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Abstract—Internet of Things (IoT) systems produce large
amounts of raw data in the form of log files. This raw data
must then be processed to extract useful information. Machine
Learning (ML) has proved to be an efficient technique for such
tasks, but there are many different ML algorithms available,
each suited to different types of scenarios. In this work, we
compare the performance of 22 state-of-the-art supervised ML
classification algorithms on different IoT datasets, when applied
to the problem of anomaly detection. Our results show that
there is no dominant solution, and that for each scenario, several
candidate techniques perform similarly. Based on our results and
a characterization of our datasets, we propose a recommendation
framework which guides practitioners towards the subset of the
22 ML algorithms which is likely to perform best on their data.

I. INTRODUCTION

The Internet has always been in evolution, from the World

Wide Web, going through the Web 2.0 and branching into the

Internet of Things (IoT) [1]. The first step of this evolution

was characterized by linked HTML static documents. The

novelty in the second part was a two-way communication,

enabling users participation and the opportunity to interact and

collaborate through blogs, social networking, wikis, among

others. IoT is an Internet-based paradigm that will allow any

common object the ability to sense and interact with one

another or with services to accomplish an objective.

According to [2], [3] IoT was born right after mobile phones

got the ability to sense and interact with one another, turning

them into smartphones, and its explosive growth after 2007.

Three years later in 2010, the number of connected devices to

the Internet exceeded the current global population for the first

time. On the one hand, [2] also forecast that by 2020 there

will be an average of 6.58 connected devices per person or

50 billion devices around the globe. On the other hand, IoT

data will reach 500 zettabytes by 2019 [4]. Consequently, IoT

is gradually impacting every business area and industry field

[5].

Due to the speed with which data is being generated,

it is important to analyze it and extract useful information

efficiently. For this, we used machine learning (ML), which

is an efficient way to process great amounts of data. There

are many different ML algorithms available, each suited to

different types of scenarios. We focused on those that are able

to distinguish between two categories - binary classification

- which allows for anomaly detection. Furthermore, there are

many different ML algorithms that can do anomaly detection,

so the real question is, what technique to use in our data to

extract useful information.

We analyzed 22 state-of-the-art supervised ML classification

algorithms on different IoT smart-building scenarios. Our aim

is to provide a recommendation framework which guides

practitioners who have little or no ML expertise towards the

subset of the 22 ML algorithms which is likely to perform

best on their data.

The rest of the paper is organized as follows. In section II,

we review the work related to the comparison of the perfor-

mance of different ML algorithms. In section III we describe

how we modified real-world smart building datasets to inject

anomalies, and also our experimental scenario. Section IV

details our results, and we discuss in section V how our

recommendations depend on the characteristics of the data,

and some possible future directions for this work.

II. RELATED WORK

There are different studies about how to measure and

compare the performance of ML classification algorithms.

In [6], the authors are comparing the area under the ROC

(Receiver Operating Characteristics) curve or auROC with

accuracy. Their motivation was to give a formal argument to

why auROC should be preferred over accuracy. Through their

results, they confirm empirically that auROC is statistically

consistent and more discriminating measure than accuracy.

A similar analysis is carried out in [7], where the authors

compare the relationship between Precision-Recall (P-R) and

auROC curves. They talk about what cases auROC and P-R

curves are good for. Also, they mention why using accuracy

results can be misleading. Their results, among other things,

showed that there is an equivalence between the auROC and P-

R curves, where a curve dominates in auROC space if and only

if it dominates in P-R space, which means that auROC can be

represented in a P-R curve, but not the other way around.

In [8], the authors assess several metrics for the quality of

classification performance. They made families of metrics by

clustering the relationships between measures. Their results

showed that auROC is genuinely different and a compact

measure. While in [9], although they are using auROC as one

of several metrics, they do not use it as the main decision-

making metric. Instead, they used Classification Rate and

Cohens Kappa to make their decision.978-1-5386-4980-0/19/$31.00 c© 2019 European Union



In [10], the authors do not consider one metric to choose

the best ML algorithm for a scenario, what they do is to

consider several metrics and model the output as a multiple

criteria decision making. Among the metrics they used are:

accuracy, true positive rate, true negative rate, mean absolute

error (MAE), precision, F-measure, auROC, kappa statistic,

and computation time.

The research done in [11] was to assess the impact of

training ML with imbalanced datasets (DS), and all their

results were compared with the auROC metric.

In terms of anomaly detection, in [12] the authors analyzed

an autonomous vehicle system to detect anomalies, with the

help of a ML algorithm, to ensure the secure control between

vehicles and instruments. Their results showed that a neighbor

comparison and historical comparison are useful to predict

anomalies within their proposed algorithm. Moreover, in [13]

the authors evaluated some techniques suitable to identify real-

time anomalies within an IoT network with the aim of offering

practitioners a reference about when such techniques might be

more appropriate.

III. METHODOLOGY

In this section we are going to describe our approach, specif-

ically the experimental environment setup, the evaluation, the

DS characteristics and the rules to inject anomalies, as well as

the framework to choose a subset of the ML algorithms that

is likely to perform best (in terms of anomaly detection) on

the data.

A. Experimental environment setup

All the experiments were performed in an isolated test

environment so, the server resources were fully dedicated to

the experiments. This environment was composed of a server

Dell Precision T5500 with an: Intel Xeon E5-620 CPU at

2.40GHz; 4 cores; 8 siblings, 25GB of RAM, 500GB of HDD

at 7200 rpm; 6Gb/s, GPU NVIDIA GF108GL [Quadro 600];

clock at 33MHz; width: 64 bits; size=128, running Linux

Ubuntu 18.04 LTS, and Python 3.6. The library installation

was made with command pip3 install packageName --user.

Also, the resources (time, CPU, RAM) measurements were

made with standard Linux command lines.

B. Evaluation

We evaluated all the 22 ML supervised classification al-

gorithms provides by the scikit-learn python library [14],

using their default settings [6], [9], [15], [16]. The only

exception was the NearestNeighbors.radiusNeighborsClassifier

algorithm, where we used the outlier label=1 option. We

selected this library because it is freely accessible and highly-

used in the industry.

To try to improve the classification process, or reduce the

resources consumption, like CPU, RAM, and execution time.

We used two feature selection (FS): low variance (LV), and

tree-based (TB), from the same library as the ML, and same

settings (default). It is worth mentioning that, because of the

Table I
TRACKING

DS Records Anomalies Attributes LV TB
CMU 31,780 8.48% 34 33 8
NCSU 267,685 8.29% 4 - 2
CU 623,207 32.51% 11 - -

FS nature, they did not always produce an output as can be

seen in Tables I and II.

The metric to compare the classification performance from

the different algorithms is the area under the Receiver Op-

erating Characteristic (ROC) curve or auROC. This metric

provides a single measure of a ML’s performance [6], [8].

C. Datasets characteristics and anomalies injection

As we were unable to find smart building datasets with

anomalies (binary DS), we analyzed real-world DS to create

comprehensive rules that can mimic the behavior of a real

scenario and thus add anomalies. We split the DS in two

categories:

1) Tracking: These datasets are characterized by the posi-

tion, recorded by sensors, of users in a place. The specifics of

each DS like the number of records, anomalies, attributes, and

the attributes reduction after the FS, can be found in Table I.

cmu/supermarket [17]: It has 34 attributes, of which 30 are

magnetometers readings, the other ones are a magnetometer

ID and the X , Y , and Z coordinates.

The injection of anomalies is considered when a user has a

position with a negative X or Z coordinates.

ncsu/mobilitymodels [18]: The DS contains five folders

(two university campi [NCSU and KAIST], New York City,

Disney World [Orlando], and North Carolina state fair), inside

these folders are several files that track specific users at that

site, e.g. for the kaist site we have 92 files that represent

92 users. These files are composed of three attributes, a

timestamp, and X , Y coordinates.

To inject an anomaly, we are considering the identification

(ID) of the user to be a prime number and the user must have

negative X and Y coordinates. In the case of New York, we are

considering the not prime numbers and the same coordinates.

Because this is a classification task, we are not going to use

the time-series column of this DS.

cu/rssi [19]: This DS consists of three files, each one

containing 11 attributes, the first two attributes are IDs, the

third one can be either dev1 or dev2, the fourth one can be

either down, left, right, up or 0.8, 1.5, 2.5, 3.5, 3.8, 23, the

fifth could be another identifier and can be either something

between 10 - 20 or be -16 or 16, the remaining six are the

measurements of the sensors.

After analyzing the data, we consider it an anomaly when

the position in column four is up and the readings from the

sensors are negative, from column seven to 11.

2) Coexisting Time: In these DS, a data point is two users in

the same space with a duration. The specifics of each DS like

the number of records, anomalies, attributes, and the attributes

reduction after the FS, can be found in Table II.



upmc/content [20]: Different folders have several files

which represent, with an ID, either a fixed location or a

student. Within these files, there is an ID, that represents an

interaction with that user, and two timestamps, the first one

represents the start of the interaction between this ID (this

registry) and the files’ ID (a location or a student), the second

timestamp represents the end of the interaction.

We defined a threshold for the interactions like:
Pub: 4 hours

ShopWindow: 20 minutes

SuperMarket: 2 hours

CommercialCenter: 3 hours

CollegePorter: 20 minutes

LabReception: 20 minutes

Students: 4 hours
If any of these thresholds is exceeded, then an anomaly is

added.

tecnalia/humanet [21]: It has seven attributes, the first two

are users IDs, the third and fourth ones are the time and date

when the interaction started, in the same way, the fifth and

sixth ones say when the interaction ended, the seventh one

represents the state of the device and can be either horizontal,

vertical and static or vertical and moving.

We considered someone that is in the status vertical and

static and who remained for more than 10 seconds in that

position as an anomaly.

unimi/pmtr [22]: It has only one file that contains as first

attribute an ID, followed by a second ID, a starting timestamp

and an ending timestamp, for a total of four attributes.

To add an anomaly, we look for a prime number in the

second column, and if the interaction lasted for more than

120 seconds, we consider it an anomaly.

upb/mobility2011 [23]: It has a file called interac-

tions.dat.txt that contains as first attribute an ID, then a second

ID, a starting timestamp, an ending timestamp, and two other

attributes.

Whenever the difference between the second ID and the first

one is a prime number, and the interaction persisted for more

than five seconds, we consider it an anomaly.

upb/hyccups [24]: It has a file called full output.txt that

contains an ID, a second ID, a timestamp, and another attribute

which we are using as the time of the interaction.

For the anomaly injection, we used this criterion: If the

first ID times the second ID is a prime number, and the

interaction lasted for more than 281,000 seconds, we consider

it an anomaly.

copelabs/usense [25]: The DS contains nine folders that

represent nine users. Each folder has a file called Social-

Strength.dat. Within this file there are interactions with other

users and they are characterized by a time stamp, an ID of

another user, an encounter duration, an average encounter

duration, and two more attributes.

If the result of adding the IDs is a prime number, and

the encounter duration lasted for more than 60 seconds, we

consider it an anomaly.

Table II
COEXISTING TIME

DS Records Anomalies Attributes LV TB
UPMC 41,587 0.89% 4 - 2
TECNALIA 1,000 39.86% 5 - 3
UNIMI 11,895 12.94% 4 - 3
mobility2011 1,463 11.62% 6 - 4
hyccups 8,427 4.55% 4 - -
COPELABS 755,772 6.61% 6 - 2

D. Framework

The procedure we followed was, for each DS, apply to it the

different FS mentioned in III-B. In this manner, we produce

several DS to analyze: the one created in section III-C (which

we will refer to as the pre-processing DS from now on) and

the outputs from the FS. Later we divided each dataset into

training and testing. We refer to an experiment as training a

particular ML algorithm with the training DS and analyzing

the testing DS. In this manner, we can iterate over the ML

algorithms with this set (training, testing) of DS. Once we

have analyzed every ML with the current DS, we can start

processing the next DS.

The ML training was made by using two-thirds of the

anomalous data points in the DS and the same amount of

regular data points, so we can have a balanced training DS

[6], [11]. We also used a three-fold cross-validation [6].

After each experiment, we collect the true positives (TP),

true negatives (TN), false positives (FP), and false negatives

(FN) (which are how well the algorithm classified the infor-

mation) to calculate the auROC metric with this formula [11]:

auROC =
1 + recall − FalsePositiveRate

2
(1)

Where recall is the percentage of positive instances cor-

rectly classified. Is defined as follow:

recall =
TP

TP + FN
(2)

and the false positive rate is the percentage of negative

instances misclassified. Is defined as follow:

FalsePositiveRate =
FP

FP + TN
(3)

IV. RESULTS

As it can be seen in Table III, the column DS contains

the different tracking datasets, the FS represents the feature

selection mentioned in III-B; the only exception is the N that

represents the pre-processing DS generated in section III-C,

the remaining columns are the names and the results of the

auROC for the different ML algorithms. In the same manner,

we can see the different coexisting time DS in Table IV.

Where TEC represents the tecnalia DS, COPEL the copelabs

DS, HYC the upb/hyccups, and MOBIL the upb/mobility2011

datasets. We will see later in this section why we are not

showing the results for all the 22 ML algorithms.



Table III
TRACKING RESULTS

DS FS Bagging
Extra
trees

Gradient
boosting

Random
forest

Decision
tree

C
M

U L
V 0.9996 0.9936 0.9994 0.9960 0.9994

N 1 0.9978 1 0.9980 1

T
B 0.9925 0.9931 0.9926 0.9924 0.9860

N
C

S
U N 0.9979 0.9974 0.9858 0.9974 0.9977

T
B 0.9911 0.9914 0.9742 0.9913 0.9916

C
U N 1 1 1 1 1

Table IV
COEXISTING TIME RESULTS

DS FS Bagging
Gradient
boosting

Random
forest

Decision
tree

U
P

M
C N 0.8028 0.8205 0.7943 0.7660

T
B 0.6827 0.6730 0.6674 0.6833

U
N

IM
I N 0.8065 0.8536 0.7872 0.8018

T
B 0.7556 0.7608 0.7330 0.7536

T
E

C N 0.7119 0.7478 0.7331 0.6881

T
B 0.6730 0.6974 0.6787 0.6612

C
O

P
E

L N 0.9998 0.9894 0.9994 0.9998

T
B 0.9843 0.9757 0.9818 0.9856

H
Y

C N 0.9905 0.9974 0.9898 0.9858

M
O

B
IL N 0.6435 0.6399 0.6114 0.5848

T
B 0.5851 0.6237 0.6008 0.5816

Table V
TRACKING: CPU AND MEMORY AVERAGE CONSUMPTION

ML CPU% Memory% Average Rank

Bagging 10.72 1.44 6.08 3
Extra trees 11.89 1.43 6.66 5
Gradient boosting 11.42 1.40 6.41 4
Random forest 9.30 1.41 5.36 1
Decision tree 9.99 1.65 5.82 2

The Table V represents the average CPU, and memory

among the experiments shown in Table III, e.g. the line

showing the bagging ML algorithm with a 10.72 CPU%

and 1.44% memory consumption is the average among the

different tracking DS (CMU, NCSU, and CU) and the FS

output for the bagging algorithm. The same processing is

present in the memory column. The average column is the

average between the two previous ones. We used this last

column to create a ranking of algorithms in the rank column,

where the number one represents the first place, the number

two is the second best, and so on.

We show in Table VI the same kind of ranking analysis as

in Table V. The difference is this table represents time instead

of CPU or memory, i.e. the column seconds shows the average

time consumption among the different DS (CMU, NCSU, CU,

including the FS) per algorithm. The column rank shows a

ranking, where the number one represents the first place, the

Table VI
TRACKING: AVERAGE TIME

ML Seconds Rank
Bagging 8.71 4
Extra trees 8.62 3
Gradient boosting 10.62 5
Random forest 8.56 2
Decision tree 7.35 1

number two is the second best, and so on.

It is worth noting that the difference in the resources con-

sumption among the pre-processing DS and the FS datasets.

We saw no significant resource improvement - in the CPU,

memory, or execution time - contradicting our initial expec-

tations. Therefore, no resources improvement, neither in the

CPU, memory, or execution time, as we initially thought in

section III-B.

After having conducted the experiments and having col-

lected all the auROC results, we noticed that for the CU DS

there was a group of ML algorithms that performed perfectly,

with a 100% measure of auROC, as we can see in Table III.

Therefore, it is natural to recommend all these ML algorithms

for DS with CU characteristics, and it is why we are not

showing all the results.

This result led us to look for ML algorithms that performed

well at all DS (pre-processing and the output from the FS).

This search showed that the same ML algorithms that perform

perfectly with the CU dataset, also performed well at all

the tracking datasets, as can be seen in Table III. Thus, it

is very likely that any of these ML algorithms will have a

good performance at DS with similar characteristics as the

tracking datasets we had analyzed in this paper. Additionally,

if a practitioner is interested in the amount of resources these

algorithms can consume, he or she should also consider Tables

V and VI.

We tried to perform the same analysis for the coexisting

time DS, but the results were not as even as with the tracking

DS, as we can see in Table IV. Consequently we changed to

a heuristic approach that allowed us to tell the best algorithms

at all DS. We did this by gradually decreasing the auROC

acceptance until the rows from the different DS started to

be filled up. The results showed a similar list as in the

tracking DS, with the exception of the extra trees algorithm.

For this reason, the advice is to start working with these

ML algorithms for DS with coexisting time characteristics.

Furthermore, because of the wide auROC measurements, we

will not perform a resources consumption analyzes, due to an

unfair comparison across big differences in auROC scores.

V. CONCLUSIONS AND FUTURE WORK

As IoT systems produce ever-growing amounts of raw data,

it is primordial to extract useful information from it. Finding

an efficient manner to extract information is not a trivial prob-

lem, is time-consuming, and many machine learning methods

exist for different scenarios. We proposed a recommendation

framework for IoT smart building anomaly detection (where



the anomalies are defined as users in undesired situations),

that gives practitioners a set of techniques best suited for their

data. This framework has shown that for datasets that are

characterized by the position of users in a place, the bagging,

extra trees, gradient boosting, random forest, and decision

tree classification algorithms are very likely to perform very

well according to the area under the Receiver Operating

Characteristics curve metric. Furthermore, once a practitioner

is aware of these particular ML algorithms, he or she can start

to tune the algorithm to increase the classification performance

in their data.

As future work, we will confirm and extend our results, with

new datasets and exploring new scenarios like other feature

selection and other datasets types.
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