
Chapter 1

CHOOSING SEARCH HEURISTICS BY NON-
STATIONARY REINFORCEMENT LEARNING

Alexander Nareyek
Computer Science Department, Carnegie Mellon University,

5000 Forbes Avenue, Pittsburgh, PA 15213-3891, USA

alex@ai-center.com

http://www.ai-center.com/home/alex/

Abstract Search decisions are often made using heuristic methods because real-
world applications can rarely be tackled without any heuristics. In many
cases, multiple heuristics can potentially be chosen, and it is not clear a
priori which would perform best. In this article, we propose a procedure
that learns, during the search process, how to select promising heuristics.
The learning is based on weight adaptation and can even switch between
different heuristics during search. Different variants of the approach are
evaluated within a constraint-programming environment.

Keywords: Non-Stationary Reinforcement Learning, Optimization, Local Search,
Constraint Programming

1. Introduction

All kinds of search techniques include choice points at which decisions
must be made between various alternatives. For example, in refinement
search, an extension step from a variables’ partial assignment toward a
complete assignment must be chosen. In local search methods, it must
be decided how a complete but suboptimal/infeasible assignment is to
be changed toward an optimal/feasible assignment.

However, for large and complex real-world problems, decisions can
rarely be made in an optimal way. Especially for local search tech-
niques, this is a very critical issue because they do not normally incorpo-
rate backtracking mechanisms. Many different meta-heuristic techniques

2

have therefore been developed to handle the complications involved when
choosing a decision alternative.

Figure 1.1 shows a choice point, representing the current state (i.e.,
the current variable assignment) of local search, and multiple decision al-
ternatives, representing the so-called neighbor states that can be reached
within an iteration.

Alternatives
(neighbor states)

(current state)
Choice point

Figure 1.1. A decision point in local search.

Nearly all local search methods evaluate all neighbor states in a kind
of look-ahead step in order to choose the most beneficial alternative.
However, complex real-world problems – such as action planning includ-
ing time, resources and optimization – often have utility functions whose
computation requires a great deal of computing power. Analyzing large
neighborhoods is mostly out of the question, and even smaller neigh-
borhoods are difficult to check. Techniques like simulated annealing
(Kirkpatrick et al. 1983) are highly suitable for these tasks because only

one neighbor is analyzed for a choice decision (though more neighbors
may be analyzed if the current neighbor appears to be unsuitable).

For the purposes of this paper, we go one step further, not analyzing
any neighbor, but choosing a neighbor according to learned utility values.
In addition, we do not choose a specific neighbor state but a transforma-

tion heuristic that will be applied to create the new state. Unlike other
reinforcement learning approaches for learning which heuristics perform
well, our approach allows the search to switch between different heuris-
tics during search in order to adapt to specific regions of the search
space.

Section 1.2 introduces the constraint-programming environment that
is applied in our experiments, and details the use of heuristics. Weights
and their adaptation are presented in Sec. 1.3. The scheme is evaluated
in Sec. 1.4. Conclusions and related work are discussed in Sec. 1.5.

Choosing Search Heuristics by Non-Stationary Reinforcement Learning 3

2. Search Decisions

As an example of local search, we give a brief description of the
search method applied in the DragonBreath engine. The underlying
paradigm is presented in detail in (Nareyek 2001 (a)).

The problem is specified as a so-called constraint satisfaction problem
(CSP). A CSP consists of

a set of variables x = {x1, . . . , xn}

where each variable is associated with a domain d1, ..., dn

and a set of constraints c = {c1, ..., cm} over these variables.

The domains can be symbols as well as numbers, continuous or dis-
crete (e.g., “door”, “13”, “6.5”). Constraints are relations between vari-
ables (e.g., “xa is a friend of xb”, “xa < xb × xc”) that restrict the
possible value assignments. Constraint satisfaction is the search for a
variable assignment that satisfies the given constraints. Constraint opti-
mization requires an additional function that assigns a quality value to
a solution and tries to find a solution that maximizes this value.

In our local search approach, a specific cost function is specified for
every constraint (so-called global constraints), which returns a value that
represents the constraint’s current inconsistency/optimality with respect
to the connected variables. For example, a simple Sum constraint with
two variables a and b to be added and an s variable for the sum could
specify its costs as Sumcosts = |a+b−s|. The total costs onow of a current
variable assignment (which is often also called objective function value)
is a function of all constraints’ costs, e.g., a simple addition.

In addition, a constraint has a number of heuristics to improve its cost
function. For example, a heuristic for the Sum constraint could randomly
choose one of the related variables and change it such that there are
no more costs. Another heuristic might resolve the inconsistency by
distributing the necessary change such that all variables are changed by
the same (minimal) amount. The constraint must make the choice as to
which heuristic to apply on its own.

On top of all constraints is a global search control which selects, in
each iteration of local search, one of the constraints which is to perform
a change, i.e., the transition to a neighbor state. Figure 1.2 shows the
control flow.

The global search control possesses qualitative and quantitative infor-
mation from the constraints’ cost functions to decide which constraint to
choose (e.g., the constraint with the maximal costs), but a constraint it-
self has little guidance as to which of its heuristics to choose. This choice

4

...

Selection of Heuristic

Heuristic
Improvement

Heuristic
Improvement

Update Functions

Global Constraint

...

Update

Variable

Linking

...
Heuristic

Improvement
Heuristic

Improvement

Update Functions

Selection of Heuristic

Global Constraint

Selection of Constraint

Global Search Control

Figure 1.2. Using global constraints for local search.

point — for choosing one of the constraint’s heuristics — is investigated
below.

3. Utility Weight

For a choice point, a utility value ωa ≥ 1 is computed/maintained
for every alternative a (an alternative stands for a heuristic here) that
expresses the expected benefit of choosing this alternative.

� ��� �

Alternatives
(transformation heuristics)

(current state)
Choice point

2 4 51 3

Result
(neighbor states)

Figure 1.3. A decision point in our approach.

The utility values are subject to learning schemes, which change the
values based on past experiences with choosing this alternative. In many
cases, an appropriate balance of the utility values will depend on the area
of the search space that the search is currently in. We will therefore focus

Choosing Search Heuristics by Non-Stationary Reinforcement Learning 5

on schemes that dynamically adapt the weights during search and not
only after a complete run.

Selection Function

Selection between possible alternatives is done based on the alterna-
tive’s utility values. Here, we look at two simple ones. The first is a
fair random choice (often called a softmax kind of selection rule), re-
ferred to below as M:0, which selects an alternative a from the choice
point’s alternatives A with a choice probability pa in proportion to the
alternative’s utility value ωa:

M:0 : pa = ωa
∑

i∈A

ωi

Another possibility is to make a random choice between the alterna-
tives with maximal utility values:

M:1 : pa =

{

0 : ∃i ∈ A : ωa < ωi

1 : ∀i ∈ A : ωa ≥ ωi
∑

i∈A |∀j∈A : ωi≥ωj

1

Weight Adaptation

All utility weights have integer domains and are initially set to 1. If the
choice point is selected, the utility weight of the alternative is changed
that was chosen by the choice point when it was called last time. The
kind of change depends on the relation of the current cost function value
onow to the cost function value when the choice point was called last time
obefore (i.e., if there is a positive or negative reinforcement). The update
schemes below can be combined to give many different strategies, e.g.,
a simple P:1-N:1 strategy.

onow better-than obefore:
(positive reinforcement)

P:1 (Additive adaptation): ωa ← ωa + 1

P:2 (Escalating additive adaptation): ωa ← ωa + mpromotion

P:3 (Multiplicative adaptation): ωa ← ωa × 2

P:4 (Escalating multiplicative adaptation): ωa ← ωa ×mpromotion

P:5 (Power adaptation): ωa ←
{

ωa × ωa : ωa > 1
2 : ωa = 1

6

onow worse-than-or-equal-to obefore:
(negative reinforcement)

N:1 (Subtractive adaptation): ωa ← ωa − 1

N:2 (Escalating subtractive adaptation): ωa ← ωa −mdemotion

N:3 (Divisional adaptation): ωa ← ωa

2

N:4 (Escalating divisional adaptation): ωa ← ωa

mdemotion

N:5 (Root adaptation): ωa ←
√

ωa

If a utility value falls below 1, it is reset to 1; if a utility value ex-
ceeds a certain maxω, it is reset to maxω; if a utility value is assigned
a non-integer value, it is rounded down. In the case of an escalating
adaptation, each time there is a consecutive improvement/deterioration,
the mpromotion/mdemotion value is doubled. Otherwise, it is reset to 1
(for P:2 and N:2) or 2 (for P:4 and N:4).

A Weight-Adaptation Example

For the illustration of the weight-adaptation mechanism, we follow the
development of the weights of a choice point’s six heuristics below. The
heuristics A to F change the values of the problem definition’s variables
in different ways, e.g., by additions and subtractions. The chosen weight-
adaptation strategy is P:1-N:2 with a fair random choice M:0. The
current search situation is to be

ωA ωB ωC ωD ωE ωF

1 2 1 3 3 1
last choice: E
mdemotion = 1

obefore = 20
onow = 12

and one of the heuristics is to be selected for execution.
Entering this choice point, the heuristics’ weights will be updated at

first. The cost function value is now better (assuming that we want to
minimize here) than the last time this decision had to be made, and
the last choice was heuristic E. According to strategy P:1, the weight of
heuristic E is rewarded by increasing it by one.

Next, a heuristic is to be selected for execution. The choice probability
for the E option is the highest (weight value divided by the sum of all

Choosing Search Heuristics by Non-Stationary Reinforcement Learning 7

weight values; 4/12 = 33%), and we assume that this alternative is
chosen by strategy M:0. Heuristic E is executed.

Other changes may follow, and after some iterations, our choice point
might be called again. The situation is now:

ωA ωB ωC ωD ωE ωF

1 2 1 3 4 1
last choice: E
mdemotion = 1

obefore = 12
onow = 17

The cost function value has deteriorated since the last time the choice
point was entered, and — according to strategy N:2 — the last decision’s
weight value ωE is decreased by the mdemotion value of 1. The choice
probability for heuristic E is now about 27% (3/11) and we assume that
this alternative is chosen again.

After some time, our choice point is called once more:

ωA ωB ωC ωD ωE ωF

1 2 1 3 3 1
last choice: E
mdemotion = 1

obefore = 17
onow = 17

The cost function value is the same as at the last call. Stagnation is
considered to be as bad as deterioration, and because this is a consecutive
deterioration, the mdemotion value is doubled. Heuristic E’s weight value
is therefore decreased by 2. We assume that heuristic D is chosen this
time (probability of 3/9 = 33%) for execution.

At the next call of the choice point, the situation is:

ωA ωB ωC ωD ωE ωF

1 2 1 3 1 1
last choice: D
mdemotion = 2

obefore = 17
onow = 16

The cost function value has improved, and so, the weight value of
heuristic D is increased by one, and the mdemotion value is set back to 1.

Invalid Alternatives

For some choice points, more than one alternative must be tested.
For example, an alternative may turn out to be infeasible (i.e., the cor-
responding transformation is not applicable). An applicability flag f
with a value of 0 or 1 is introduced for every alternative, indicating
whether the alternative is still a valid option:

ωa ← fa × ωa

By the option of setting an applicability flag to 0, alternatives can often
be ruled out a priori by simple feasibility tests.

However, in some cases, the infeasibility of an alternative will only
become apparent during the state-transformation process of the chosen

8

heuristic, i.e., after the choice has been made. In such a case, all changes
in the current state that were made after the choice point are reversed,
the corresponding applicability flag is set to 0 and the choice process
is repeated. If no alternative remains applicable, the choice point’s im-
provement fails.

If the choice point’s selection is subject to the learning scheme, appli-
cability flags are not set to 0 if an alternative fails. The failure may be
caused by a bad random decision during the alternative’s computations
and the alternative may not be fully inapplicable. The learning process
can handle this situation more appropriately than in a non-learning case,
skipping the usual update of the utility weights and temporarily divid-
ing the failed alternative’s utility weight by two (though no weight may
fall below one). If one of the alternatives has been successfully applied,
all adaptations of the utility weights that were done for the restarts are
undone.

4. Empirical Evaluation

Two optimization problems — the Orc Quest problem and a modi-
fication of the Logistics Domain — are evaluated with different learn-
ing/selection schemes. The problems are only roughly described here
because the actual problems are not important with respect to our fol-
lowing analysis. A detailed presentation of the problems can be found
in (Nareyek 2001 (b)).

The Orc Quest problem’s solving process involves only three con-
straints with six heuristics each. Each of these heuristics applies a spe-
cific set of additions and subtractions to the problem variables. There is
a hierarchical cost function, demanding the minimization/maximization
of specific problem variables. The learning scheme is applied to the
choice points of all three constraints.

The Logistics Domain is a classical benchmark in the action-planning
community. The problem investigated here is enriched so that actions
have durations (more specifically, the duration minimization of Problem
6-1a is analyzed). The problem involves a large number of constraints,
which are even created and deleted during the solving process. The
learning scheme is applied to all constraints of the State Resource

type. This constraint type is responsible for projecting a specific state
of the environment and has to ensure that all related preconditions of
actions are fulfilled. Such a constraint can for example be responsible
for the location of a truck, and must ensure that the truck is at the
right location when a loading action is to take place. The constraint

Choosing Search Heuristics by Non-Stationary Reinforcement Learning 9

type includes five alternative heuristics, e.g., to create a new action, to
temporally shift an action, and to delete an action.

Results

A strategy is denoted by P-N-M, P ∈ {1..5} indicating the adapta-
tion scheme that is applied in the case of an improvement, N ∈ {1..5}
the adaptation scheme for non-improvement, and M ∈ {0, 1} if the fair
random choice is applied or a maximal value is chosen.

The results for some strategies for the Orc Quest problem are shown
in Fig. 1.4 as the percentage of test runs (100 % = 100,000 test runs)
that found the optimal solution after a specific number of iterations1.
For example, in case of strategy 1-5-1, about 98 % of the test runs found
the optimal solution after 2,000 iterations while 2% were still running.
The strategies’ curves are overlapping in some cases, which means that
for these strategies, the strategy dominance is dependent on available
computation time.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 2000 4000 6000 8000 10000

P
er

ce
nt

ag
e

of
 te

st
 ru

ns

Iterations

1-5-1
5-5-1
4-4-1
3-3-1
1-3-0
2-2-1
1-1-1
5-1-0

Figure 1.4. Sample strategies for the Orc Quest problem.

1While presenting results as so-called run-time distributions is not widespread in the Oper-
ations Research community, it addresses a number of serious issues related to result presen-
tation and analysis (see (Hoos and Stützle 1998)).

10

The problem from the Logistics Domain is much harder, so only the
best solution (minimal duration) found after 100,000 iterations is shown
in Fig. 1.5 (100 % test runs = 1,000 test runs).

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1100 1200 1300 1400 1500 1600 1700

P
er

ce
nt

ag
e

of
 te

st
 ru

ns

Duration

1-3-1
1-5-1
5-5-1
1-1-1
3-3-1
4-4-1
2-2-1
5-2-1

Figure 1.5. Sample strategies for the Logistics Domain.

The following figures will display more detailed results, i.e., for all
possible strategy mixes. The amount of data to be shown does however
not allow for a complete picture like in the graphs above. Only for spe-
cific percentages of test runs, it is shown after how many iterations this
percentage of test runs found the optimum (for the Orc Quest problem
— Fig. 1.6), and the lowest duration that was found by this percentage
of test runs after 100,000 iterations (for the Logistics Domain — Fig.
1.7). This corresponds to vertical slices of the previous figures. The
strategies are sorted according to which strategy resulted in the least it-
erations/duration for a maximal percentage of test runs (not considering
the 100 % rate).

The general trend is that a low (e.g., additive/P:1) rate of adaptation
is good in the case of an improvement, a strong (e.g., root/N:5) rate of
adaptation is good in the case of deterioration, and a choice of a maximal
weight is often better than a fair random choice. The explorative feature
of the fair random choice may not be that important because there are
very often cases of negative reinforcement that quickly change the weight
situation.

Choosing Search Heuristics by Non-Stationary Reinforcement Learning 11

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1-5-1

1-4-1

1-3-1

4-5-0

3-5-0

2-5-1

2-4-1

3-5-1

2-4-0

2-3-0

4-5-1

3-4-1

5-5-0

5-5-1

1-2-1

2-3-1

2-5-0

4-4-1

3-4-0

5-4-1

4-4-0

1-2-0

3-3-1

3-3-0

5-4-0

1-3-0

4-3-0

1-4-0

4-3-1

2-2-1

5-3-0

1-1-0

5-3-1

1-1-1

4-2-1

5-2-1

3-2-1

5-2-0

2-2-0

3-2-0

4-2-0

1-5-0

2-1-0

2-1-1

3-1-0

3-1-1

4-1-0

4-1-1

5-1-1

5-1-0

Iterations

S
trategy

100%
99%
98%
95%
80%
40%4%

Figure 1.6. Weight-adaptation results for the Orc Quest problem.

12

1100

1200

1300

1400

1500

1600

1700

1800

1-5-1

1-4-1

3-5-0

1-3-1

4-5-0

2-5-0

1-3-0

1-4-0

1-5-0

2-5-1

2-4-0

3-5-1

3-4-0

1-2-0

2-3-1

5-5-0

2-4-1

4-5-1

1-2-1

2-3-0

3-4-1

3-3-0

5-5-1

1-1-0

4-4-0

3-3-1

1-1-1

4-4-1

5-4-0

5-4-1

4-3-0

2-2-0

4-3-1

2-2-1

2-1-0

4-1-0

2-1-1

3-2-0

3-1-0

5-1-1

4-1-1

5-1-0

4-2-0

5-2-0

5-3-0

3-1-1

3-2-1

4-2-1

5-3-1

5-2-1

Duration

S
trategy

100999895804051

1100

1200

1300

1400

1500

1600

1700

1800
1-3-1

4-5-0

1-5-1

2-5-1

2-3-1

1-4-1

1-2-0

1-4-0

3-5-0

3-5-1

3-4-0

2-5-0

2-4-1

3-3-0

3-4-1

5-5-0

1-3-0

1-2-1

2-4-0

1-5-0

1-1-0

4-5-1

2-3-0

5-5-1

1-1-1

4-4-0

3-3-1

5-4-1

5-4-0

4-4-1

4-3-0

2-2-0

2-1-0

4-3-1

2-2-1

2-1-1

3-1-0

5-3-1

3-1-1

4-2-1

5-1-1

4-1-0

3-2-1

4-1-1

3-2-0

4-2-0

5-3-0

5-1-0

5-2-0

5-2-1

Duration

S
trategy

100%
99%
98%
95%
80%
40%5%1%

Figure 1.7. Weight-adaptation results for the Logistics Domain after 25,000 (left)
and 100,000 (right) iterations.

Choosing Search Heuristics by Non-Stationary Reinforcement Learning 13

Because the Orc Quest problem involves only three constraints, we can
easily visualize some further properties of the search process. Figure 1.8
shows how many times a constraint’s highest weight changes, i.e., how
many times a weight is assigned a value above a certain percentage of
the total values of the choice point’s weights, and the last time this
percentage threshold was reached, it was reached by another weight.
Strategies that perform many changes in the configuration appear to
perform better. This might be an indication of why strategies with a
low rate of adaptation in the case of an improvement and a strong rate
of adaptation in the case of a deterioration are likely to perform better
— such strategies facilitate a reconfiguration of the weight situation.

An exception here are strategies with a very low positive reaction
(P:1). Because of the slow growth of the weights, a smaller number of
clear reconfigurations are performed. However, this simmering situation
would appear to have its advantages as well.

Figure 1.9 shows how many times the highest weight is re-established,
i.e., how many times a weight is assigned a value above a certain per-
centage of the total values of the choice point’s weights, and the last
time this percentage was reached, it was reached by the same weight.
In general, one would expect strategies that re-establish old configura-
tions to do needless work and thus, possibly perform worse. However,
the figures do not show many differences here. The reason for this is
probably that the better strategies perform many configuration changes
in general, and, are thus also more likely to re-establish configurations
more often. Even though the absolute numbers of re-established config-
urations are similar for all strategies, the better strategies have a much
lower ratio of re-established configurations to all reconfigurations.

Extended Experiments

Following the observed trend, we can extend our experiments by more
extreme options in this direction:

P:0 (No adaptation): ωa ← ωa

To enable weight increases for this option at all, in the case of a
negative change, the decrease of ωa is distributed as an increase to
all ωi6=a (starting with high initial weights).

N:6 (Total loss adaptation): ωa ← 1

Figure 1.10 shows that these options do not improve performance for
the Orc Quest problem. However, as shown in Fig. 1.11, strategies with
an N:6 option appear to work well for the early phase of search, i.e., for
less constrained problems.

14

0

0.5 1

1.5 2

2.5 3

1-5-1

1-4-1

1-3-1

4-5-0

3-5-0

2-5-1

2-4-1

3-5-1

2-4-0

2-3-0

4-5-1

3-4-1

5-5-0

5-5-1

1-2-1

2-3-1

2-5-0

4-4-1

3-4-0

5-4-1

4-4-0

1-2-0

3-3-1

3-3-0

5-4-0

1-3-0

4-3-0

1-4-0

4-3-1

2-2-1

5-3-0

1-1-0

5-3-1

1-1-1

4-2-1

5-2-1

3-2-1

5-2-0

2-2-0

3-2-0

4-2-0

1-5-0

2-1-0

2-1-1

3-1-0

3-1-1

4-1-0

4-1-1

5-1-1

5-1-0

Configuration Changes per 100 Iterations

S
trategy

C
onstraint 1 / Threshold 50%

C
onstraint 2 / Threshold 50%

C
onstraint 3 / Threshold 50%

0

0.2

0.4

0.6

0.8 1

1.2

1.4

1-5-1

1-4-1

1-3-1

4-5-0

3-5-0

2-5-1

2-4-1

3-5-1

2-4-0

2-3-0

4-5-1

3-4-1

5-5-0

5-5-1

1-2-1

2-3-1

2-5-0

4-4-1

3-4-0

5-4-1

4-4-0

1-2-0

3-3-1

3-3-0

5-4-0

1-3-0

4-3-0

1-4-0

4-3-1

2-2-1

5-3-0

1-1-0

5-3-1

1-1-1

4-2-1

5-2-1

3-2-1

5-2-0

2-2-0

3-2-0

4-2-0

1-5-0

2-1-0

2-1-1

3-1-0

3-1-1

4-1-0

4-1-1

5-1-1

5-1-0

Configuration Changes per 100 Iterations

S
trategy

C
onstraint 1 / Threshold 95%

C
onstraint 2 / Threshold 95%

C
onstraint 3 / Threshold 95%

Figure 1.8. Number of configuration changes for the Orc Quest problem.

Choosing Search Heuristics by Non-Stationary Reinforcement Learning 15

0 10 20 30 40 50 60

1-5-1

1-4-1

1-3-1

4-5-0

3-5-0

2-5-1

2-4-1

3-5-1

2-4-0

2-3-0

4-5-1

3-4-1

5-5-0

5-5-1

1-2-1

2-3-1

2-5-0

4-4-1

3-4-0

5-4-1

4-4-0

1-2-0

3-3-1

3-3-0

5-4-0

1-3-0

4-3-0

1-4-0

4-3-1

2-2-1

5-3-0

1-1-0

5-3-1

1-1-1

4-2-1

5-2-1

3-2-1

5-2-0

2-2-0

3-2-0

4-2-0

1-5-0

2-1-0

2-1-1

3-1-0

3-1-1

4-1-0

4-1-1

5-1-1

5-1-0

Configuration Regenerations per 100 Iterations

S
trategy

C
onstraint 1 / Threshold 50%

C
onstraint 2 / Threshold 50%

C
onstraint 3 / Threshold 50%

0 10 20 30 40 50 60
1-5-1

1-4-1

1-3-1

4-5-0

3-5-0

2-5-1

2-4-1

3-5-1

2-4-0

2-3-0

4-5-1

3-4-1

5-5-0

5-5-1

1-2-1

2-3-1

2-5-0

4-4-1

3-4-0

5-4-1

4-4-0

1-2-0

3-3-1

3-3-0

5-4-0

1-3-0

4-3-0

1-4-0

4-3-1

2-2-1

5-3-0

1-1-0

5-3-1

1-1-1

4-2-1

5-2-1

3-2-1

5-2-0

2-2-0

3-2-0

4-2-0

1-5-0

2-1-0

2-1-1

3-1-0

3-1-1

4-1-0

4-1-1

5-1-1

5-1-0

Configuration Regenerations per 100 Iterations

S
trategy

C
onstraint 1 / Threshold 95%

C
onstraint 2 / Threshold 95%

C
onstraint 3 / Threshold 95%

Figure 1.9. Number of configuration regenerations for the Orc Quest problem.

16

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1-5-1

1-4-1

1-3-1

4-5-0

3-5-0

2-5-1

2-4-1

3-5-1

NEW-0-2-1

2-4-0

2-3-0

4-5-1

3-4-1

5-5-0

5-5-1

1-2-1

2-3-1

2-5-0

4-4-1

3-4-0

5-4-1

4-4-0

1-2-0

3-3-1

3-3-0

5-4-0

1-3-0

NEW-0-1-1

4-3-0

1-4-0

4-3-1

2-2-1

5-3-0

1-1-0

5-3-1

NEW-1-6-1

NEW-2-6-1

NEW-3-6-1

NEW-4-6-1

NEW-5-6-1

1-1-1

4-2-1

5-2-1

3-2-1

5-2-0

2-2-0

3-2-0

4-2-0

NEW-0-4-1

NEW-4-6-0

Iterations

S
trategy

10099989580404

Figure 1.10. Extended weight-adaptation results for the Orc Quest problem; showing
only the 50 best strategies.

Choosing Search Heuristics by Non-Stationary Reinforcement Learning 17

1100

1200

1300

1400

1500

1600

1700

1800

NEW-3-6-1

1-5-1

NEW-2-6-1

NEW-4-6-1

NEW-1-6-1

NEW-5-6-1

1-4-1

3-5-0

1-3-1

NEW-4-6-0

NEW-3-6-0

4-5-0

2-5-0

NEW-5-6-0

1-3-0

1-4-0

1-5-0

2-5-1

NEW-2-6-0

2-4-0

NEW-1-6-0

3-5-1

NEW-0-4-1

3-4-0

1-2-0

NEW-0-3-0

2-3-1

5-5-0

2-4-1

4-5-1

NEW-0-3-1

1-2-1

2-3-0

NEW-0-4-0

3-4-1

3-3-0

NEW-0-5-0

5-5-1

1-1-0

NEW-0-6-1

NEW-0-6-0

NEW-0-5-1

4-4-0

3-3-1

1-1-1

4-4-1

NEW-0-1-1

NEW-0-1-0

NEW-0-2-0

5-4-0

Duration

S
trategy

100999895804051

1100

1200

1300

1400

1500

1600

1700

1800
1-3-1

4-5-0

1-5-1

NEW-5-6-1

2-5-1

NEW-3-6-1

2-3-1

1-4-1

1-2-0

1-4-0

NEW-1-6-1

NEW-4-6-0

3-5-0

3-5-1

NEW-3-6-0

NEW-4-6-1

NEW-2-6-1

3-4-0

2-5-0

2-4-1

3-3-0

3-4-1

NEW-5-6-0

5-5-0

1-3-0

NEW-2-6-0

1-2-1

2-4-0

1-5-0

1-1-0

4-5-1

NEW-1-6-0

2-3-0

5-5-1

1-1-1

NEW-0-3-1

4-4-0

3-3-1

NEW-0-3-0

NEW-0-4-1

NEW-0-5-1

NEW-0-4-0

NEW-0-6-1

5-4-1

NEW-0-5-0

NEW-0-6-0

5-4-0

NEW-0-2-0

NEW-0-1-0

4-4-1

Duration

S
trategy

100999895804051

Figure 1.11. Extended weight-adaptation results for the Logistics Domain after
25,000 (left) and 100,000 (right) iterations; showing only the 50 best strategies.

18

Stationary Reinforcement Learning

So far, we have looked at different methods to adapt the weights
during search, assuming that different areas of the search space can be
handled more efficiently using different search strategies. Although this
assumption seems to be intuitively correct, it remains to be shown to
be true. This section, then, compares adaptive non-stationary learning
with stationary approaches.

Previous approaches adapted learning parameters after a complete

run or when a local minimum was reached. Of these two options, only
an adaptation after a complete run (with an upper bound of a specific
number of iterations) is applicable here because we do not evaluate the
whole neighborhood and cannot therefore tell if we are in a local mini-
mum. The time taken by the learning process to find an optimal station-
ary weight distribution is not measured because the results may be very
different for different learning techniques. Thus, the adaptive learning
strategies are compared with the optimal stationary distribution.

For the Orc Quest problem, we can actually find an optimal static
weight distribution such that all test runs find the optimum in about 35
iterations. With the most simple, non-stationary 1-1-0 strategy, 50 %
of the test runs found the optimum after 1,305 iterations, and after
405 iterations for strategy 1-5-1. Thus, an adaptive strategy would
seem to perform very poorly for the simple Orc Quest problem. This is
not completely true, however, given the time that would be required to
learn the optimal stationary distribution. For example, using a simple
static distribution such that every heuristic is chosen equally often, none
of the 100,000 test runs found the optimum within 100,000 iterations.
We conclude that, if the problem (or very “similar” problems) is solved
very often, a stationary reinforcement learning approach will ultimately
perform much better; but for a short time-frame, the non-stationary
approach is probably much superior.

For the more complex Logistics Domain, our findings are different.
The performance of even the most simple, non-stationary 1-1-0 strat-
egy is similar to that of a carefully hand-tailored static weight distri-
bution, i.e., a static distribution does not work well even disregarding
the learning time for it (see Fig. 1.12). Our assumption that it is useful
to switch between different heuristics during search in order to adapt to
specific regions of the search space proves valid for this more complicated
problem.

Choosing Search Heuristics by Non-Stationary Reinforcement Learning 19

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

P
er

ce
nt

ag
e

of
 te

st
 ru

ns

Duration

adaptive 1-5-1
adaptive 1-1-0

static 0%:0%:53%:13%:7%:27%
static 17%:17%:17%:17%:17%:17%

Figure 1.12. Adaptive vs. static strategies for the Logistics Domain (after 25,000
iterations), disregarding the learning time for the static distribution.

5. Conclusion

The use of a neighborhood of repair heuristics is a promising way to
implement a local search — especially for complex real-world problems in
which the computation of a state’s cost function value is often very costly.
Using the repair heuristics, domain-dependent knowledge to guide the
search can easily be incorporated into the search process. The approach
used here is based on (Nareyek 2001 (a)). Similar techniques were applied
in (Rabideau et al. 1999, Smith 1994, Zweben et al. 1994).

However, finding an appropriate strategy that guides when to apply
which heuristics is not easy. This article has presented a promising
approach to learn a selection strategy by modifying weights. Other
approaches that make use of weights for re-structuring the neighbor-
hood include (Boyan and Moore 1997, Schuurmans and Southey 2000,
Voudouris and Tsang 1995). Unlike these approaches, we do not only
change the weights when a local optimum or solution is reached. Search
usually undergoes different phases (i.e., search-space regions) in which
different search heuristics work best. Thus, even during search, the
heuristics’ configuration is constantly updated. For this purpose, a less-
carrot-more-stick strategy seems to be most adequate, allowing for quick
configuration changes and preventing the old configuration from being
re-established too quickly.

20

WGSAT Frank (1997) follows a similar strategy, even though weights
are connected to problem features (i.e., SAT clauses) instead of improve-
ment heuristics. The approach is not really comparable, but it is close
to a P:0-N:1 strategy with an additional decay factor.

In reinforcement learning, non-stationary environments (such as the
search-space region) are only rarely considered. Examples include ap-
proaches based on supervised techniques (Schmidhuber 1990), evolu-
tionary learning (Littman and Ackley 1991) and model-based learning
(Michaud and Matarić 1998). Unlike these approaches, we have used
a modification of standard action-value methods (Sutton and Barto
1998), applying functional updates instead of cumulative value additions
in order to influence the impact of the already learned reinforcements.
This simple method enables the search to compute weight updates very
quickly – which is very important for a local search environment because
a single iteration should consume only very little computing power.

Adaptive weighs are not restricted to local search; they can also be
used for (esp. restart-based) refinement search. Examples include the
pheromone trails in ant colony optimization (Dorigo et al. 1999), the
use of domain-specific prioritizers (Joslin and Clements 1999) and action
costs in adaptive probing (Ruml 2001). The results obtained in this
study may be transferred to these areas, and techniques like pheromone
evaporation are worth studying for neighborhoods of heuristics as well.

So far, we have not considered quantitative cost-function effects of
decisions. Improvement or non-improvement was the only criterion for
learning. However, “good” heuristics may not be equally good on the
quantitative level and incorporating mechanisms to exploit the quanti-
tative differences is a promising idea for future work. An interesting
approach in this direction was presented at this conference by Cowling
et al. (2001).

The presented techniques are integrated into the DragonBreath en-
gine, which is a free optimization engine based on constraint program-
ming and local search. It can be obtained via:
http://www.ai-center.com/projects/dragonbreath/

Acknowledgments

Thanks to Michael Littman for his feedback.

Bibliography

Boyan, J. A., and Moore, A. W. Using Prediction to Improve Combi-
natorial Optimization Search. In Proceedings of the Sixth Interna-
tional Workshop on Artificial Intelligence and Statistics (AISTATS-

BIBLIOGRAPHY 21

97), 1997.

Cowling, P.; Kendall, G.; and Soubeiga, E. A Parameter-Free Hyper-
heuristic for Scheduling a Sales Summit. In Proceedings of the Fourth
Metaheuristics International Conference (MIC’2001), 127–131, 2001.

Dorigo, M.; Di Caro, G.; and Gambardella, L. M. Ant Algorithms for
Discrete Optimization. Artificial Life 5(3): 137–172, 1999.

Frank, J. Learning Short-Term Weights for GSAT. In Proceedings of
the Fifteenth International Joint Conference on Artificial Intelligence
(IJCAI-97), 384–391, 1997.

Hoos, H. H., and Stützle, T. Evaluating Las Vegas Algorithms — Pitfalls
and Remedies. In Proceedings of the Fourteenth Annual Conference
on Uncertainty in Artificial Intelligence (UAI-98), 238–245, 1998.

Joslin, D. E., and Clements, D. P. Squeaky Wheel Optimization. Journal

of Artificial Intelligence Research 10: 353–373, 1999.

Kirkpatrick, S.; Gelatt, C. D.; and Vecchi, M. P. Optimization by Sim-
ulated Annealing. Science 220(4598): 671–680, 1983.

Littman, M. L., and Ackley, D. H. Adaptation in constant utility non-
stationary environments. In Proceedings of the Fourth International
Conference on Genetic Algorithms, 136–142, 1991.

Michaud, F., and Matarić, M. J. Learning from History for Behavior-
Based Mobile Robots in Non-Stationary Environments. Machine

Learning 31, Joint Special Issue on Learning in Autonomous Robots,
141–167, 1998.

Nareyek, A. (a) Using Global Constraints for Local Search. In Freuder, E.
C., and Wallace, R. J. (eds.), Constraint Programming and Large Scale

Discrete Optimization, American Mathematical Society Publications,
DIMACS Volume 57, 9–28, 2001.

Nareyek, A. (b) Constraint-Based Agents – An Architecture for

Constraint-Based Modeling and Local-Search-Based Reasoning for

Planning and Scheduling in Open and Dynamic Worlds. Reading,
Springer LNAI 2062, 2001.

Rabideau, G.; Knight, R.; Chien, S.; Fukunaga, A.; and Govindjee, A.
Iterative Repair Planning for Spacecraft Operations in the ASPEN
System. International Symposium on Artificial Intelligence Robotics
and Automation in Space (iSAIRAS 99), 1999.

22

Ruml, W. Incomplete Tree Search using Adaptive Probing. In Proceed-
ings of the Seventeenth International Joint Conference on Artificial
Intelligence (IJCAI-01), 235–241, 2001.

Schmidhuber, J. Making the World Differentiable: On Using Self-
Supervised Fully Recurrent Neural Networks for Dynamic Reinforce-
ment Learning and Planning in Non-Stationary Environments. Tech-
nical Report, TR FKI-126-90, Department of Computer Science, Tech-
nical University of Munich, 1990.

Schuurmans, D., and Southey, F. Local search characteristics of incom-
plete SAT procedures. In Proceedings of the Seventeenth National
Conference on Artificial Intelligence (AAAI-2000), 297-302, 2000.

Smith, S. F. OPIS: A Methodology and Architecture for Reactive
Scheduling. In Zweben, M., and Fox, M. S. (eds.), Intelligent Schedul-

ing, Morgan Kaufmann, 29–66, 1994.

Sutton, R. S., and Barto, A. G. Reinforcement Learning: An Introduc-

tion. Reading, MIT Press, 1998.

Voudouris, C., and Tsang, E. Guided Local Search. Technical Re-
port CSM-247, University of Essex, Department of Computer Science,
Colchester, United Kingdom, 1995.

Zweben, M.; Daun, B.; Davis, E.; and Deale, M. Scheduling and
Rescheduling with Iterative Repair. In Zweben, M., and Fox, M. S.
(eds.), Intelligent Scheduling, Morgan Kaufmann, 241–255, 1994.

