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GOODS: NEURAL CURRENCIES FOR 
VALUATION AND DECISION MAKING
Leo P. Sugrue, Greg S. Corrado and William T. Newsome

Abstract | To make adaptive decisions, animals must evaluate the costs and benefits of 
available options. The nascent field of neuroeconomics has set itself the ambitious goal of 
understanding the brain mechanisms that are responsible for these evaluative processes. A 
series of recent neurophysiological studies in monkeys has begun to address this challenge 
using novel methods to manipulate and measure an animal’s internal valuation of competing 
alternatives. By emphasizing the behavioural mechanisms and neural signals that mediate 
decision making under conditions of uncertainty, these studies might lay the foundation for an 
emerging neurobiology of choice behaviour. 

 “My diving bell becomes less oppressive, and my mind 
takes flight like a butterfly. There is so much to do. You 
can wander off in space or in time, set out for Tierra 
del Fuego or for King Midas’s court. You can visit the 
woman you love, slide down beside her and stroke 
her still-sleeping face. You can build castles in Spain, 
steal the Golden Fleece, discover Atlantis, realize your 
childhood dreams and adult ambitions.”1

In 1995, a brainstem stroke left French magazine editor 
Jean-Dominique Bauby ‘locked in’ , robbed of all 
voluntary movement save the ability to blink his left 
eyelid. The sentences above are excerpted from his 
memoir, a work that he dictated word by word, blink-
ing to select each letter as the alphabet was recited to 
him over and over. His words are a powerful reminder 
that decisions, the ultimate expressions of will, can 
be dissociated from the actions through which they are 
commonly manifest, and owe their true existence to 
processes hidden within the recesses of the brain. For 
centuries, students of philosophy, psychology and 
behavioural economics have sought access to this inner 
world through introspection and the study of overt 
behaviour. More recently, neuroscientists have joined 
their ranks, eager to understand the mechanisms of 
decision making at the cellular and circuit level.

This shared interest in decision making has resulted 
in the emergence of a new interdisciplinary field of 
research, often referred to as ‘neuroeconomics’, the  
expressed goal of which is to understand the neural 
basis of individual choice behaviour2. This field 
encompasses behavioural, imaging and physiological 
approaches in both humans and animals. In this 
review, we discuss data only from electrophysiological 
experiments, primarily recordings from single neu-
rons in behaving monkeys. By focusing on one of the 
more developed lines of research in this field, we hope 
to move beyond the particular to illuminate some 
challenges and approaches that are relevant to the field 
in general. 

The form of our review recapitulates the develop-
ment of this topic. We begin by summarizing the 
progress that has been made during the past decade in 
uncovering the neural correlates of simple perceptual 
decisions. We then introduce our primary focus — the 
interaction between decision making and reward — by 
exploring some key concepts that relate to the neuro-
biology of reward and motivation. Finally, we turn to 
recent attempts that have been made to expand the 
neurobiology of decision making to account for the 
powerful influences of reward history and expectation 
on choice behaviour. 
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Neural correlates of perceptual decisions
The neurophysiology of decision making owes its exist-
ence to progress in delineating the sensory 3 and motor 4–

6 systems of the cerebral cortex. As sensory and motor 
physiologists traced input and output pathways deeper 
into the brain, they often found themselves studying the 
same central brain structures from different perspec-
tives. Because decision making forms a key link between 
sensation and action, some of these investigators won-
dered whether the neural transformations responsible 
for decision making might be implemented in these 
sensorimotor watershed areas7–12. 

Most, although not all12–14, efforts to understand 
these transformations have drawn on the visual and 
oculomotor systems of the primate brain. Primary 
visual processing occurs within a network of areas in  
the occipital and temporal cortices (FIG. 1; red), whereas 
visuomotor areas that link these sensory areas to the 
brainstem oculomotor nuclei reside in the frontal and 
parietal cortices and in the midbrain (FIG. 1; blue). In 
the context of a typical two-alternative forced-choice 
discrimination task, these intermediate areas must 
implement at least three fundamental transformations15 
(FIG. 2a). First, a ‘sensory transformation’ generates a 
higher-order visual representation from primary visual 
input. Second, a ‘decision transformation’ maps this 
sensory evidence onto the probability of one or other 
operant response. Finally, a process of action imple-
mentation renders a discrete behavioural response 
from this probabilistic representation. 

These transformations can be studied in monkeys 
that have been trained to discriminate noisy visual 
stimuli and report their perceptual judgements using 
eye movements. By recording neural activity in visuo-
motor pathways during such tasks, investigators have 

identified sensory representations as well as decision-
related signals in areas of the parietal and frontal cor-
tices. At the neural level, differentiating sensory signals 
from decision-related signals is relatively straightfor-
ward. First, sensory signals require the presence of the 
sensory stimulus, and extinguish with stimulus offset. 
Second, and more importantly, in discrimination tasks 
in which behavioural decisions and neural activity are 
measured across a range of stimulus strengths, animals 
make both correct and incorrect judgements in response 
to the presentation of identical stimuli. On these trials, 
sensory neurons encode the visual stimulus itself, 
whereas the activity of decision-related neurons reflects 
the animal’s ultimate choice.

It is more difficult to dissociate decision-related 
activity from premotor signals, which might reflect the 
outcome of a decision but not the process of delibera-
tion itself. To distinguish these alternatives, we must 
look at factors that affect decision making but that are 
not necessarily expressed in the motor response. For 
example, decisions vary in their certainty: subjects are 
very certain about decisions that relate to supra-
threshold stimuli but are much less certain when stimuli 
are at, or below, the psychophysical threshold. By con-
trast, the motor responses that subjects use to indicate 
their choices can be highly stereotyped and largely 
independent of the strength of the evidence on which 
the underlying decision was based.

Shadlen and Newsome16,17 showed this dissociation 
in monkeys that had been trained to discriminate the 
direction of coherent motion in a stochastic random dot 
display (FIG. 3a). As the strength of the motion signal was 
varied from weak (most dots moved in random direc-
tions) to strong (most dots moved coherently in a single 
direction), the animal’s behaviour varied between chance 
and perfect performance (FIG. 3b). Neural signals in the 
lateral intraparietal area (LIP) covaried with the animal’s 
final decision, but were also modulated by the quality of 
the sensory evidence (motion coherence). Importantly, 
this correlation was independent of any covariation 
between stimulus coherence and the details of the 
animal’s motor response. For the same task, similar deci-
sion-related signals have been seen in the dorsolateral 
prefrontal cortex (DLPFC)18 and in the superior col-
liculus19, a brainstem target of these cortical areas. These 
results have prompted the proposal that LIP, in coopera-
tion with other areas, implements the decision transfor-
mation in this task, converting a sensory representation 
of visual motion into a decision variable that is capable 
of guiding behaviour. Additional support for this pro-
posal comes from recent demonstrations that the profile 
of LIP activity in a reaction time version of this task pre-
dicts not only what the animal decides, but also when 
that decision has been reached20, and that electrical 
microstimulation of area LIP influences the outcome 
of the decision process, as predicted by the properties of 
the neurons at the stimulation site21. 

Sensorimotor areas like LIP access not only visual 
input, but also other types of information that are perti-
nent to decision making. For example, the activity of LIP 
neurons can be modulated by the attentional priority 

Figure 1 | Visual and oculomotor systems of the primate 
brain. Lateral view of the cerebral hemisphere of the macaque 
monkey showing visual (red) and visuo-oculomotor (blue) 
areas. Example visual areas include primary visual cortex 
(V1), fourth visual area (V4) and inferotemporal cortex (IT). 
Visuo-oculomotor areas include the lateral intraparietal area 
(LIP), frontal eye field (FEF), supplementary eye field (SEF) and 
Walker’s cytoarchitectonic area 46 (area 46). Another important 
oculomotor structure, the superior colliculus, is located in the 
midbrain, which is not visible on this image. The map of cortical 
areas was derived from a macaque atlas data set106, which 
was downloaded and processed using Caret software107. 
Adapted, with permission, from REF. 106 © (2004) MIT Press, 
and from REF. 107 © (2001) JAMA.
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of spatial locations22, the prior probability that a par-
ticular eye movement will be instructed23 and the 
magnitude of a juice reward associated with a motor 
response23. So, LIP seems to encode a mixture of sen-
sory, motor and cognitive signals that might guide 
decisions about upcoming behavioural responses 
BOX 1. 

Decision making and reward
Making adaptive decisions. Consider a fisherman 
standing on a riverbank deciding where to cast his 
line. Unable to see the fish, he must instead ‘read the 
water’, observing where it slows into deeper, shady 
pools — places where trout are more likely to feed. As 
a frequent visitor to this spot, he has had more success 
at some of these locations than at others. Like many 
everyday decisions, the correct choice in this situation 
is not immediately evident from sensory input, but 
emerges from analysing that input in the context of the 
value/utility of available stimuli and actions — in this 
case, our fisherman’s accumulated experience and 

expectation of the likely abundance of fish. 
Psychologists and economists have long appreciated 
the influence of reward and valuation on decision 
making in higher mammals24, but these factors were 
notably absent from our preceding discussion. Although 
reward is an implicit variable in every operant task, 
most physiological studies of perceptual decision mak-
ing hold reward contingencies constant to isolate 
activity that is specifically related to sensorimotor 
transformations (FIG. 2a). Only recently have investiga-
tors begun to manipulate reward independently in 
order to explore the neural basis of valuation and 
adaptive behaviour.

A conceptual framework within which to consider 
value-based choice is proposed in FIG. 2b. Neither con-
clusive nor complete, it is intended as a starting point 
from which to discuss the basic steps in building an 
internal representation of value and using that repre-
sentation to guide behaviour. Focus first on the left-
hand side of this diagram (labelled ‘actor’). Like the 
proposed framework for perceptual decisions (FIG 2a), 
this framework for value-based decision making 
comprises three key processing stages. At the first 
stage, a value transformation takes the input — 
rewards, or ‘common reward currency’ — to the system 
and abstracts from it a representation of the value of 
available options. At the second stage, a decision 
transformation maps this value representation onto 
the probability of alternative courses of action. A final 
processing stage transforms this continuous probability 
into a discrete choice among these alternatives. Much 
of our discussion of the neurobiology of value-based 
choice focuses on the neural implementation of these 
transformations; however, the first question raised by 
this framework is the nature of the input to the system 
— the rewards themselves.

A common neural currency for rewards. Operationally, 
we can define a reward as anything that an animal will 
work to acquire. This definition emphasizes the motiva-
tional (‘wanting’) rather than the affective (‘liking’) 
dimension of reward. Both of these dimensions are 
thought to have distinct psychological and physiological 
substrates25. No single sense organ is responsible for 
transducing rewards, but the phenomenon of brain-
stimulation reward26 (BSR) indicates that there is a 
dedicated network of neural structures devoted to 
reward processing. In the rat, Shizgal and colleagues27 
have shown that BSR can summate with and be traded 
off against various natural rewards to influence choice 
behaviour, and that manipulations of physiological state 
that profoundly modify the value of natural rewards 
have little influence on the efficacy of BSR. These results 
indicate that BSR contributes something like a pure 
reward signal to the neural circuitry that is responsible 
for valuation. This circuitry interacts with natural rewards 
downstream from the point where they have been scaled 
for their identifying features and projected onto a single 
common dimension of reward. For simplicity, FIG. 2b 
assumes the existence of such a common reward signal 
as input to the valuation system.

Figure 2 | Conceptual frameworks for decision making. A conceptual framework that 
illustrates proposed processing stages for the formation of simple perceptual and value-based 
decisions. a | Perceptual decisions. A sensory transformation operates on primary sensory input 
to generate a representation of a higher-order stimulus dimension (for example, visual motion or 
auditory space). A decision transformation maps this sensory representation onto the probability 
of alternative operant responses. A final processing stage renders the actual binary decision, 
reducing the continuous probabilistic representation to a discrete plan for motor action. 
b | Value-based decisions. The absence of a dedicated sensory system for transducing rewards 
means that sensory input and physiological needs must first interact to identify ‘rewards’ in the 
animal’s environment. For simplicity, we assume that this initial processing produces a ‘common 
reward currency’, which can be considered as the primary input to subsequent stages. This 
framework is considered to have an ‘actor–critic’ architecture. Within the actor component, the 
reward input is transformed into a higher-order representation of the value of different stimuli. 
Through the action of the critic, this mapping can be optimized to the environment. A decision 
transformation maps this value representation onto the probability of available behavioural 
responses. At the final stage, this representation is reduced to a single behavioural choice. 
VTA, ventral tegmental area, the midbrain origin of the dopaminergic neurons that contribute the 
‘error signal’ to our proposed actor–critic architecture.
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Incentives and errors. BSR is elicited most reliably at 
sites defined by the projections of midbrain dopamine 
neurons. Various clinical28–30 and experimental31 data 
also indicate a central role for the dopamine system in 
processing the motivational aspect of reward. More 
recent experimental work is beginning to clarify this 
role32–34. In particular, electrophysiological recordings 
of midbrain dopamine neurons in alert monkeys dur-
ing simple conditioning tasks35–37 indicate that dopamine 
neurons do not signal the occurrence of rewards per se. 
Instead, phasic changes in the firing rates of these cells 
seem to comprise an error signal, the magnitude and 
sign of which encode disparities between an animal’s 
expectations and experience of reward.

Because such error signals indicate a flaw in the 
animal’s understanding of the world, they are particu-
larly useful for guiding learning38. In what are referred 
to as ‘actor–critic models’39, an error signal such as that 
conveyed by dopamine neurons can be used to select 
actions that maximize rewards in response to specific 
sensory cues40,41. This approach has been successful in 
accounting for the behaviour of relatively simple organ-
isms in restricted environments42. In mammals, the 
action of dopamine on striatal circuits has been pro-
posed to implement such an actor–critic architecture43, 

and recordings from monkey caudate neurons during 
simple associative conditioning tasks show activity that 
is consistent with the creation of such stimulus–
response bonds44–46. However, the direct yoking of 
stimuli to actions and outcomes implied by the current 
generation of these models fails to capture the facility 
with which higher organisms construct complex rep-
resentations of value and flexibly link them to action 
selection BOX 2. 

Responding to these limitations, more recent 
theoretical proposals have expanded the role of the 
dopamine signal to include the shaping of more 
abstract models of valuation47–49. Consistent with this 
approach, FIG. 2b portrays the dopamine system as a 
critic whose influence extends beyond the generation 
of simple associative predictions to the construction 
and modification of complex value transformations. 
In this scheme, the striatum is considered to have the 
crucial role of liaison between actor and critic. If 
correct, this proposal indicates that dopamine neu-
rons have access to the value representation depicted 
in FIG. 2b. Consistent with this idea, Nakahara and col-
leagues50 recently showed that dopamine responses 
were strongly modulated by contextual information 
that pertained to the evolution of reward probability 
across successive trials in a task, even when this infor-
mation was not accompanied by any explicit sensory 
cue. Further experiments involving more complex 
value-based tasks will be needed to determine the true 
scope of the dopamine signal in shaping value-based 
choice.

Value-based decision making
The cortex as the stage for valuation. The cortex is the 
likely stage on which value-based decisions unfold. 
Anatomically, several regions within the prefrontal 
and parietal association cortices are positioned to link 
rewards to behavioural responses. These areas receive 
sensory inputs, project to motor planning centres, 
and are reciprocally connected to the dopamine sys-
tem, either directly or through the striatum. Many of 
these areas show activity that is modulated by the 
expectation or delivery of reward 23,51–62, or that persists 
through time in tasks that engage short-term mem-
ory63–69 — properties that indicate a basis for maintain-
ing a representation of value through time. Therefore, 
whereas lesion data70,71 have tended to emphasize the 
importance of the prefrontal cortex in monitoring the 
motivational value of stimuli and actions47,49,72,73, phys-
iological studies indicate that this function might, in 
fact, be distributed across both frontal and parietal 
cortices23,74.

In FIG. 2b, the process of interpreting input in the 
context of behavioural performance is indicated by the 
‘value transformation’ , and it produces a value represen-
tation — an internal model of the world in which stimuli 
or actions are scaled for their value or utility to the ani-
mal. Developed through the influence of the critic, the 
mapping from experience to value that creates this rep-
resentation should be flexible, capable of generalizing 
across stimuli and able to integrate experience over 

Figure 3 | Decision-making tasks. a | General structure of a perceptual discrimination task, in 
which a monkey reports its judgement of the direction of motion in a random dot stimulus with 
an eye movement to one of two targets that are aligned with the axis of stimulus motion. b | In a 
perceptual discrimination task, a psychometric function quantifies the reliance of behaviour on 
the sensory signals being manipulated experimentally. c | The general structure of a free-choice 
task, in which a monkey uses eye movements to indicate its relative valuation of two competing 
choice targets that are associated with independent underlying reward schedules. The visual 
icons depict success (water drop) or failure (sand) in acquiring a liquid reward. d | In a free-
choice task, a valumetric function quantifies the reliance of behaviour on the value signals being 
manipulated experimentally.
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time. Such an internal model frees the organism from 
slavish adherence to the immediate consequence of 
every encounter and action, allowing it to organize 
goal-directed behaviour on a level and time scale that 
is appropriate for its environment.

Understanding the neural basis of value-based 
choice entails investigating the neural substrates of 
these value representations and the mechanisms by 
which they are constructed, maintained and trans-
formed into behaviour at the decision stage. Most 
studies that have examined reward-related activity 
have done so in the context of imperative tasks in 
which an animal’s behavioural response is instructed 
unambiguously on every trial75. This approach is fun-
damentally limited, because the value transformation 
in such tasks is rudimentary (the probability of reward 
is unity for the instructed behaviour, and zero for all 
others), and the ‘decision’ is a simple one-to-one map-
ping between this representation and choice. 
Determining the specific contribution of these different 
signals will require more sophisticated tasks that 
involve nuanced, yet quantifiable, value judgements. 

In a ‘free choice’ task design (FIG. 3c) that is relatively 
new to the field of neurophysiology, monkeys use eye 

movements to choose between a pair of visual targets 
in the absence of any direct instruction about which 
target should be selected. Instead, such tasks place 
animals in a situation similar to that faced by our fish-
erman, in which the valuation and decision transfor-
mations of FIG. 2b are the primary determinants of 
behaviour. Paradoxically, the first challenge in design-
ing such tasks is to create a situation in which behaviour 
is not actually ‘free’, at least in the sense of being uncon-
trolled. For these studies to be informative, behaviour 
must be predictable on the basis of each task’s reward 
structure, making it possible to quantify the underlying 
value transformation. 

Demonstrating behavioural control. The logic here is 
borrowed from sensory psychophysics, in which an 
animal’s perceptual sensitivity is captured by a psycho-
metric function that relates behavioural choices to the 
strength of a sensory signal (see, for example, FIG. 3b). 
Well-behaved psychometric functions provide confi-
dence that behaviour is under ‘stimulus control’ , allow-
ing the exploration of underlying neural signals as the 
animal performs the task. By analogy, before embarking 
on a search for the neural correlates of the valuation and 
decision transformations indicated in FIG. 2b, we must 
first create a situation in which behaviour is lawfully 
related to some experimentally manipulated determi-
nant of value, allowing us to monitor an animal’s covert 
valuation through its overt behaviour. 

Three recent studies76–78 take two different app-
roaches to effecting reliable value-based behaviour, 
one drawn from the theory of competitive games, the 
other from a general principle of animal foraging 
behaviour. Both approaches allow us to predict the 
average frequencies with which an animal should 
choose response alternatives if it is sensitive to the 
statistics that govern reward availability in its envi-
ronment and behaves so as to maximize its overall 
rate of reward. In the setting of competitive games76,78, 
these predictions derive from Nash equilibria, 
whereas in the foraging context77, they emerge 
directly from Herrnstein’s matching law BOX 3. In 
either case, the correspondence between predicted 
and actual behaviour provides a means of assessing 
behavioural control (FIG. 3d).

Understanding local strategy. Behavioural control is 
necessary but not sufficient to formulate meaningful 
questions or conclusions about neural activity. This 
should come as no surprise: the predictions of the Nash 
equations or the matching law pertain to average 
behaviour at equilibrium. By contrast, the goal of neuro-
science is to determine the neural mechanisms respon-
sible for behavioural dynamics — the local behavioural 
strategies that give rise to average behaviours by dictat-
ing an animal’s individual choices. This distinction 
between molar (average) and molecular (local) level 
descriptions of behaviour poses a major problem 
because, in the case of both the matching law and the 
Nash equilibrium, the local behavioural strategies that 
produce these average behavioural phenomena remain 

Box 1 | Towards a unified theory of lateral intraparietal function 

A recent opinion piece90 cautions investigators against rushing to attach specific 
psychological labels to particular neural signals. Over the past generation, cognitive 
science has matured beyond strict behaviourist constructions, but our continued 
inability to cleanly dissociate concepts like ‘attention’ and ‘reward expectancy’ 
indicates that we should continue to heed the behaviourists’ admonition to focus on 
quantifiable variables that yield explanatory power in accounting for animal choice. 
Descriptively, the scope of these variables might seem limited, as they are necessarily 
framed in terms of information that is relevant to behaviour in a particular task — the 
strength of a noisy sensory signal in a discrimination task or the history of choices 
and rewards in a foraging game — but they have the important advantage that their 
validity can be quantitatively tested and compared. 

A single broad conceptual framework might one day unite the discoveries made 
through this operational approach. For example, in the context of two-alternative 
forced-choice eye movement tasks, it has been proposed that lateral intraparietal 
(LIP) activity reflects a general decision variable that is monotonically related to the 
logarithm of the likelihood ratio that the animal will select one of the two available 
eye movements10,85. This formalism is appealing both for its mathematical precision 
and because it suggests how multiple sources of information might be combined into 
a final decision variable by simply summing the likelihood ratios derived from various 
inputs — an operation that neurons perform well. Because it views LIP activity as a 
‘common currency’ for integrating information that is pertinent to the selection of 
future shifts in gaze or attention, this proposal has obvious connections to the even 
more general concept of a ‘saliency map’. In psychophysics and computational vision, 
saliency maps are conceived as important central clearing houses that prioritize the 
deployment of limited visual processing resources91,92, and saliency has already been 
suggested as a unifying explanation for LIP activity22. 

We believe that it is far too early to predict whether a single broad concept such as saliency 
will find a mathematically precise and biophysically plausible implementation, and, 
ultimately, provide a unifying theory of LIP function. Fortunately, data needed to 
help us make this determination require exactly the same experimental approach 
advocated above: experiments designed to link specific cognitive phenomena to 
behaviour that explore these links through quantitative behavioural modelling, 
and that leverage the insight and variables derived from these models to search for 
underlying neural signals.
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poorly characterized. Therefore, any systematic 
approach to studying valuation must begin by extracting 
from the behaviour itself a quantitative model of the 
local algorithm used by the animal. Ideally, this model 
should reveal the ‘hidden variables’ that link reward 
history to behaviour. These are the variables that gov-
ern the animal’s choice on each trial, and the goal of 
carrying out neurophysiological experiments should 
be to discover how and where these variables are com-
puted and represented at the neural level. We now 
examine three free-choice studies from the perspective 
of these three key elements — behavioural control, the 
modelling of local choice algorithms and physiology.

Value signals in frontal cortex. Barraclough and col-
leagues76 investigated neural activity in the context of 
a version of the ‘matching pennies’ game. In every 
round, each of two players places a coin on the table. 
When the coins are revealed, both go to player A if 
their faces match and to player B if their faces differ. 
FIGURE 4a shows how this game is described in terms of 
a payoff matrix — a standard way to represent the 
structure of a competitive game. In the experiments, a 
monkey makes an eye movement to choose one of two 
targets while the computer also selects a target. The 
monkey receives a drop of juice only if these selections 
match. The Nash equilibrium strategy in this task is for 
each player to choose each of the two targets randomly 
and with equal probability. 

Barraclough and colleagues provide a particularly 
clear demonstration of the distinction between average 
behaviour and the local choice algorithm used at the 
level of individual trials. In separate experiments, the 
computer opponent used two different algorithms for 
its choice of targets, leading the monkeys to adopt very 

different choice strategies. In the first algorithm, the 
computer acted naively, predicting the monkey’s next 
choice by evaluating only the animal’s recent choices 
without regard for rewards. In response, the monkey 
adopted a simple strategy in which it chose the same 
target if the previous choice was rewarded but switched 
to the other target if the previous choice was unre-
warded (a ‘win-stay-lose-switch’ strategy). In the more 
sophisticated algorithm, the computer considered the 
monkey’s rewards on previous trials as well as its 
choices. This completely negated the win-stay-lose-
switch strategy and caused the animals to choose in a 
manner that is characteristic of equilibrium mixed 
strategies BOX 3, in which choice seems to be governed 
by the unpredictable toss of a weighted coin. 
Importantly, despite these marked differences in local 
choice strategy, in both versions of the task the mon-
keys’ average frequency of choosing the two targets was 
50/50 and therefore consistent with the Nash equilib-
rium. This indicates that analysis limited to the level of 
equilibrium behaviour is unlikely to be sufficient to 
support the meaningful interpretation of the neuro-
physiological signals that underlie choice behaviour. 

Analysing the version of the task in which the 
animals’ choices do seem random in key respects, 
Barraclough and colleagues nevertheless found that 
they could predict the monkeys’ local probability of 
choosing one or other target using a reinforcement 
learning algorithm38,79. Consistent with the general 
framework in FIG. 2b, this model implements a value 
transformation by maintaining an ongoing representa-
tion of the recent value of each target, which it updates 
on the basis of the monkeys’ choice and outcome on 
the pre vious trial. The difference in these value repre-
sentations provides an ongoing estimate of an animal’s 
probability of choosing each alternative. On each trial, 
this estimate provides the input to a probabilistic deci-
sion rule that dictates the ultimate choice that the animal 
makes. In essence, the relative values of the two targets, 
computed from the local history of choices and 
rewards, capture the ‘weight’ of a coin being tossed to 
render individual decisions BOX 4.

This model of local choice provided the authors 
with a framework for interpreting neural signals 
recorded from DLPFC. These recordings revealed sub-
populations of cells, the activity of which reflected the 
monkey’s choice on the preceding trial, its outcome 
(reward or not) and the conjunction between the two. 
The last of these signals is exactly the input needed to 
update the target-specific value representations pre-
dicted in the authors’ reinforcement learning model. 
Taken as a whole, these neurophysiological data indi-
cate that DLPFC might contribute appropriate input 
to the value tranformation operating in this task, but 
that the value representations themselves are likely to 
be computed and stored in downstream areas. 
Nevertheless, this study shows nicely how an approach 
that incorporates the three key elements — value-
based behavioural control, quantitative modelling of 
local choice strategy and the neurophysiological 
exploration of model variables — can be fruitfully 

Box 2 | A tale of two systems? 

Many accounts of more complex behaviour invoke the existence of two distinct 
decision-making systems, each having a dominant role in valuation and action 
selection under different circumstances. In behavioural economics, Kahneman and 
Tversky distinguish between systems that are responsible for intuitive and deliberative 
judgements93. In the field of reinforcement learning, an analogous distinction is made 
between systems that support the learning of stimulus–response bonds (habits), 
which correspond to the intuitive system of Kahneman and Tversky, and those that 
participate in goal-directed action (instrumental control), which correspond to the 
deliberative system94,95. The intuitive/habit system is seen to be responsible for simple 
behavioural routines that are learned slowly after repeated experience, possibly 
through the types of dopamine-mediated associative mechanism that are outlined 
in the main text. The system responsible for goal-directed action, meanwhile, is 
proposed to rationally evaluate alternative action–outcome scenarios, to rapidly adapt 
to changing reinforcement contingencies and to be mediated by distributed (and 
largely unspecified) circuits within prefrontal and association cortices. 

As an explanatory heuristic, this dichotomy has some appeal, and is consistent 
with the divergent effects of certain experimental manipulations on instrumental 
versus habitual behaviours96,97. However, at the physiological level, there is little direct 
evidence for such a strict division. Midbrain dopamine neurons broadcast their error 
signal to both the striatum and the cortex, and as the functional scope of that signal 
has yet to be defined, biologically it seems more appropriate to view such decision-
making systems not as distinct entities, but as the theoretical extremes of a continuum 
of processes that are responsible for valuation and action. 
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applied to the problem of uncovering value-related 
neural signals. 
Value signals in parietal cortex. The remaining two 
studies focus on value representations in area LIP. 
Discussed earlier in the context of perceptual discrim-
ination tasks, LIP has strong connections to DLPFC 
and shows persistent activity similar to that found in 
prefrontal cortex. Individual LIP neurons become 
active in advance of shifts in an animal’s gaze67–69,80 or 
focus of attention69,81,82 to a particular region of space, 
termed the neuron’s ‘response field’. To study the 
involvement of LIP in free-choice tasks, on each trial 
one of the response targets is placed within the 
response field of the cell under investigation; a given 
behavioural choice therefore results in an eye move-
ment either towards or away from the cell’s response 
field. At issue here is not whether the cell will encode 
this planned eye movement — we know that to be the 
case — but whether its activity will also convey infor-
mation about the valuation process that lies upstream 
of that plan.

As discussed earlier, LIP firing rates are modu-
lated by many factors, leading to the proposal that 
individual LIP neurons integrate information from 
multiple sources to encode their combined influence 

on the likelihood of an eye movement to the cell’s 
response field. This perspective is reminiscent of the 
concept of a ‘common currency’ , which was raised 
earlier in the context of convergent inputs to the 
reward system. By analogy, we might conceive of LIP 
activity as a common currency for the planning of 
orienting responses, mapping input from multiple 
sources that might contribute to the selection of 
upcoming eye movements onto a single common 
representation BOX 1. Therefore, value-related sig-
nals should be evident in LIP for any task that 
requires eye movements to be selected according to 
the value of competing targets. Importantly, these 
value signals should reflect the specifics of the under-
lying value transformation, and provide a window 
onto the otherwise hidden decision variables that 
link reward experience to action.

The perspective of behavioural dynamics.  In our own 
experiments77, we record from LIP in a task in which 
average behaviour conforms to the predictions of the 
matching law BOX 3. In this task, monkeys use eye 
movements to choose between competing alternatives 
that are rewarded with probabilities that change unpre-
dictably across blocks of trials. The monkeys are sensi-
tive to these shifts in reward probability and adjust the 
fraction of responses that they make to each alternative 
to ‘match’ the fraction of rewards experienced from 
that option on the current block (FIG. 5a). Like 
Barraclough and colleagues, we find that a simple strat-
egy based on recent reward experience describes the 
local mechanism that is responsible for animals’ choices 
in this task.

This strategy takes the form of a linear–nonlinear 
probabilistic (LNP) model (FIG. 6a). At its input stage, 
the model uses leaky integrators of reward to compute 
the local income due to each response alternative. 
The model’s subsequent nonlinear stage uses simple 
division to normalize these estimates of local income. 
The resulting variable — ‘local fractional income’ — 
captures the animal’s relative valuation of each 
response alternative, and directly dictates its instantane-
ous probability of choosing that option on the current 
trial. Like the model of Barraclough and colleagues, our 
LNP model renders a final choice on each trial through 
the toss of a biased coin weighted with this probability 
BOX 4. This model is similar to Herrnstein’s original 
matching law in that it relates probability of choice to 
the fraction of rewards due to each alternative. 
However, as we emphasized earlier, there is an impor-
tant difference between the levels at which these two 
descriptions are intended to capture the underlying 
behaviour. The classic matching law is intended as a 
molar or average description of equilibrium behav-
iour, and is used to predict the steady state that will 
emerge after an animal has been exposed to a par-
ticular set of reward contingencies for a long period 
of time. By contrast, the local model detailed above 
is intended as a molecular or mechanistic description 
of behavioural dynamics that can be used to estimate 
local value and to predict the animal’s individual 

Box 3 | Assessing covert valuation through overt behaviour

Behaviour in competitive games and Nash equilibria 
As in the schoolyard game of ‘rock–paper–scissors’, outcomes in strategic games 
depend not only on an individual’s own actions, but also on those of their opponents. 
The mathematician John Nash showed that in such situations, there is at least one set 
of strategies among players that is stable, in the sense that no individual player can do 
better by deviating from their chosen strategy98. Behaviour at such ‘Nash equilibria’ 
frequently comprises what is termed a ‘mixed’ strategy, meaning that players’ 
choices can be described by a probability density function over available options. 
Mixed strategies have two interesting characteristics: they equalize payoffs across 
alternatives (each player experiences a constant average return for their choices), and 
they yield behaviour that is stochastic, or unpredictable in time, as though sequential 
choices were determined by a homogeneous Poisson process (for example, a flip of a 
weighted coin). This unpredictability is driven by the competition between players, 
as any regularity in one player’s behaviour might be detected and exploited by 
another. Originally conceived as a prescriptive theory of strategic behaviour, Nash’s 
equations were subsequently found to accurately describe actual behaviour in many 
real world competitive situations99. Both Barraclough and colleagues76 and Dorris 
and Glimcher78 have exploited this fact to generate quantitative predictions about the 
behaviour of monkeys engaged in strategic conflict against a computer opponent.

Animal foraging behaviour and Herrnstein’s matching law
In our own experiments77, we have used a principle of animal foraging behaviour 
known as the ‘matching law’100,101, which predicts that animals allocate their time 
or responses in direct proportion to the fraction of total rewards earned from 
alternative options. Matching behaviour has been most thoroughly documented in 
the context of concurrent variable interval reward schedules, in which alternatives 
are baited with rewards probabilistically and only become un-baited when the 
animal selects the alternative and collects the reward. In such situations, matching 
approximates the optimal behavioural strategy102,103. Furthermore, like mixed 
strategies at the Nash equilibrium, matching is characterized by behaviour that 
is stochastic103,104, and that equalizes the average payoff or return experienced for 
choices of each alternative. Like Nash equilibria, the matching law is useful because 
it allows us to construct quantitative expectations about behaviour in the context of 
foraging games.
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choices both at steady state and during times of 
behavioural change.

The key parameter in this model is the time con-
stant of reward integration, which captures the decay-
ing influence of past rewards on current choice. In 
simulations, the percentage of potential rewards col-
lected by this model critically depends on this param-
eter. Interestingly, we find that the specific integration 
time that the monkeys deploy is approximately opti-
mal given the statistics that govern the availability of 
rewards in the task. Using the monkeys’ integration 
time, the model accurately predicts the animals’ actual 
choice behaviour (FIG. 6b), and can itself generate 
behaviour that is qualitatively similar to that of the 
animals (FIG. 6c). Most importantly, this model provides 
us with candidate decision variables for physiological 
investigation. On each trial, it captures the animal’s 
strategy and distills its relative valuation of the 
response alternatives into a single number — local 
fractional income. It is this valuation variable that 
strongly modulates LIP firing rates. 

FIGURE 6d illustrates this result for a single repre-
sentative LIP neuron recorded during performance of 
the matching task. Each point represents the cell’s mean 
firing rate on a single trial, plotted against the local 
fractional income of the colour located within the cell’s 
response field. Blue and green points identify trials on 
which the monkey chose the target located inside or 
outside the cell’s response field, respectively. The cell 
reliably predicts the monkey’s eye movement responses, 
firing more strongly before choices of the response  
field target. However, among trials that share a com-
mon final eye movement, the cell is also strongly mod-
ulated by fractional income, firing more strongly when 
the fractional income of the response field target is 

high, whether or not that target is ultimately chosen. 
This effect of fractional income is independent of any 
trial-to-trial variation in the fine details of the mon-
key’s eye movements. Importantly, these signals are 
apparent to us only because our behavioural model 
affords access to the animal’s underlying value trans-
formation, which is local in time. Our previous attempts 
to detect value signals in LIP on the basis of global 
behavioural changes between blocks were marginally 
successful at best. Like Barraclough and colleagues, we 
owe our progress to an approach that combined valua-
tion-based behavioural control, modelling of the prox-
imal algorithm that generates individual choices and 
the neurophysiological study of the variables revealed 
by this model.

The perspective of behavioural equilibria. Dorris and 
Glimcher78 base their experiments on a well-character-
ized competitive interaction known as ‘the inspection 
game’. The general structure of this task is similar to 
that used by Barraclough and colleagues: on every trial, 
the monkey and the computer each select one of two 
eye movement targets, and the outcome depends on 
their combined choices. However, in this task the pay-
off matrix that defines the relationship between choices 
and outcomes is more complex (FIG. 4b). The monkey 
faces a choice between a green ‘certain’ target that deliv-
ers a small volume of juice with 100% probability, and 
a red ‘risky’ target that sometimes delivers a large vol-
ume of juice but at other times delivers nothing. The 
actual outcome of a ‘risky’ choice depends on the com-
puter’s actions, as the monkey gets nothing on trials in 
which the computer also selects (‘inspects’) the risky 
target. Therefore, the computer can block the monkey 
from receiving rewards for risky choices, although a 
‘cost’ charged to the computer discourages it from 
inspecting on every trial. The elegance of this design 
comes from the fact that by simply manipulating the 
computer’s ‘inspection cost’, the investigators can change 
the Nash equilibrium of the game, and, therefore, the 
proportion of trials on which the monkey is predicted 
to choose the risky target.

There are clear parallels between this study and the 
last. As in the matching task, monkeys playing the 
inspection game react appropriately to the blockwise 
changes in predicted response probability, adjusting 
the frequency with which they select the risky target to 
approximate each new equilibrium point (FIG. 5b). The 
authors then record LIP activity during task perform-
ance, always placing the red ‘risky’ target within the 
response field of the cell under investigation. Despite 
these similarities, the results of the two studies seem to 
differ, leading the authors to different conclusions 
about the role of LIP in value-based choice. 

Dorris and Glimcher’s results are remarkable owing 
to the absence of an effect on LIP activity. Specifically, 
whereas the frequency with which their monkeys select 
the risky (response field) target changes markedly across 
blocks of trials, LIP firing rates change little, remaining 
fixed at a fairly constant level whenever the monkey 
chooses the response field target (FIG. 7c). To interpret 

Figure 4 | Payoff matrices for competitive games. For a trial in the matching pennies game 
(a) or the inspection game (b), a payoff matrix defines the outcome for each player on the basis 
of the combined actions of both players. Green and blue represent the payoff experienced by the 
monkey and computer, respectively, for each possible combination of choices. In the inspection 
game, ‘i’ defines a cost to the computer for choosing (‘inspecting’) the red (‘risky’) target. By 
manipulating this cost across blocks, the mixed strategy predicted by the Nash equilibrium can 
be changed. Panel a adapted, with permission, from REF. 76 © (2004) Macmillan Publishers Ltd. 
Panel b adapted, with permission, from REF. 78 © (2004) Elsevier Science.
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this result, the authors appeal to the logic of behaviour 
at the Nash equilibrium, at which point a player’s overall 
distribution of choices should equalize the average pay-
off (rewards per choice) resulting from alternative 
actions BOX 3. On the basis of this assumed equality in 
payoffs, the authors suggest that the ‘subjective desirabil-
ity’ of the two alternatives remains equal across blocks. 
From this perspective, invariance in LIP firing rates 
across blocks can be interpreted as evidence that LIP 
encodes each alternative’s average payoff, or subjective 

desirability (which is a constant), rather than the prob-
ability of choosing that alternative (which varies). 
Although unorthodox in its appeal to the absence of a 
neural effect as evidence of a correlation, this conclu-
sion does seem to account for an otherwise puzzling 
pattern of physiological results. 

In contrast to Dorris and Glimcher’s conclusions, 
we proposed earlier that LIP activity comprises a com-
mon currency for planning shifts in gaze or visual 
attention. From this perspective, the activity of a cell in 
area LIP signals the evolving probability or likelihood 
that the animal will select the target located within that 
cell’s response field. Our data from the matching task 
are consistent with this interpretation, locating LIP at, 
or downstream from, the decision transformation that 
maps value to the probability of a particular choice or 
motor response (FIG. 2b). By associating LIP activity 
with subjective desirability rather than the local prob-
ability of an eye movement, Dorris and Glimcher’s 
results indicate a very different interpretation. In this 
view, LIP encodes an abstract representation of the 
relative desirability of external stimuli apart from any 
specific motor plan83,84, implying that LIP is located 
upstream of the putative decision transformation that 
links valuation to action (FIG. 2b).

The discovery of a ‘pure’ representation of value or 
desirability would comprise an important advance, but 
we are not convinced that the data support this conclu-
sion. Rather, we believe that the apparent discrepancy 
results from a misplaced emphasis in the study by 
Dorris and Glimcher on the global Nash equilibrium 
rather than on the local process through which that 
equilibrium is generated. The Nash equilibrium is not 

Box 4 | Probabilistic choice: does the brain play dice?

Both of the decision pathways shown in FIG. 2 make reference to an explicit representation of ‘probability of choice.’ It 
is a matter of some contention whether the brain ever works by computing the probability of alternative actions and 
subsequently selecting among them at random — as if rendering individual choices through the toss of a weighted coin. 
Certainly in the realm of perceptual decisions, there is no need to posit explicit probabilism in the decision-making 
process. Although traditional psychometric functions (FIG. 3b) show a smooth relationship between stimulus parameters 
and probability of choice, signal detection theory105 tells us that this apparent probabilism can be explained entirely by 
noise at the level of the sensors. Even if the underlying decision criterion is perfectly deterministic, noise in the sensory 
representation of identical stimuli can cause some observations to lie on different sides of the decision criterion, giving 
rise to unpredictability at the level of observed behaviour. However, although we do not need explicit probabilism on the 
part of the brain to explain data from studies of sensory-based decision making, neither do these data preclude it. For 
example, some of the apparent variability in choice, which, according to signal detection theory, is attributable to noise in 
the sensory representation, might actually arise from true blurring in the internal decision criterion.

Value-based decisions offer a stronger rationale for probabilistic models of choice behaviour. It is often argued 
from the perspective of game theory that explicitly probabilistic behaviour is required of animals in competitive 
environments BOX 3. However, even in many non-competitive foraging situations, like our own matching 
experiments, the most successful models of behaviour frequently incorporate a probabilistic stage (see FIG. 6). 
Nevertheless, just as the argument above does not bar true probabilism from sensory decision making, neither do 
these arguments necessitate its presence in value-based decision making. There might be some better model of 
choice in our matching task that is actually deterministic, and however optimal it might be to behave randomly in 
competitive settings, animals might not actually do so.

Future experiments might address how and where the apparent unpredictability in animal behaviour arises. All 
variability in animal choice might, ultimately, be traced back to noise at the level of sensory and value representations. 
Alternatively, noise at the level of the decision mechanism might introduce inherent unpredictability. A third 
possibility is that the brain might explicitly compute the probability of taking each of several actions and possess 
mechanisms for choosing among them, much like flipping a biased coin. The framework of FIG. 2 is meant only to be 
general enough to encompass all three of these possible realities.

Figure 5 | Demonstrating behavioural control. Average monkey behaviour in the matching 
task (a) and the inspection game (b) corresponds to the predictions of the matching law and the 
Nash equilibrium, respectively. In both panels, each point represents an average over blocks 
of trials with the specified predicted choice probability. Standard error bars are smaller than the 
data points and are, therefore, not visible. The arrow indicates the point that corresponds to the 
single mixed strategy explored in the Barraclough study76. Panel a adapted, with permission, 
from REF. 77 © (2004) American Association for the Advancement of Science. Panel b adapted, 
with permission, from REF. 78 © (2004) Elsevier Science.
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a mechanism; it is a description of a behavioural end-
state measured by averaging choices over time. In any 
competitive game, individual choices are presumed to 
result from an underlying dynamic process through 
which each player continuously tries to gain an advan-
tage over the other. From our perspective, the subject of 
real interest — and the computation that is likely to 
have a neural implementation — is the mechanism that 
generates these individual choices. It is not obvious why 
the brain should encode a behavioural end-state 
abstractly. By analogy, a thermostat might regulate the 
average temperature in a room, but it does so by com-
puting and responding to local temperature fluctuations, 
not to the average temperature.

Dorris and Glimcher acknowledge that behaviour at 
the Nash equilibrium is likely to be influenced by a local 
process of valuation. Rather than develop a model of 
local valuation, however, they use the computer’s 
inspection algorithm as a proxy for the animal’s estima-
tion of the value of the two targets on each trial. This 
algorithm does not directly incorporate information 
about the animal’s history of rewards, so it offers, at 
best, a rough approximation of the animal’s actual value 
transformation. Tellingly, LIP activity covaries with local 
fluctuations in this rough estimate of value (for further 
information, see REF. 78), and therefore presumably with 
local fluctuations in probability of choice. We suspect 
that this result points to the real signal in these data, and 

that an appropriate model and analysis would reveal a 
systematic relationship between this signal and the 
actual local value variable that dictates the animal’s 
instantaneous probability of choice.

Local or global valuation? If we are correct that area 
LIP represents local value and local probability of 
choice, an important question remains: why does LIP 
activity in the inspection game seem to remain roughly 
constant across blocks of trials despite large variations 
in the monkey’s average probability of choosing the 
response field target (FIG. 7c)? To explore this issue, we 
re-examine our own experiments. 

On each trial in the matching task, the response field 
target has both a global value (determined by its global 
fractional income and computed using blockwise reward 
rates) and a local value (determined by its local frac-
tional income and computed using our behavioural 
model; FIG. 6a). By simultaneously sorting trials accord-
ing to both of these measures of value, we can directly 
examine the influence of each while controlling for the 
effect of the other. In this manner, FIG. 7a illustrates the 
joint influence of global and local value on the average 
normalized activity of 43 LIP neurons recorded in the 
matching task. The individual pixels in this plot show 
average LIP activity for trials on which the response field 
target had the specified combination of global and local 
values; contours of constant colour reflect trials on 

Figure 6 | A local model of matching behaviour. a | A linear–nonlinear probabilistic model uses leaky integration over recent 
reward experience to estimate the local income due to each response option (Ired, Igreen). In a local formulation of Herrnstein’s 
matching law, these estimates are used to compute the local fractional income of each option (that is, FIred), which directly 
translates into the animal’s instantaneous probability of choosing that option on the current trial (that is, PCred). b | Predictive 
sufficiency: model output is predictive of animal choice. c | Generative sufficiency: when exposed to an identical block sequence in 
simulation, model behaviour closely resembles that of the monkey. d | The activity of an example lateral intraparietal neuron shows 
dependence of neural response on the local fractional income of the reponse field (RF) target. Each point represents the cell’s 
mean firing rate on a single trial. Blue and green indicate trials ending with choices into and out of the response field, respectively. 
Lines are least squares regressions fit to the corresponding points (p for each <0.001). Panels a and d adapted, with permission, 
from REF. 77 © (2004) American Association for the Advancement of Science. Panels b and c reproduced, with permission, from 
REF. 77 © (2004) American Association for the Advancement of Science.
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which neural activity was also constant. The horizontal 
orientation of these contours shows that activity in LIP 
is strongly influenced by local value but essentially inde-
pendent of global value (note that this same result is 
obtained if trials that end in responses directed either 
towards or away from the response field target are ana-
lysed separately). FIGURE 7b reveals a similar pattern of 
effects for the monkey’s probability of choice: the mon-
key chooses the response field target when that target 
has a high local value, and is only weakly influenced by 
the target’s global value. 

We believe that this inherently local valuation proc-
ess, when combined with bias in the distribution of 
trials sampled, can account for the apparent discrepancy 
between our LIP results and those described by Dorris 

and Glimcher. Like idealized behaviour at the Nash 
equilibrium, perfect matching behaviour is character-
ized by equivalence in the average payoff or return 
experienced from competing response alternatives 
BOX 3. Following the example of Dorris and Glimcher, 
therefore, we might interpret the fact that LIP firing 
rates do not vary with changes in global value (FIG. 7a) 
as evidence that LIP activity allows the equal subjective 
desirability of the response targets to be encoded. 
However, we believe that the actual explanation for this 
result is more mundane: changes in global value seem 
to exert little effect because the influence of global 
value on both choice and neural activity is mediated 
entirely through effects on local value. To reiterate, 
when the global value of the response field target 
changes across blocks, it changes the frequency with 
which the response field target has a high local value, 
but the relationship between local value and choice, 
and consequently the distribution of local values on 
trials when the monkey actually chooses the response 
field target, changes little, if at all. 

This result means that any analysis that is restricted 
only to trials on which the monkey chooses the 
response field target will be biased towards trials on 
which the local value of the response field target is 
high, and will consequently give the appearance of con-
stant (and relatively high) LIP firing rates. This effect 
is illustrated directly in FIG. 7d, where we re-plot the 
data from the same matching experiment presented in 
FIG. 6d in the format used by Dorris and Glimcher to 
present their inspection game data (reproduced in FIG. 
7c). Each dot in this plot represents a running average 
of the cell’s activity, but only considers trials on which 
the monkey actually chose the response field target. 
Like the corresponding figure in Dorris and Glimcher’s 
paper, the resulting plot is remarkable for the constant 
high level of neural activity. We have already seen, 
however, that these same data contain real variance 
that is well explained by a local mechanism (FIG. 6d) that 
makes no appeal to explicit neural encoding of the sub-
jective equivalence implied by the equilibrium state. 
The constant firing rates that we observe in FIG. 7d are 
a direct consequence of the simple fact that both neural 
activity and behaviour track changes in local value. In 
the absence of evidence to the contrary, we believe that 
LIP data obtained in the context of the inspection game 
can also be explained by local value computations that 
directly dictate the animal’s probability of choosing one 
or other target on any given trial (FIG. 2b).

The inspection game incorporates both the 
dynamics of competition and the challenge of an 
environment that changes unpredictably over time. 
As such, it is likely to elicit a local strategy that differs 
from that seen in either of the previous studies. 
Uncovering the details of this strategy and its accom-
panying value transformation will be an important 
challenge for future work. This know ledge might 
demystify some of the hidden behavioural processes 
that govern competitive interactions and provide a 
powerful tool for exploring their underlying neural 
substrates.

Figure 7 | Influence of global and local values on monkey choices and lateral 
intraparietal area activity. a | Average normalized neural response of 43 lateral 
intraparietal (LIP) neurons in the matching task as a function of both the global (abscissa) 
and local (ordinate) values of the response field target. b | Monkey’s probability of choosing 
the response field target in the matching task as a function of both the global (abscissa) and 
local (ordinate) values of the response field target. c,d | Activity of an example LIP neuron 
during performance of three blocks of the inspection game (c) or the matching task (d). For 
both panels, thin vertical black lines represent unsignalled block transitions; horizontal lines 
indicate the average percentage of red choices predicted by either the Nash equilibrium 
(c) or the matching law (d); black jagged lines represent a 20-trial running average of the 
monkey’s probability of choosing the red target; dots indicate a 20-trial running average 
of neural activity that includes only those trials on which the monkey chose the response 
field target. In d, dot colour indicates the colour of the chosen target; in c, the red ‘risky’ 
target was always positioned within the response field. At first glance, the result in b might 
seem inconsistent with FIG. 5a, which showed a linear relationship between probability of 
choice and global value. The key to resolving this apparent discrepancy is that trials from 
any given global value group are distributed non-uniformly across the range of local values. 
Therefore, most of the trials that contribute to the rightmost point in FIG. 5a (the highest 
global value) come from the upper right-hand side of the figure shown here — trials that 
also have high local value. Similarly, most of the trials that contribute to the leftmost point in 
FIG. 5a (the lowest global value) come from the lower left-hand side of the figure shown here 
— trials that also have low local value. Bins in the other two quadrants are more sparsely 
populated. Therefore, the relationship between choice and global value in FIG. 5a is entirely 
due to a relationship between choice and local value and the presence of progressively 
more trials with high local values as we select for greater global value. Panel c adapted, with 
permission, from REF. 78 © (2004) Elsevier Science. Data in panels a, b and d from REF. 77.
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