinct phrases, and hence improves learning.
As evident in Table 5, our method significantly outperforms

Approach B-1 B-2 B-3 Rouge-1

BabyTalk 0.30 - - -

Ours 0.47 0.19 0.06 0.33

CorpusGuided 0.41 0.13 0.03 0.31

Ours 0.54 0.23 0.07 0.41

Table 5: Comparison of our approach with BabyTalk (Kulka-
rni et al. 2011) and CorpusGuided (Yang et al. 2011) follow-
ing their protocol. B-n means n-gram BLEU score.

In this image, a dark-skinned person is climb-

ing with a pick-axis and posing with a green

chile. A green garden is surrounded with a

striped chair.

In this image, a king-size bed is made with

a white bedcover. A black cabinet is made

with a brown telephone and standing on left.

Figure 4: Example images from IAPR TC-12 dataset, and
their description generated by our method (w/o synonyms).

Yang et al. (2011) in terms of automatic evaluation mea-
sures 4. Though we cannot compare our approach directly
with Kulkarni et al. (2011) as they generate multiple sen-
tences, we still report our scores. Interestingly, even after
considering all possible phrases with synonyms (Table 3),
we score better or comparable to previous methods. This is
because the phrases are extracted from the available descrip-
tions, hence resulting in close-to human descriptions. As the
triples used for generation have a syntactically well-defined
structure, our sentences generated are mostly grammatically
correct. This is the reason why we get high “readability”
scores when judged by human evaluators (Table 4).

Figure 3 and Figure 4 show examples of image descrip-
tions generated by our approach on Pascal and IAPR TC-12
datasets respectively. Note that by considering all phrases
(without using synonyms), we are able to generate interest-

4Statistically significant at a level of p < 0.0001.
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(1) A white toddler is playing with a
condiment package.

(2) A wide-eyed baby is holding in a
highchair.

(3) A female child is holding in a sling.

Figure 5: Illustration of generating multiple interesting de-
scriptions for an example image from the Pascal dataset.

graffiti-covered

bus

person pose sit on sofa aeroplane at

airport

Figure 6: Images annotated with four phrases: (i) “graffiti-
covered bus” (attribute1, subject1), (ii) “person pose”
(subject1, verb), (iii) “sit on sofa” (verb, prep, object2),
and (iv) “aeroplane at airport” (subject1, prep, object2).

ing words like “ferrari”, “hound”, “couch”, “cabinet”, etc.
Interesting Descriptions One of the potential applications
of our approach is that we can generate multiple interesting
descriptions for an image (Figure 5), which none of the pre-
vious approaches has focussed on.
Phrase Annotation Another interesting application of our
approach is phrase annotation; i.e., we can annotate images
with phrase(s) instead of just keywords (Makadia, Pavlovic,
and Kumar 2010; Guillaumin et al. 2009). This can signifi-
cantly improve the quality of images retrieved (Figure 6).

5 Conclusion

We proposed a novel approach for generating relevant, flu-
ent and human-like descriptions for images without rely-
ing on any object detectors, classifiers, hand-written rules or
heuristics. Even with simple Computer Vision and Machine
Learning techniques, we achieved significantly better results
than state-of-the-art by analyzing and efficiently extracting
the semantic information encoded in the image descriptions.
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