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Abstract The intraclass correlation coefficient (ICC)(2) in-
dex from a one-way random effects model is widely used to
describe the reliability of mean ratings in behavioral, educa-
tional, and psychological research. Despite its apparent utility,
the essential property of ICC(2) as a point estimator of the
average score intraclass correlation coefficient is seldommen-
tioned. This article considers several potential measures and
compares their performance with ICC(2). Analytical deriva-
tions and numerical examinations are presented to assess the
bias and mean square error of the alternative estimators. The
results suggest that more advantageous indices can be recom-
mended over ICC(2) for their theoretical implication and com-
putational ease.
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The most fundamental phenomenon about the hierarchical
nature of individual and group influences in multilevel re-
search is that measurements on individuals (e.g., employee,
student, patient) within the same group (e.g., organization,
classroom, clinic) are presumably more similar than measure-
ments on individuals in different groups. Accordingly, various
forms of the intraclass correlation coefficient (ICC) have been
proposed to represent the reliability or degree of resemblance
among cluster members. Essentially, they can be interpreted as
the proportion of the total variance of the response that is
accounted for by the clustering or group cohesion. However,

different conceptual frameworks and modeling formulations
of a multilevel study ultimately lead to distinct and
unique definition of ICCs. Comprehensive reviews and
general guidelines were provided in Bartko (1976),
McGraw and Wong (1996), and Shrout and Fleiss
(1979) for selecting the appropriate model and ICC as
an interrater reliability measure in one-way random ef-
fects and two-way random effects or mixed effects
models. Moreover, definitional issues and methodologi-
cal appraisals concerning ICC, interrater reliability, and
interrater agreement can be found in Bliese (2000),
James (1982), LeBreton et al. (2003), LeBreton and
Senter (2008), and the references therein.

To assess the magnitude of similarity or interrelation of
hierarchical data, the ICC(1) and ICC(2) indices based on
the one-way random effects model are the twomost frequently
adopted reliability measures for the single score and average
score ICCs, respectively, within the context of multilevel
modeling. Specifically, the well-established single score and
average score ICCs ρ and ρ* are defined as

ρ ¼ σ2
γ

σ2
γ þ σ2

ε

;

and

ρ* ¼ σ2
γ

σ2
γ þ σ2

ε=K
;

respectively, where σγ
2 represents the between-group vari-

ance, σε
2 is the within-group variance, and K is the group

size. The two definitions of ICCs reveal that the average
score ρ* is always greater in magnitude than the single
score counterpart ρ and the magnitude of ρ* is greatly
influenced by the group size.
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The most commonly used estimators of ρ and ρ* are given
by

ICC 1ð Þ ¼ MSB−MSW

MSBþ K−1ð ÞMSW
¼ F*−1

F*þ K−1
;

and

ICC 2ð Þ ¼ MSB−MSW

MSB
¼ 1−

1

F*
;

where MSB is the between-group mean square, MSW is
the within-group mean square, and F* = MSB/MSW cal-
culated from the one-way random effects model. This
index ICC(2) follows the notation of Bartko (1976),
Bliese (2000), and James (1982). However, it has also
been referred to as ICC(k) in McGraw and Wong (1996)
and as ICC(1, k) in Shrout and Fleiss (1979). In gener-
al, ICC(1) is an estimate of effect size indicating the
extent to which individual ratings are attributable to
group membership, whereas ICC(2) estimates the reli-
ability of mean ratings furnished by a group of judges.

The respective magnitudes of ICC(1) and ICC(2) allow
researchers to appraise the level of observed variance of single
score and average score that is affected by clustering. For
example, in a two-level analysis of the influence of classroom
climate perceptions on individual students’ levels of academic
achievement, a ICC(1) value of 0.2 indicates that 20 % of the
observed variance in students’ achievement scores is due to
systematic between-classroom differences compared to the
total variance in achievement scores. In contrast, a value of
ICC(2) = 0.8 represents that 80 % of the observed total vari-
ance in classroom average scores occurring at the classroom
level. Consequently, the use and interpretation of ICC(1) and
ICC(2) are appropriate if a researcher is interested in drawing
inferences concerning the reliability of single score and aver-
age score, respectively.

To further illustrate the fundamental differences between
the two indices, it is instructive to consider the ICC(1) value
of 0.10 yields the ICC(2) of 0.7, 0.8, and 0.9 for the group size
of 21, 36, and 81, respectively. The review of climate studies
in James (1982) showed that ICC(1) values range from 0.0 to
0.5 with a median of approximately 0.12. Moreover, Hedges
and Hedberg (2007) reported that the resulting ICC(1) values
for a variety of school performance studies are generally in the
range of 0.10 to 0.25. In contrast, a ICC(2) value of 0.7 has
been widely used as the minimum acceptable level of reliabil-
ity for psychological measures. However, Lance, Butts, and
Michels (2006) noted that many researchers did not provide
adequate justification for the appropriateness of the commonly
used cut point of 0.7. Consequently, it should not be treated as
a universal standard.

Within the context of one-way random effects modeling, it
follows from the standard results that E[MSB] = Kσγ

2+σε
2 and

E[MSW] = σε
2 (McGraw & Wong, 1996, Table 3). Hence,

(MSB – MSW)/K and MSW are unbiased estimators of σγ
2

and σε
2, respectively. From the viewpoint of estimation princi-

ple, ICC(1), introduced by Fisher (1938), is obtained by
substituting the variance components in population single
score ICC with corresponding unbiased estimators. Although
this natural modification is intuitive and heuristic, ICC(1) is
not an unbiased estimator of the corresponding individual rat-
ing ICC. The interested reader is referred to Searle, Casella,
and McCulloch (1992) for further technical details of various
methods for estimating the within-group and between-group
variances of random effects models. Note that Olkin and Pratt
(1958) have derived the minimum variance unbiased estima-
tor of the single score ICC, but its use has been impeded by the
lack of a closed form expression. The corresponding compu-
tation requires a special purpose computer program; see, for
example, Donoghue and Collins (1990). Moreover, Donner
(1986) and Harris and Burch (2000) presented extensive dis-
cussions of compelling alternatives and associated properties
for estimating the individual rating ICC.

In addition to the theoretical developments in statistical
literature, Bliese and Halverson (1998) suggested the
corrected eta-squared formula as a modification of sample
eta-squared estimator to provide more accurate estimates of
the single score ICC. With the emphasis on the analysis of
group-level properties in organizational research, the empiri-
cal investigation of Bliese and Halverson (1998) focused on
the behavior of sample eta-squared estimator. The numerical
results showed that sample eta-squared is a positively biased
estimate of the individual rating ICC and the performance
varies with group size and the magnitude of population
intraclass correlation. However, they did not examine the in-
herent properties of the corrected eta-squared formula. Shieh
(2012) recently showed that the corrected eta-squared estima-
tor described in Bliese and Halverson (1998) is identical to the
maximum likelihood estimator and presented an extensive
comparison between their truncated versions for negative
values. The modification of corrected eta-squared estimator
performs better when the underlying population single score
ICC is small. Conversely, the adjusted ICC(1) has a clear
advantage for medium and large magnitudes of population
individual rating ICC. Thus, the existing findings have con-
cluded that although ICC(1) is the best known, it may not
always be the best choice.

Unlike the prevalent attention and investigation of ICC(1)
and related indices for the analysis of multilevel questions, the
theoretical property and intrinsic appropriateness of ICC(2)
for the estimation of the average score ICC have been given
insufficient consideration in the literature. Basically, the aver-
age score ICC is a function of the individual rating ICC
through the Spearman-Brown prophesy formula (Brown,
1910; Spearman, 1910). It also can be readily established that
the formulation of ICC(2) is equivalent to the Spearman-
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Brown equation by replacing the population single score ICC
with ICC(1). Note that the desirable estimation property of an
individual rating ICC index for the population single score
ICC does not naturally extended to the corresponding
Spearman-Brown counterpart for the estimation of the associ-
ated population average score ICC. Despite the direct connec-
tion between the individual rating and average score ICCs,
ICC(2) not only has a unique interpretation as a reliability
index of group mean rating, but also possesses completely
different properties from ICC(1). The existing findings asso-
ciated with ICC(1) are arguably not suitable to demonstrate
the explicit performance of ICC(2). More importantly, the
estimation problem of the mean rating ICC should be duly
recognized and it requires a unified and rigorous treatment
to clarify the stochastic behavior of feasible solutions.

The continual use of ICC(2) as the standard average score
ICC index without identification of the essential limitations
may not facilitate a better interpretation and application of
research findings. For the ultimate aim of selecting the most
appropriate methodology, it is vital to ensure that the contrast-
ing properties of ICC(2) and viable alternatives are thoroughly
explicated. The present article purports to contribute to the
literature on choosing the best index of the average score
ICC within the framework of one-way random effects model.
First, a simplified expression is presented to synthesize the
essential attributes of the single score ICC estimators in
Gleason (1997) and Harris and Burch (2000). Then the
Spearman-Brown formula is applied to obtain a useful class
of estimators of the average score ICC. Second, in order to
judge the merits of various measures from the point estimation
perspective, explicit analytic forms of the bias and mean
square error (MSE) are derived for the considered mean rating
ICC indices. Accordingly, the optimal estimators under bias
and MSE considerations are identified. Third, numerical ap-
praisals are performed to illustrate the relative performance of
the renowned ICC(2) and several desirable measures within
the suggested family of average score ICC estimators. A dis-
cussion of potential implications of the findings for both the-
oretical development and practical use in reliability study is
also presented.

Estimation of the average score intraclass correlation
coefficient

Within the context of multilevel analysis, a widely used design
is the one-way random effects model

Y i j ¼ μ þ γi þ εi j; i ¼ 1; …;N ; j ¼ 1; …;K; ð1Þ

where Yij is the jth individual measurement within group i, μ is
the grand mean, and γi and εij are independent random variables
with γi~N(0, σγ

2) and εij~N(0, σε
2). The variance of Yij is then

given by σγ
2+σε

2. Accordingly, the single score ICC ρ=σγ
2/(σγ

2+
σε
2) is the simple correlation coefficient Corr(Yi1, Yi2) between

any two observations, Yi1 and Yi2, in the same group. The single
score ICC ρmay also be interpreted as the proportion of the total
variance of individual response that is accounted for by the
clustering or group cohesion. In contrast, the simple correlation

coefficient Corr Y i 1ð Þ; Y i 2ð Þ
� �

between any two sets of mean

measurements, Y i 1ð Þ ¼ ∑
K

j¼1
Y i j=K and Y i 2ð Þ ¼ ∑

2K

j¼Kþ1
Y i j=K,

from the same group is defined as the average score ICC
ρ*=σγ

2/(σγ
2+σε

2/K). It also represents the proportion of the total
variance of mean ratings for a group of K judges that is
accounted for by the grouping or clustermembership. The prom-
inent coefficient ρ* can also be written in the form of Spearman-
Brown prediction formula ρ* = Ψ(ρ) where

Ψ ρð Þ ¼ Kρ
1þ K−1ð Þρ : ð2Þ

It is straightforward to show that the ICC(2) index is basi-
cally the Spearman-Brown formula applied to ICC(1) or
ICC(2) = Ψ{ICC(1)} for any value K > 1. This particular
result was also noted in James (1982) and is more precise than
the asymptotic equivalence between ICC(2) and Ψ{ICC(1)}
demonstrated in Bliese (1998).

The simple notion of substituting the individual rating in-
dex ICC(1) into the Spearman-Brown prophesy formula to
attain the average score measure ICC(2) suggests a integrated
approach to utilizing the existing procedures for the estimation
of individual rating ICC to the estimation of average score
ICC. Because the complexity of a functional form may result
in limited acceptance for practical use, the most appealing
feature of a practically useful index is its computational sim-
plicity. To this end, only the estimators with a convenient
analytical form are considered here. The following unified
expression is presented to accommodate and simplify the
diverse individual rating estimators in Gleason (1997) and
Harris and Burch (2000):

ρ̂ cð Þ ¼ F*−c
F*þ cK−c

; ð3Þ

where c is a constant. Clearly, because ρ̂ (1) = (F* – 1)/(F* + K
– 1) = ICC(1), ρ̂ (c) includes ICC(1) as a special case when c =
1. More importantly, with the application of Spearman-Brown
equation to ρ̂ (c), a simple closed-form expression is acquired
for the suggested class of average score estimators:

ρ̂* cð Þ ¼ Ψ ρ̂ cð Þ
n o

¼ 1−
c

F*
: ð4Þ

As expected, it is seen that ICC(2) = ρ̂* (1) is a significant
member of ρ̂* (c). Note that ICC(1) is obtained by replacing
variance parameters in population ICC ρ with corresponding
unbiased estimators. Because it is often called the ANOVA
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estimator, for ease of illustration, a specific notation, ICC(2) =

ρ̂*AV ¼ ρ̂* cAVð Þ with cAV = 1, is given to denote the particular

instance. The other notable choices ρ̂*MO; ρ̂*ME; ρ̂*E F ; ρ̂*ML

� �
of ρ̂* cð Þ with c = {cMO, cME, cEF, cML} considered in Gleason
(1997) and Harris and Burch (2000) are given as follows:

cMO = {N(N – 3)(K – 1)}/{(N – 1)[N(K – 1) + 2]} is the
mode of the F distribution F{N − 1,N(K − 1)} withN − 1
and N(K − 1) degrees of freedom;
cME = F(N−1), N(K−1), 0.5, where F(N−1), N(K−1), 0.5 is the
median of the F distribution F{N − 1, N(K − 1)};
cEF = {N(K – 1)}/{N(K – 1) – 2} is the expected value of
the F distribution F{N − 1, N(K − 1)};
cML = N/(N – 1) corresponds to the application of the
maximum likelihood estimators of σγ

2 and σε
2.

It should be emphasized that the proposed class of average
score estimators not only possesses the major advantage in
the ease of application, but also facilitates exact theoretical
justification of the associated properties presented in

Appendix. It follows from Eqs. A3 and A5 that ρ̂*UB ¼ ρ̂*

cUBð Þ andρ̂*MS ¼ ρ̂* cMSð Þ are the best unbiased and the best
MSE estimators within the considered class of indices,
respectively, where

cUB ¼ N−3
N−1

and cMS ¼ N N−5ð Þ K−1ð Þ
N−1 N K−1ð Þ þ 2f g :

Unlike the computational demand of the minimum vari-
ance unbiased estimator of individual rating ICC, these two
optimal indices of average score ICC are considerably conve-
nient for practical use.

An immediate observation from the estimation properties
and optimal solutions is that the conventional ICC(2) is sub-
optimal under both the bias andMSE principles, except for the
special situation of ρ* = 1. Specifically, the corresponding bias
and MSE of ICC(2) are

Bias ICC 2ð Þf g ¼ −2 1−ρ*
� �
N−3

and MSE ICC 2ð Þf g

¼ 1−ρ*
� �2

M 1; ð5Þ

respectively, where

M1 ¼ 1 –
2 N−1ð Þ
N−3ð Þ þ N−1ð Þ2 N K−1ð Þ þ 2f g

N N−5ð Þ N−3ð Þ K−1ð Þ :

This implies that ICC(2) is generally a negatively
biased estimator of ρ*, and the absolute bias and MSE
become decreasing as the parameter ICC increases for
fixed values of N and K. Conversely, the dominant es-

timators ρ̂*UB and ρ̂*MS provide improvement over ICC(2)
against the bias and MSE criteria, respectively. It is of

both practical value and theoretical interest to further
appraise the similarities and differences between the pre-
scribed measures. But due to the complex nature of the
resulting bias and MSE, a complete analytical treatment
is not feasible. In order to present a comprehensive
explication for the relative merits of different indices,
a detailed numerical study is conducted next to explore
their estimation behavior.

Numerical illustrations

For the purpose of delineating the essential features of
the average score ICC indices, an empirical investiga-
tion was performed under a wide range of model con-
figurations. The bias and MSE calculations for the con-
sidered estimators require complete specifications of the
number of groups, N, the number of judges in each
group, K, and the underlying population individual rat-
ing ICC, ρ. The numerical computations are systemati-
cally conducted and accomplished by fixing all but one
of the three decisive attributes and varying a single
attribute in the assessment. More importantly, the actual
bias and MSE were obtained by one-dimensional nu-
merical integration with respect to an F probability dis-
tribution function. The numerical integration is theoreti-
cally exact provided that the auxiliary function can be
evaluated exactly.

Specifically, two different values (10 and 50) are con-
sidered for the number of groups and the number of judg-
es and it leads to four combined scenarios of (N, K) =
(10, 10), (10, 50), (50, 10), and (50, 50). It is clear from
the Spearman-Brown equation that ρ* = Ψ(ρ) = Kρ/{1 +
(K – 1)ρ} is a one-to-one function of ρ, and equivalently,
ρ = ρ*/{K – (K – 1)ρ*} for a fixed value K > 1. For ease
of exposition, the values of ρ are chosen so that the
resulting ρ* = 0 to 0.90 with an increment of 0.1 and
0.99. These combinations of model configurations are se-
lected to cover a wide extent of characteristics that are
likely to occur in multilevel applications. Overall, the ac-
tual performance of bias and MSE of the seven estimators

ρ̂*MS ; ρ̂*MO; ρ̂*UB; ρ̂*ME; ICC 2ð Þ; ρ̂*E F ; ρ̂*ML

� �
are com-

puted for ten different magnitudes of ρ* for each of the
four joined model configurations of two numbers of
groups and two group sizes. The bias and MSE results
for the four combinations of N and K are summarized in
Tables 1, 2, 3 and 4 and Tables 5, 6, 7 and 8,
respectively.

To provide a concrete illustration, the relative merits
between different estimators are represented by the rel-
ative absolute bias and the relative MSE, using ICC(2)
as a convenient benchmark. It can be shown from the
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biases given in Eqs. A2 (in the Appendix) and 5 that
the relative absolute bias RAB{ρ̂* cð Þ } of estimator
ICC(2) with respect to estimator ρ̂* cð Þ is the ratio

RAB ρ̂* cð Þ
n o

¼
Bias ρ̂* cð Þ

n o��� ���
Bias ICC 2ð Þf gj j ¼

c N−1ð Þ−N þ 3j j
2

: ð6Þ

TheMSE formulation in Eq. A4 (Appendix) shows that the
relative MSE RMSE{ρ̂* cð Þ } of estimator ICC(2) with respect
to estimator ρ̂* cð Þ is the ratio

RMSE ρ̂* cð Þ
n o

¼
MSE ρ̂* cð Þ

n o
MSE ICC 2ð Þf g ¼ Mc

M 1
; ð7Þ

whereMc andM1 are defined in Eqs. A4 and 5, respectively. It
is important to note that the two relative indices RAB{ρ̂* cð Þ }
and RMSE{ρ̂* cð Þ } do not depend on the underlying popula-
tion ρ*. For a designated estimator ρ̂* cð Þ, the associated
values of RAB{ρ̂* cð Þ} and RMSE{ρ̂* cð Þ} only vary with
the selection of N and K, and serve the comparison
purpose for the practical situation that the underlying

Table 1 The bias of average score intraclass correlation coefficient indices for N = 10 and K = 10

ρ̂*
ρ̂*MS ρ̂*MO ρ̂*UB ρ̂*ME ρ̂*AV ρ̂*EF ρ̂*ML

c 0.5435 0.7609 0.7778 0.9339 1.0000 1.0227 1.1111

RAB 1.0543 0.0761 0.0000 0.7027 1.0000 1.1023 1.5000

ρ*

0.00 0.3012 0.0217 0.0000 –0.2008 –0.2857 –0.3149 –0.4286

0.10 0.2711 0.0196 0.0000 –0.1807 –0.2571 –0.2834 –0.3857

0.20 0.2410 0.0174 0.0000 –0.1606 –0.2286 –0.2519 –0.3429

0.30 0.2109 0.0152 0.0000 –0.1405 –0.2000 –0.2205 –0.3000

0.40 0.1807 0.0130 0.0000 –0.1205 –0.1714 –0.1890 –0.2571

0.50 0.1506 0.0109 0.0000 –0.1004 –0.1429 –0.1575 –0.2143

0.60 0.1205 0.0087 0.0000 –0.0803 –0.1143 –0.1260 –0.1714

0.70 0.0904 0.0065 0.0000 –0.0602 –0.0857 –0.0945 –0.1286

0.80 0.0602 0.0043 0.0000 –0.0402 –0.0571 –0.0630 –0.0857

0.90 0.0301 0.0022 0.0000 –0.0201 –0.0286 –0.0315 –0.0429

0.99 0.0030 0.0002 0.0000 –0.0020 –0.0029 –0.0031 –0.0043

RAB = relative absolute bias

Table 2 The bias of average score intraclass correlation coefficient indices for N = 10 and K = 50

ρ̂*
ρ̂*MS ρ̂*MO ρ̂*UB ρ̂*ME ρ̂*AV ρ̂*EF ρ̂*ML

c 0.5533 0.7746 0.7778 0.9283 1.0000 1.0041 1.1111

RAB 1.0102 0.0142 0.0000 0.6771 1.0000 1.0184 1.5000

ρ*

0.00 0.2886 0.0041 0.0000 –0.1935 –0.2857 –0.2910 –0.4286

0.10 0.2598 0.0037 0.0000 –0.1741 –0.2571 –0.2619 –0.3857

0.20 0.2309 0.0033 0.0000 –0.1548 –0.2286 –0.2328 –0.3429

0.30 0.2020 0.0028 0.0000 –0.1354 –0.2000 –0.2037 –0.3000

0.40 0.1732 0.0024 0.0000 –0.1161 –0.1714 –0.1746 –0.2571

0.50 0.1443 0.0020 0.0000 –0.0967 –0.1429 –0.1455 –0.2143

0.60 0.1154 0.0016 0.0000 –0.0774 –0.1143 –0.1164 –0.1714

0.70 0.0866 0.0012 0.0000 –0.0580 –0.0857 –0.0873 –0.1286

0.80 0.0577 0.0008 0.0000 –0.0387 –0.0571 –0.0582 –0.0857

0.90 0.0289 0.0004 0.0000 –0.0193 –0.0286 –0.0291 –0.0429

0.99 0.0029 0.0000 0.0000 –0.0019 –0.0029 –0.0029 –0.0043

RAB = relative absolute bias
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population ρ* is unknown. The selected constant c,
computed relative absolute bias and relative MSE are
also reported in the tables.

An inspection of the results in the presented tables
shows that the chosen constants of the estimators

ρ̂*MS ; ρ̂*MO; ρ̂*UB; ρ̂*ME; ICC 2ð Þ; ρ̂*E F ; ρ̂*ML

� �
h a v e a

consistent order that cMS < cMO < cUB < cME < cAV <
cEF < cML for all four settings of N and K. Specifically, the
actual values of {cMS, cMO, cUB, cME, cAV, cEF, cML} are

{0.5435, 0.7609, 0.7778, 0.9339, 1.0000, 1.0227,
1.1111} for (N, K) = (10, 10);

{0.5533, 0.7746, 0.7778, 0.9283, 1.0000, 1.0041,
1.1111} for (N, K) = (10, 50);
{0.9143, 0.9549, 0.9592, 0.9879, 1.0000, 1.0045,
1.0204} for (N, K) = (50, 10);
{0.9176, 0.9584, 0.9592, 0.9867, 1.0000, 1.0008,
1.0204} for (N, K) = (50, 50).

It follows that the resulting values of {cMS, cMO, cME, cEF}
vary with (N, K), the two components {cUB, cML} only depend
on N, and cAV = 1 has a fixed value.

For the relative absolute biases in Tables 1 and 3 with K =
10, they reveal the order

Table 3 The bias of average score intraclass correlation coefficient indices for N = 50 and K = 10

ρ̂*:
ρ̂*MS ρ̂*MO ρ̂*UB ρ̂*ME ρ̂*AV ρ̂*EF ρ̂*ML

c 0.9143 0.9549 0.9592 0.9879 1.0000 1.0045 1.0204

RAB 1.0996 0.1040 0.0000 0.7034 1.0000 1.1094 1.5000

ρ*

0.00 0.0468 0.0044 0.0000 –0.0299 –0.0426 –0.0472 –0.0638

0.10 0.0421 0.0040 0.0000 –0.0269 –0.0383 –0.0425 –0.0574

0.20 0.0374 0.0035 0.0000 –0.0239 –0.0340 –0.0378 –0.0511

0.30 0.0328 0.0031 0.0000 –0.0210 –0.0298 –0.0330 –0.0447

0.40 0.0281 0.0027 0.0000 –0.0180 –0.0255 –0.0283 –0.0383

0.50 0.0234 0.0022 0.0000 –0.0150 –0.0213 –0.0236 –0.0319

0.60 0.0187 0.0018 0.0000 –0.0120 –0.0170 –0.0189 –0.0255

0.70 0.0140 0.0013 0.0000 –0.0090 –0.0128 –0.0142 –0.0191

0.80 0.0094 0.0009 0.0000 –0.0060 –0.0085 –0.0094 –0.0128

0.90 0.0047 0.0004 0.0000 –0.0030 –0.0043 –0.0047 –0.0064

0.99 0.0005 0.0000 0.0000 –0.0003 –0.0004 –0.0005 –0.0006

RAB = relative absolute bias

Table 4 The bias of average score intraclass correlation coefficient indices for N = 50 and K = 50

ρ̂* ρ̂*MS ρ̂*MO ρ̂*UB ρ̂*ME ρ̂*AV ρ̂*EF ρ̂*ML

c 0.9176 0.9584 0.9592 0.9867 1.0000 1.0008 1.0204

RAB 1.0184 0.0192 0.0000 0.6741 1.0000 1.0200 1.5000

ρ*

0.00 0.0433 0.0008 0.0000 –0.0287 –0.0426 –0.0434 –0.0638

0.10 0.0390 0.0007 0.0000 –0.0258 –0.0383 –0.0391 –0.0574

0.20 0.0347 0.0007 0.0000 –0.0229 –0.0340 –0.0347 –0.0511

0.30 0.0303 0.0006 0.0000 –0.0201 –0.0298 –0.0304 –0.0447

0.40 0.0260 0.0005 0.0000 –0.0172 –0.0255 –0.0260 –0.0383

0.50 0.0217 0.0004 0.0000 –0.0143 –0.0213 –0.0217 –0.0319

0.60 0.0173 0.0003 0.0000 –0.0115 –0.0170 –0.0174 –0.0255

0.70 0.0130 0.0002 0.0000 –0.0086 –0.0128 –0.0130 –0.0191

0.80 0.0087 0.0002 0.0000 –0.0057 –0.0085 –0.0087 –0.0128

0.90 0.0043 0.0001 0.0000 –0.0029 –0.0043 –0.0043 –0.0064

0.99 0.0004 0.0000 0.0000 –0.0003 –0.0004 –0.0004 –0.0006

RAB = relative absolute bias
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RAB{ρ̂*UB } < RAB{ρ̂*ME } < RAB{ρ̂*MO } < RAB{ICC(2)} <

RAB{ρ̂*MS } < RAB{ρ̂*EF } < RAB{ρ̂*ML }.
When K = 50, only the relative absolute biases between

ρ̂*ME and ρ̂*MO are switched in Tables 2 and 4:

RAB{ρ̂*UB } < RAB{ρ̂*MO } < RAB{ρ̂*ME } < RAB{ICC(2)}

< RAB{ρ̂*ME } < RAB{ρ̂*EF } < RAB{ρ̂*ML }.

Obviously, RAB{ρ̂*UB } = 0 because ρ̂*UB is an unbiased

index of ρ*. The resulting biases imply that ρ̂*MS and ρ̂*MO are

positively biased, while ρ̂*ME, ICC(2), ρ̂
*
E F , and ρ̂*ML tend to

underestimate ρ*. In addition, RAB{ρ̂*MO } and RAB{ρ̂*ME } are
consistently less than RAB{ICC(2)} = 1. It is also interesting

to see that RAB{ρ̂*MS } and RAB{ρ̂*EF } are marginally

larger than RAB{ICC(2)}, and RAB{ρ̂*ML } = 1.5 for all N

Table 5 The mean square error of average score intraclass correlation
coefficient indices for N = 10 and K = 10

ρ̂* ρ̂*MS ρ̂*MO ρ̂*UB ρ̂*ME ρ̂*AV ρ̂*EF ρ̂*ML

c 0.5435 0.7609 0.7778 0.9339 1.0000 1.0227 1.1111

RMSE 0.3793 0.5200 0.5428 0.8333 1.0000 1.0633 1.3389

ρ*

0.00 0.3012 0.4130 0.4311 0.6618 0.7942 0.8445 1.0634

0.10 0.2440 0.3345 0.3492 0.5361 0.6433 0.6841 0.8614

0.20 0.1928 0.2643 0.2759 0.4236 0.5083 0.5405 0.6806

0.30 0.1476 0.2024 0.2112 0.3243 0.3892 0.4138 0.5211

0.40 0.1084 0.1487 0.1552 0.2383 0.2859 0.3040 0.3829

0.50 0.0753 0.1033 0.1078 0.1655 0.1986 0.2111 0.2659

0.60 0.0482 0.0661 0.0690 0.1059 0.1271 0.1351 0.1701

0.70 0.0271 0.0372 0.0388 0.0596 0.0715 0.0760 0.0957

0.80 0.0120 0.0165 0.0172 0.0265 0.0318 0.0338 0.0425

0.90 0.0030 0.0041 0.0043 0.0066 0.0079 0.0084 0.0106

0.99 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001

RMSE = relative mean square error

Table 6 The mean square error of average score intraclass correlation
coefficient indices for N = 10 and K = 50

ρ̂* ρ̂*MS ρ̂*MO ρ̂*UB ρ̂*ME ρ̂*AV ρ̂*EF ρ̂*ML

c 0.5533 0.7746 0.7778 0.9283 1.0000 1.0041 1.1111

RMSE 0.3837 0.5349 0.5393 0.8179 1.0000 1.0114 1.3448

ρ*

0.00 0.2886 0.4024 0.4057 0.6153 0.7522 0.7608 1.0116

0.10 0.2338 0.3259 0.3286 0.4984 0.6093 0.6162 0.8194

0.20 0.1847 0.2575 0.2596 0.3938 0.4814 0.4869 0.6474

0.30 0.1414 0.1972 0.1988 0.3015 0.3686 0.3728 0.4957

0.40 0.1039 0.1449 0.1460 0.2215 0.2708 0.2739 0.3642

0.50 0.0721 0.1006 0.1014 0.1538 0.1881 0.1902 0.2529

0.60 0.0462 0.0644 0.0649 0.0984 0.1204 0.1217 0.1619

0.70 0.0260 0.0362 0.0365 0.0554 0.0677 0.0685 0.0910

0.80 0.0115 0.0161 0.0162 0.0246 0.0301 0.0304 0.0405

0.90 0.0029 0.0040 0.0041 0.0062 0.0075 0.0076 0.0101

0.99 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001

RMSE = relative mean square error

Table 7 The mean square error of average score intraclass correlation
coefficient indices for N = 50 and K = 10

ρ̂* ρ̂*MS ρ̂*MO ρ̂*UB ρ̂*ME ρ̂*AV ρ̂*EF ρ̂*ML

c 0.9143 0.9549 0.9592 0.9879 1.0000 1.0045 1.0204

RMSE 0.8482 0.8823 0.8898 0.9601 1.0000 1.0162 1.0809

ρ*

0.00 0.0468 0.0487 0.0491 0.0530 0.0552 0.0561 0.0596

0.10 0.0379 0.0394 0.0398 0.0429 0.0447 0.0454 0.0483

0.20 0.0299 0.0312 0.0314 0.0339 0.0353 0.0359 0.0382

0.30 0.0229 0.0238 0.0241 0.0260 0.0270 0.0275 0.0292

0.40 0.0168 0.0175 0.0177 0.0191 0.0199 0.0202 0.0215

0.50 0.0117 0.0122 0.0123 0.0132 0.0138 0.0140 0.0149

0.60 0.0075 0.0078 0.0079 0.0085 0.0088 0.0090 0.0095

0.70 0.0042 0.0044 0.0044 0.0048 0.0050 0.0050 0.0054

0.80 0.0019 0.0019 0.0020 0.0021 0.0022 0.0022 0.0024

0.90 0.0005 0.0005 0.0005 0.0005 0.0006 0.0006 0.0006

0.99 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

RMSE = relative mean square error

Table 8 The mean square error of average score intraclass correlation
coefficient indices for N = 50 and K = 50

ρ̂* ρ̂*MS ρ̂*MO ρ̂*UB ρ̂*ME ρ̂*AV ρ̂*EF ρ̂*ML

c 0.9176 0.9584 0.9592 0.9867 1.0000 1.0008 1.0204

RMSE 0.8489 0.8860 0.8874 0.9552 1.0000 1.0030 1.0841

ρ*

0.00 0.0433 0.0452 0.0453 0.0488 0.0510 0.0512 0.0553

0.10 0.0351 0.0366 0.0367 0.0395 0.0413 0.0415 0.0448

0.20 0.0277 0.0289 0.0290 0.0312 0.0327 0.0328 0.0354

0.30 0.0212 0.0222 0.0222 0.0239 0.0250 0.0251 0.0271

0.40 0.0156 0.0163 0.0163 0.0176 0.0184 0.0184 0.0199

0.50 0.0108 0.0113 0.0113 0.0122 0.0128 0.0128 0.0138

0.60 0.0069 0.0072 0.0072 0.0078 0.0082 0.0082 0.0089

0.70 0.0039 0.0041 0.0041 0.0044 0.0046 0.0046 0.0050

0.80 0.0017 0.0018 0.0018 0.0020 0.0020 0.0020 0.0022

0.90 0.0004 0.0005 0.0005 0.0005 0.0005 0.0005 0.0006

0.99 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

RMSE = relative mean square error

1000 Behav Res (2016) 48:994–1003



and K. Hence, ρ̂*UB, ρ̂
*
MO and ρ̂*ME perform better than ICC(2)

under the bias principle.
On the other hand, the relative MSEs have the same order

between the c constants for all four combinations of N and K:

RMSE{ρ̂*MS } < RMSE{ρ̂*MO } < RMSE{ρ̂*UB } <

RMSE{ρ̂*ME } < RMSE{ICC(2)} < RMSE{ρ̂*E F } <

RMSE{ρ̂*ML }.

The consistency indicates that ρ̂*MS incurs the smallest

RMSE, whereas ρ̂*ML has the largest value. However, there are

minor differences between RMSE{ρ̂*MO } and RMSE{ρ̂*UB } or

RMSE{ICC(2)} and RMSE{ρ̂*E F }. The evidence suggests that

ICC(2) is not a prudent selection because RMSE{ρ̂*ML } is the
only case that is substantially greater than RMSE{ICC(2)}. In

short, the four measures ρ̂*MS , ρ̂
*
MO, ρ̂

*
UB, and ρ̂*ME dominate

ICC(2) in terms of MSE.

Comparatively, ρ̂*E F and ρ̂*ML are the worst two estimators
based on both estimation criteria of bias and MSE. Although
ρ̂:ML has been a competitively accurate index of ρ when the
individual rating ICC is small (Shieh, 2012), the counterpart

ρ̂*ML appears to be unsatisfactory in estimating ρ* regardless of
the true magnitude of the average score ICC. More important-

ly, ρ̂*MO, ρ̂
*
UB, and ρ̂

*
ME outperform ICC(2) under both bias and

MSE considerations, and ρ̂*MS provides a strong alternative to
ICC(2) with respect toMSE criterion. The conventional use of
ICC(2) for the estimation of mean rating ICCwas not support-
ed both analytically and empirically. For the primary reasons
of statistical efficiency and computational ease, it is sensible to
employ simple and robust alternatives.

In general, the performance of the prescribed estimators
improves with an increasing ρ, a larger number of groups N,
or a greater group size K when all other features remain con-

stant. The only exception is the case of ρ̂*UB because it is
unbiased for all N > 3, K > 1, and 0 ≤ ρ < 1. Although the
specific magnitudes of N and K have a concurrent impact on
estimation behavior, the influence of the number of groups
differs from that of the group size. Note that the settings (N,
K) = (10, 50) and (50, 10) of the one-way random effects
model have the identical total sample size 500. But the accu-
racy and efficiency of the seven estimators in Tables 3 and 7
with (N, K) = (50, 10) are consistently better than the corre-
sponding results in Tables 2 and 6 with (N, K) = (10, 50).
Consequently, the discrepancy between the numerical assess-
ments implies that an increase in the number of group, rather
than the number of judges in each group, yields more pro-
nounced improvement in estimation for a given total sample
size. The particular phenomenon is also confirmed by the
additional estimation performance of the two configurations
of (N, K) = (20, 25) and (25, 20) with the same total sample

size 500. Accordingly, this finding may be useful for re-
searchers to justify their allocation scheme for advance design
planning of reliability studies.

Discussion and conclusions

This article concerns the use of ICC(2) as an average score
ICC measure within the context of one-way random effects
model. Despite its routine and common application in research
acrossmany scientific fields, the fundamental properties of the
ICC(2) formula is seldom addressed. Although ICC(1) and
ICC(2) are conceptually distinct indices, ICC(2) may have
been treated as a trivial exercise of the Spearman-Brown equa-
tion to ICC(1). This research contributes to the reliability lit-
erature by considering the various issues in choosing the best
average score ICC index with analytic clarifications and nu-
meric expositions.

First, the estimation of the average score ICC is appropri-
ately recognized as a unique and distinct task in reliability
research. The essential attributes of individual rating ICC es-
timators and the Spearman-Brown formula are synthesized to
present a family of average score ICC indices that subsumes
ICC(2) as a special case. Accordingly, the choice of the sug-
gested formulation is motivated by its advantages of method-
ological transparency, analytic tractability, and computational
simplicity. Second, exact estimation properties of the sug-
gested class of measures are derived to facilitate the compar-
ison of the strengths and weaknesses of different indices.
Within the proposed class of estimators, the best unbiased
and the best MSE mean rating ICC indices are identified.
Consequently, the theoretical implication and computational
ease of the superior alternatives strongly suggest that ICC(2) is
sub-optimal and its practical value appears to be difficult to
justify.

A potential deficiency of ICC(2) and other average score
ICC estimators is that they can assume negative values even
though ICC is defined as a non-negative parameter. In prac-
tice, the estimate is often set equal to zero when this occurs.
Although this simple and intuitive adjustment is of practical
meaning, the fundamental behavior of the estimator is inher-
ently altered and a single simple formula of bias and MSE
cannot be obtained. However, the conducted Monte Carlo
simulation study showed that the bias and MSE performance
of the average score ICC indices is essentially unchanged
unless the population individual rating ICC is extremely
small. A simple explanation is that it is possible to take trivial
values of ICC(1) and obtain sizeable values of ICC(2). The
occurrence of truncation is less often for the average score
ICC indices than the corresponding individual rating ICC es-
timators. Hence, the numerical details are not reported here.

According to the editorial guidelines and methodological
recommendations of several prominent educational and
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psychological journals, it is necessary to include some mea-
sures of effect size and confidence intervals for all primary
outcomes (Alhija & Levy, 2009; Fritz, Morris & Richler,
2012; Kelley & Preacher, 2012; Odgaard & Fowler, 2010;
Peng et al., 2013; Sun, Pan & Wang, 2010). Among the sev-
eral inadequate effect size reporting and interpretation
practices, Alhija and Levy (2009) and Peng et al. (2013) es-
pecially emphasized that the majority of popular effect size
measures are positively biased estimators such as the stan-
dardized mean difference index Cohen’s d, the strength of

association measure η̂2, and the sample squared multiple cor-
relation coefficient R2. These indices are obtained by replac-
ing population parameters with corresponding sample statis-
tics. However, a combination of unbiased component estima-
tors does not necessarily yield an unbiased whole estimator.
To expedite the advocated reform of statistical reporting prac-
tices, researchers should prudently apply unbiased estimators
or other improved formulas in the selection and computation
of appropriate effect size measures. Note that unbiasedness is
not the only criterion of theoretical importance. Mean square
error is another useful performance criterion obtained by in-
corporating the bias (accuracy) and variability (precision) of
an estimator. A thorough explication and comparison of
effect sizes under various frameworks certainly facilitate
assessment of scientific findings and accumulation of
advanced knowledge. This research provides an update
and explication of different average score ICC indices
that helps to clarify the issue of evaluating the strength
of the group property and how to choose an appropriate
effect size estimate in multilevel analysis. On the other
hand, a thorough coverage of inferential procedures is
presented in McGraw and Wong (1996) for hypothesis
testing and interval estimation of various average score
ICCs.
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Appendix

Estimation properties of average score ICC indices
Under the model assumption defined in Eq. 1, the ANOVA

F test statistic F* has the distribution

F*e F N−1; N K−1ð Þf g
1−ρ*

: ðA1Þ

Note that the distribution F{N − 1, N(K − 1)} can be
expressed as [χ2(N − 1)/(N − 1)]/[χ2{N(K − 1)}/{N(K − 1)}]

where χ2(ν) is a chi-square distribution with ν degrees of
freedom, and the kth moment of χ2(ν) is E[{χ2(ν)}k] =
2kΓ(ν/2 + k)/Γ(ν/2) for ν > −2k. Accordingly, E[F{a, b}] =
b/(b − 2) for b > 2, and Var[F{a, b}] = {2b2(a + b – 2)}/{a(b −
2)2(b − 4)} for b > 4 as described in Johnson et al. (1995,
Chapter 27) and Mood, Graybill, and Boes (1974,
Section 4.4).

It follows from the definitions of ρ̂* cð Þ and F* given in
Eqs. 4 and A1, respectively, that

E[ρ̂* cð Þ ] = 1 – c(1 – ρ*)·E[ 1
F N−1; N K−1ð Þf g ] = 1 – c(1 – ρ*)·

E[F{N(K − 1), N − 1}]
and

Var[ρ̂* cð Þ ] = c2(1 – ρ*)2·Var[ 1
F N−1; N K−1ð Þf g ] = c2(1 – ρ*)2·

Var[F{N(K − 1), N − 1}].
With the prescribed results for the expected value and var-

iance of anF distribution, the expected value E[ρ̂* cð Þ ] and the
variance Var[ρ̂* cð Þ ] of an estimator ρ̂*: cð Þ can be obtained as

E ρ̂* cð Þ
h i

¼ 1� c N−1ð Þ 1−ρ*
� �

N−3
:

and

Var ρ̂* cð Þ
h i

¼ 2c2 N−1ð Þ2 NK−3ð Þ 1−ρð Þ2
N N−5ð Þ N−3ð Þ2 K−1ð Þ ;

respectively.
The two basic criteria for comparing the performance

of point estimators are based on the bias and mean

square error considerations. First, the accuracy of ρ̂* cð Þ
for the estimation of ρ* can be verified by the bias

Bias{ρ̂* cð Þ } of ρ̂* cð Þ

Bias ρ̂* cð Þ
n o

¼ E ρ̂* cð Þ−ρ
h i

¼ 1−ρð ÞBc; ðA2Þ

where

Bc ¼ 1–
c N−1ð Þ
N−3

:

Thus, it can be readily shown from the bias Bias{ρ̂* cð Þ }
that ρ̂*UB ¼ ρ̂* cUBð Þ is an unbiased estimator of ρ* where

cUB ¼ N−3
N−1

: ðA3Þ

Moreover, ρ̂*UB is a function of (MSB, MSW), and (MSB,
MSW) is a complete sufficient statistic for (Kσγ

2+σε
2, σε

2) as

noted in Olkin and Pratt (1958). Consequently, ρ̂*UB is the best
unbiased estimator of ρ*.

1002 Behav Res (2016) 48:994–1003



Second, the mean square error MSE{ρ̂* cð Þ } of ρ̂* cð Þ is

MSE ρ̂* cð Þ
n o

¼ E ρ̂* cð Þ−ρ*
� �2

	 

¼ 1−ρ*

� �2
Mc; ðA4Þ

where

Mc ¼ 1–
2c N−1ð Þ
N−3

þ c2 N−1ð Þ2 N K−1ð Þ þ 2f g
N N−3ð Þ N−5ð Þ K−1ð Þ :

It is straightforward to show that Mc attains the minimum
for c = cMS where

cMS ¼ N N−5ð Þ K−1ð Þ
N−1ð Þ N K−1ð Þ þ 2f g : ðA5Þ

Therefore, ρ̂*MS ¼ ρ̂* cMSð Þ is the best MSE index within

the class of estimators ρ̂* cð Þ. Apparently, the prescribed esti-
mation results are valid for the values of N > 5 and K > 1 that
are likely to be satisfied in actual applications.
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