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1 Introduction

There has been a resurgence of interest in the application and properties of instrumental

variables (IV) estimators. An important problem in IV estimation is choosing the number

of vahd instruments, or more generally a subset of all the instruments known to be valid.

The properties of estimators are sensitive to this choice (e.g. see Morimune, 1983), even

in applied work with many observations (e.g. see Bound, Jaeger and Baker, 1996). We

address this problem by providing simple approximate mean-square error (MSE) criteria,

that can be minimized to choose the instruments. We give these criteria for two-stage

least squares (2SLS), limited information maximum likelihood (LIML), and the Jacknife

IV (JIVE) estimator of Angrist, Imbens, and Kreuger (1995). We also compare the

approximate MSE of these estimators, and find LIML is best.

Our criteria is based on higher-order asymptotic theory, Hke that of Nagar (1959),

Anderson and Sawa (1979), Morimune (1983), and Rothenberg (1983). Our approximate

MSE criteria are like those of Nagar (1959), being based on the MSE of leading terms in

an expansion of the estimator.This approach is well known to give the same answer as the

MSE of leading terms in an Edgeworth expansion, under suitable regularity conditions

(e.g. Rothenberg, 1984), and has been used in nonparametric and semiparametric models

by Andrews (1991a), Linton (1995), and Powell and Stoker (1996). For k-class estimators

our calculations extend those of Nagar (1959) and Rothenberg (1983) to the misspecified

first-stage case. We also provide new results for the jacknife IV estimator (JIVE) of

Angrist, Imbens and Krueger (1995).

A number of recent studies have considered the properties of IV estimators when

instruments are only weakly correlated with the endogenous right hand side variables. In

particular Nelson and Startz (1990), Maddala and Jeong (1992), Bekker (1994), Bound,

Jaeger and Baker (1996), and Staiger and Stock (1997) have shown that standard IV

estimators, including the 2SLS estimator, tend to be biased towards the inconsistent

OLS estimator and that inferences based on 2SLS can be quite misleading, when the

endogenous variable is only weakly correlated with the instrument. As a practical mat-



ter, choosing the instruments may help improve the approximation, particularly when

the source of weak correlation is extraneous instruments that should be excluded. For

example, we show that in data like that of Angrist and Krueger (1991) our criteria will

choose the smallest number of instruments, where there is less evidence of a problem of

weak correlation.

Our criteria for choosing a subset of valid instruments is the estimated MSE of leading

terms in an expansion. This approach is different than Andrews (1996), who bases instru-

ment choice on the GMM criterion function. We are choosing instruments from a subset

that is known to be valid while he is searching for the largest set of valid instruments.

Our approach seems ideally suited to many applications in microeconomic data, where

there is a large set of instruments all thought to be valid. Examples include the draft lot-

tery number as an instrument for military service, as in Angrist (1990), and interactions

of covariates with instruments, as in Angrist and Krueger (1991). Our results also apply

to the choice of nonlinear functions to use in the efficient semiparametric instrumental

variables estimator of Newey (1990). Here we derive the optimal, MSE minimizing num-

ber of instruments to use, answering the important question of how to pick the number

of instruments in optimal semiparametric estimation. The number of instruments can

be thought of as a smoothing parameter for the nonparametric component, as has been

considered by Linton (1995) and Powell and Stoker (1996) for other models.

In Section 2 we describe the IV estimators we consider, present the criteria for in-

strument choice, and compare these criteria for different estimators, seeking the one with

smallest higher order MSE. In section 3 we derive the approximate MSE for LIML, 2SLS

and JIVE when there are no covariates. Section 4 studies the properties of the criteria

theoretically and shows that they can be implemented in a way that is optimal in a

certain sense. Section 5 allows for covariates in the theoretical results. In section 6 we

present a Monte-Carlo experiment. Section 7 presents the results of applying the criteria

in the Angrist and Krueger (1991) appUcation.



2 The Model, Estimators, and Instrument Selection

Criteria

The model that we consider is,

Vi = 1^1 + 2:^/3 + ei, E\ei\x^ = 0, V"ar(ei|xi) = o\,

Yi = f{x^) + Ui,E[ui\xi] = 0,Var{ui\xi) =al,

for i = 1, ...,N, where yi, and Yi are scalars, x, is a d x 1 vector of exogenous variables,

and Xii is a di X 1 vector of exogenous variables which are assumed to be a subset of

Xi, where we assume homoskedasticity throughout. We also assume that conditional

third moments are zero throughout the paper. The first equation is the equation of

interest and the right hand side variable Yi is possibly correlated with e, so that generally

E{uiei\xi) = aue 7^ 0, The second equation represents the reduced form relationship

between Yi and the exogenous variables Xi which is allowed to be nonparametric, with

f{xi) = E{Yi\x,).

Because of the conditional moment restriction E{ei\xi) — 0, functions of Xj can be used

as instruments in estimating the equation of interest. Let ipf = (ipiKi^i), ,4'KK{^i))' be

a vector of K functions to be used as instrumental variables, where we assume throughout

that xpf" includes Xu. They could be approximating functions, such as power series

or regression splines, as in Newey (1990). The problem we consider is how to choose

this instrument vector so that the associated IV estimators have good properties. For

simplicity we have allowed K to serve as both the number of instruments and the index

of the instruments, but we could proceed more generally by specifying a different index

for the instruments. If we did that the criteria could be used to compare instrumental

variables estimators with the same number of instruments.

We consider several different IV estimators. To describe them let ^^ = [ip^
,
...,ip^]'

be the matrix of observations on the instrumental variables, P^ = ^'^(^^'^'^)~i^-'^' the

associated projection matrix, y = (yi, ...,yn)', Y = (Yi, ...,y„)', Xi = [xn, ...,Xin]', W =

[Y,Xi], and 6 = {-f,(3'y. Also, let 9 be the minimum of X'Y'{P^ - Pi)YX/X'Y'{I - Pi)YX



over A, where Pi = Xi(XjXi) ^X[. The main class of estimators considered is the k-class

which includes estimators which have the form,

6={{1 + k)W'P^W - kW'W)-\{1 + K)W'P^y - nWy)

where the scalar k is given by,

ad + j^K =
l-a9-j^

for constants a and b. This class of estimators includes 2SLS, where a = b = 0, LIML,

where a = 1 and 6 = 0, and a bias-corrected 2SLS estimator like that of Nagar (1959),

denoted here by B2SLS, where a = and b = K — (2 + di). This class of estimators is

similar to that considered by Rothenberg (1983).

The other estimator considered is the Jackknife IV estimator (JIVE) proposed by

Angrist, Imbens and Krueger (1995). It has the form,

( IJ \ _ { y'C'Y Y'C'X, \ ~Y Y'C'y \

[Pj )-[ X[Y X[X, ) [X[y )

where C is the matrix with Cij = Pij/{1 — Pa) for i 7^ j and Cu = 0. Note that CY has

the interpretation as the vector of predictions of the Yi given all but the ith observation,

hence the Jackknife terminology.

The instrument selection criteria are based on the approximate mean square error

(MSE) for the endogenous variable coefficient estimator 7. Implementing these criteria

requires preliminary estimates of some of the parameters of the model and a goodness of

fit criteria for estimation of the reduced form using the instruments ipf. Let 6 denote a

preliminary IV estimator and let e = y — W6. Also, let u denote some preliminary reduced

form residual estimator, such as that obtained from the residuals from the regression of

y on ^^ for some fixed K. Then let

o-,^ = e'e/N, al = u'u/N, Uu^ = u'e/N.

It is important in what follows that none of these preliminary estimators depend on K.

For example S might be an IV estimator with just one instrument for Yi, or it might be

an IV estimator where the instruments are chosen to minimize the first stage goodness



of fit criteria given below. Similarly, the reduced form residual u might be from the first

stage regression with the best fit. In any case these estimates must remain fixed as the

criteria for different instruments sets is calculated.

The reduced form goodness of fit criteria can be formed in at least two ways. Let u^

denote the reduced form residual vector from regressing Y on'^^ . The Mallows goodness

of fit criterion for the reduced form is

R{K) = {u^'u^/N){l + ~^)

The cross-validation goodness of fit measure is

^f)
2

Either of these will have suitable theoretical properties for use in the instrument selection

criteria.

The preliminary estimates of covariance parameters can be combined with the reduced

form goodness of fit measures to form criteria for the choice of instruments for each of

2SLS, LIML, and JIVE as

S2SLs{K) = al^ + aUR{K) - al^)

suml{k) = ^![m)~^^)

For each estimator, choosing K to minimize the corresponding S{K) will result in 7 that

has relatively small MSE asymptotically. These criteria also will apply when K is not

the sole index of the instruments, e.g. for comparing two different sets of instruments

that have the same number of instruments. Choosing the estimator where the expression

on the right-hand side is smallest will result in the best asymptotic MSE in that case as

well.

It is interesting to compare the size of the criteria for different estimators, because

this parallels the MSE comparison of the estimator. As both A'^ and K increase, the



LIML and JIVE criteria are both of smaller order than the 2SLS criteria. This reflects

that the bias of 2SLS increases with the number of instruments at a higher rate than the

other estimators, a result previously established by Morimune (1983). Consequently, for

large numbers of instruments both LIML and JIVE should dominate 2SLS in terms of

MSE. Also, the criteria for LIML is smaller than that for JIVE, so that LIML is best

among these three estimators. As previously shown by Rothenberg (1983) for the fixed

instrument case, it turns out that LIML is best median unbiased to the order we consider

in the k-class of estimators.

3 The Mean Square Error

For much of this section we focus on the simplest model which is a special case of the

model considered in Section 2. In particular we focus on the model:

Vi = lYi + Ci

Yi = f{x,) + Ui

for z = I, ...,N, where yi,Y^ and e, are all scalars and where Yi is possibly correlated with

Cj. In Section 3.5 below we show how the MSE criteria can be extended to models with

covariates as considered in Section 2. In this case, the estimator for 7 is given by,

7 = ((1 + K,)Y'PY - kY'Y)-\{1 + K)Y'Py - KY'y)

where,

l-a9-jN̂
with 6 being the minimum value of, X'Y'PYX/X'Y'Y \. The other specific estimator

considered is JIVE, which is denoted by,

7j = (Y'C'Yy^Y'C'y

where C was described in Section 2. Unfortunately JIVE does not appear to fit into the

k-class of estimators so that MSE calculations will have to be performed separately.



3.1 Calculation

Our approach to finding the approximate MSE is similar to that of Nagar (1959). First

we normahze the estimator (let 7 denote a generic estimator),

ViV(7-7) =H-^h

where H and h are different for different estimators and have population counterparts,

h = i/'e

and

Then we use the expansion.

„_f'f

H-'h = [{I -{H-H)H-^)H]-\h + Ch-h))

= H-\h +{H - H)H-^h +{H- H)H-\h - h) + {H - HfR-'^h + ...

and note that since H"^ is a common factor for all terms in the expansion, Ave can

calculate an approximate MSE by taking expectations of the square of the expression,

Hy/N{^-^) = h + {H-H)H^^h

+{H - H)H-\h -h) + {H- HfH-'^h + ...

Then following Nagar (1959) we find the MSE of this expression using the largest (in

probability) terms in the square of this expression, although since we are interested in the

selection of K and allow K —>• 00 we include only those leading terms in the MSE that are

pertinent to the choice of K for the estimator of interest. Thus terms that do not depend

on K will be omitted. Because of this fact, terms beyond the second will not (in general)

contribute to the approximate MSE criteria to be used for selection of K , even though

they do contribute to the MSE in the case where one has a fixed K and one obtains an

approximation to the MSE to 0{\/N). For the purposes of completeness and to enable

other types of comparisons we also provide approximate 0{1/N) MSE calculations for

8



fixed K. These calculations extend the work of Nagar (1959) and Rothenberg (1983) to

the case where there is a possible misspecification in the first stage. In such a calculation

the third and fourth terms do contribute to the approximate (to 0{\/N)) MSE.^ Note

that the leading term (which is 0(1)) in the approximate MSE will be

E{hh!) = a'J-^

and that this will be common to all of our approximate MSB's. Since this term has no

bearing on the choice of K and since it is common to all of our estimators we omit the

term from the expressions we present and focus on the remaining terms. All calculations

are done conditional on the exogenous variables Xi,

The assumptions which are used to derive an approximate MSE are now stated and

discussed.

Assumption 1 Assume that {xi,Ui,ei] are iid, and satisfy,

(i) E{u^\xi) = E{ei\x^) = 0,

(ii) < E{uf\xi) = al < oo and < E{ej\xi) = a^ < oo,

(in) E{ui'ei^\xi) = 0, for j+ k being a positive odd integer such that k + j < 5,

(iv) E{\ui\^\ei\^\xi) < oo, for any positive integers j and k such that k + j < 5,

(v) Xi have support X C R^ that is the Cartesian product of compact intervals.

Assumption l(i) was noted in Section 2. Assumption l(ii) is a homoskedasticity assump-

tion that simplifies the calculations while Assumption l(iii) is a symmetry assumption

which implies that both residuals have symmetric distributions. This will be satisfied if

the residuals are jointly normally distributed. Assumption l(iv) requires the existence of

at least five moments for the residuals. Assumption l(v) is standard in the literature on

series based nonparametric regression. The next Assumption concerns the nature of the

optimal instrument function /.

^We thank Tom Rothenberg for this observation.



Assumption 2 The function f{xi) = E{Yi\xi) is such that,

(i) f : X -^ R and has an extension to all of R^ that is s > times continuously

differentiable in x,

(a) with probability 1, < c < N~^ '^^^-^ f{xi)'^ < c~^ for some small constant c

uniformly in N

.

Assiimption 2(i) is a smoothness condition that allows one to obtain approximation

rates for series based methods. The second part of this assumption is an identification

assumption that requires that /(xj) not be identically zero which would result in 7 being

unidentified. This will be modified when we consider the introduction of covariates into

the structural equation.

Assumption 3: Letting Pa denote the ith diagonal element of P, assume that

sup Pu -^
i<7V

as N ^>- 00 with probability one.

It should be stressed that this assumption is not required for one to show that yN{'y — 'y)

is asymptotically normal, and is only necessary to obtain tractable expressions for the

MSE. It requires some restrictions on the rate at which K increases with the sample size

that are much stronger than those needed to show asymptotic normality of the estimators.

It should be noted however that as long as s in Assumption 3 is sufficiently large the

restrictions will allow for K to increase at a rate that results in the fastest possible rate

of convergence of the MSE expression to zero.^

Our first result gives an approximation to the MSE for a subclass of the k-class

estimators we are considering. In obtaining all of our approximations we have restricted

attention to k-class estimators that have values of a and b that satisfy certain properties.

In particular it is assumed that a = 0(1) while b = 0{K), which includes all of the

Donald (1997) has shown that for power series one requires that K^/N —> when Xi has a continuous

distribution with density that is bounded and bounded away from on X.

10



estimators mentioned above and ensures that the estimators will be consistent.'^ The

first subclass of estimators consists of those for which the approximate bias (to order

N~^^'^) is increasing in K. Unless otherwise stated all MSE will refer to the terms in the

large sample large K MSE that are dominant amongst those that increase with K and

those that decrease with K.

Proposition 1 Given Assumptions 1-3, assuming that a — 0(1) and b = 0{K) such

that {l — a) — b/K is bounded away from 0, the MSE for \/N{'y—^) is approximately

[{l-a)K~bf
,

,f'{I-P)f
crL- h + (y.U€ N ' N

It is straightforward to show that the approximate bias, to 0{N ^/^) is of the form^

[(l_a)/<-6-(2-a)]a„, ff'fY'
/TV \N •

^^-^

and that for estimators in the class under consideration whose bias term grows with K

,

the leading term in the MSE comes directly from the square of this bias. The second term

in our approximate MSE comes from the approximation error inherent in the estimation

of / by a series based approximation. The result in Proposition 1 leads directly to an

approximate MSE for 2SLS which is the only estimator under consideration which falls

into this class.

Corollary 1 For 2SLS, 72, which has a = and 6 = 0, the approximate MSE of

^(72 — 7), under Assumptions 1-3, is given by,

, K^ J'{I-P)f
ut N ' N

Note that, as will be seen, these conditions on their own do not ensure root-N consistency. In general

this will require restrictions on the rate of increase of K.
''See Rothenberg (1983) for example. Also note that the expression for the bias is the same as Nagar

(1959) when a = 0.

11



The result in Proposition 1 does not reveal the large K approximate MSE for either

LIML or B2SLS because neither of these estimators have a bias (to 0{N^^^'^)) that

depends on K. Thus we need to provide an additional result that will yield approximate

MSE's for such estimators.

Proposition 2 Given Assumptions 1-3, assuming that a = 0(1) and b = 0{K) such

that (1 — a)K — b = 0(1), the MSE for •\/iV(7 — 7) is approximately

{K - 2aK - 2ab) K J'{I - P)f
"^ N "^ "^ A^ ' N

This result can be used to obtain approximate MSE's for LIML and B2SLS.

Corollary 2 For LIML, 'Jl, 'which has a = 1 and b = 0, the approximate MSEJory/N{'^L—

7) under Assumptions 1-3, is given by,

K^. -0^+^.

—

-^
—

Corollary 3 For B2SLS, '^b, "which has a = and b = K — 2, the approximate MSE

for\fN{ffs ~ 7) under Assumption 1-3, is given by,

/ 2 2
2^K J'{I-P)f

The expressions derived thus far do not allow one to derive a criteria for JIVE.

Interestingly, the following result shows that JIVE has the same MSE expression as

B2SLS.

Proposition 3 For JIVE, 7j, the approximate MSE fory/N{'yj — 7) is given by

/ 2 2 2,^ 2l'{I-P)f

12



3.2 Discussion

Some insight into the differences between the approximate MSE for the estimators can

be gained by looking at the terms in the expansion of each that contributes to the leading

terms in the MSE expressions. For 2SLS this term has the form,

'Pe 1 /
^ AT w \

where the first term on the right reflects part of the bias that occurs due to the endogeneity

in the model (i.e. correlation of Ui and e,) and which grows with K.^ The square of this

bias term gives the leading term in the MSE for 2SLS. The variance of the complete

expression contributes 0{K/N) terms to the MSE, and these are dominated by the

leading bias squared term. Both LIML and B2SLS have the leading bias term (which

depends on K) removed and so the leading terms in their MSE come from the variance

terms. An alternative derivation of LIML shows how this bias reduction occurs. In

particular the LIML estimator 7/, can be shown to be the solution to the following

problem,

mm ^^

where Y = {y,Y), and 7;^ = (1,-7). Given this, it is straightforward to show that the

LIML estimator satisfies the following first order condition,

where e{f)i) = U ~ IlY Letting,

y'<iL)
KlL) =

we can rewrite the first order condition as,

1

(F-<5(7je(7L))'Pe(7L) = 0. (3)

^Note that Yl,i=\ ^a — ^ since P is a projection matrix with rank K.

13



Since 6 can be interpreted as being the coefficient in the hnear regression of y on e the

first term in the above can be viewed as being the residual from this regression, which

should then not be linearly related to e. Thus the term for LIML that corresponds to (2)

has the form,

1
v'Pe =

-. / N N N \

-= I Y^ v^SiPu + J2Y1 ""^^^-^v 1 (4)
/N

where,

O-ue
Vi = Ui -Ci

is by construction rmcorrelated with Cj. Note also that the leading term in the MSE

expression for LIML is equivalent to, cr^cr^. The term for B2SLS corresponding to (2) and

(4) is equal to,

(3)Vn

^
f N N N \

where the leading term has, by construction, zero expectation. This, again, results

in a lower order leading term in the MSE for B2SLS. The lower leading term for LIML

compared to that of B2SLS comes about because of the lower variance that arises because

Vi is rmcorrelated with ej and because Vi has a lower variance than tij. Finally, it is easy

to see why JIVE has the same leading term as B2SLS, since for JIVE the expression that

is analogous to (2), (4) and (5) has the form,

in 1 / ^ ^
2^2^zx,e,Q, (6)

v^ v^ V.=l ,^.

which has zero expectation. This expression results because of the use of the Jackknife

in the first stage.

3.3 Further Comparisons

Our discussion thus far has indicated that, in terms of dominant terms in the approximate

(large K) MSE, LIML dominates JIVE and B2SLS and that all of these estimators

dominate 2SLS because of the larger order (in K) leading term of the latter. Another

14



type of comparison that can be made is in terms of the MSE for a fixed value of K

for which, generally speaking, the chosen instrument set may be suboptimal. The nice

feature of this comparison, is that if the expansion is taken up to terms of order N~^ then

one can see clearly the opposing effects of increasing K more clearly. In addition such an

expansion extends the work of Nagar (1959) and Rothenberg (1983) to the misspecified

first stage case and may reveal any potential differences between estimators when one

uses an imperfect fixed set of fixed instruments in the first stage.

^

Proposition 4: Given Assumptions 1, 2(i), 3, assuming that a,b and K are fixed and

that (for some small constant c),

f'-Pf 10<c< ^-—^ <c-^N

with probability 1, uniformly in N, then the MSE for viV(7 — 7) using terms up

to those of 0{N~^) is approximately

2lf'PfY\ 2 [{l-a)K-b]' ff'Pf^-'
N J

""' N \ N ^

2 ,
{{K-2aK-2ab)-8[{l-a)K-b]} \ /fPp

"'

"^ I N J \ N

, , . {K-2[{l-a)K-b]} \ ff'Pf

„ ,'12- Aa-a^\ ff'PfY^ , , /4 - 2a\ ff'Pf
-2

+2a
,,a{K-l) + b\f'{I-P)f ff'Pf

N N \ N

The conditions used to derive the expression in Proposition 4 are the same as used

previously except that we have introduced a condition that modifies Assumption 2(ii) to

^Indeed our result reduces to that of Nagar (1959) in the perfect first stage case when o = as he

assumed. The expression obtained in Proposition 4 does differ from the MSE expression one obtains

from Theorem 2 of Rothenberg (1983). Additionally, in the a = case, the expression one obtains from

Rothenberg (1983) is not consistent with that obtained by Nagar (1959). The difference between that

obtained from Rothenberg (1983) and Nagar (1959) and ours is minor and appears appear to be due to

typographical error in the statement of Theorem 2 of Rothenberg (1983). Indeed a single sign change

results in all espressions being consistent with one another.

15



ensure identification in the fixed K case. Note that the leading term in this expression,

when taken to the Hmit, is the asymptotic variance of the estimator, when K is fixed.

When K is fixed and when the instruments are imperfect (in the sense that they cannot

predict / perfectly) then it is the case that,

since /'(/ — P)f > which follows because / — P is positive semidefinite. In fact

if the instruments are imperfect (in the sense that they cannot predict / perfectly)

then it is the case that the inequality is strict. Note that the expression on the right

of the inequality is the lowest variance possible for this particular problem. Given the

expression in Proposition 4, one can then see clearly that increasing K will have opposing

effects. First, increasing K will cause the limiting variance to be closer to the optimal

approximate variance for the estimator. That is,

because when K -^ oo then by Assumption 2, f'{I — P)f/N -^ 0. On the other hand the

other terms will generally increase. Our expressions derived earlier, involve the largest

terms reflecting each of these effects. The optimal choice of K , then, will be the one

that balances these two opposing effects.

The expression in Proposition 4 can also be used to compare the different estimators

in the class under consideration. In particular the approximate MSE for 2SLS is,

^^ 1,^ + r- [

—
N
—

) +^"^^^^/ [-^r)

for LIML we have,

N I N \ N

16



and finally for B2SLS we have,

To allow comparisons of these k-class estimators with JIVE in the fixed K case we derive

the appropriate MSE expression for JIVE below in Proposition 5.

Proposition 5: Given Assumptions 1, 2(i), 3, assuming that a, b and K are fixed,

supjPii = 0{N~^) and that,

0<c<^<c-i
iV

with probability 1, uniformly in N, then the MSE for \/iV(7j — 7) using terms up

to those ofO{N-^)

fPfV
,
..2 , ..J< ff'P'fV"

, ,,0.2 , . . 2x 1 ff'P'f
a' (^) .«..x,f(^)-.(i..i...>n^(^)

^^^,,ni-p)p{i-p)f\ ff'P'f
-2

N \ N

Note the additional condition in the statement of the result which concerns the rate

at which the largest diagonal of the matrix P goes to zero which is a strengthening of

Assumption 3 and is not needed for any other result. It is fairly easy to provide conditions

that justify this condition in the fixed K case considered in the result - for instance given

that Assumption 2 holds one can verify this condition if the smallest eigenvalue of the

matrix "^'"^/N is bounded away from zero. The reason for imposing this condition is to

get an estimate of,

'f'PfY^ ff'C'f\
"^

f'C'Cf ff'C'f\
"^

N J \ N J N \ N

where the complicated form for JIVE comes from the use of the Jackknife in the first

stage, and similar to the results for LIML and B2SLS, introduces an additional 0{N~^),

term in the MSE. Such an additional term does not appear in the expression for 2SLS.

Thus any comparison in the fixed K case will depend not only on K, and the values for

17



the variances and covariances but also on the degree of misspecification of the first stage.

It is interesting to note that although this misspecification obviously affects all estimators

through the leading term (the approximate variance) it also affects LIML, B2SLS and

JIVE in the smaller order terms. Indeed one could envision scenarios where K is fixed

at some large number and where there is still a great deal of misspecification in the first

stage - in such a scenario it may be possible for the final term in the MSE for LIML,

B2SLS and JIVE to be large and indicate poor behavior of these estimators relative to

2SLS.

One can do more general comparisons of the estimators in the case where there is

a correct specification in the first stage so that Pf = f . In this case the last terms in

the MSE for LIML, B2SLS and JIVE would be omitted. Comparing the resulting MSE

reveals that although JIVE and B2SLS have similar bias reduction properties and the

same criteria for picking K, B2SLS appears to be superior with respect to terms that do

not depend on K (at least using the approximate MSE to 0{N~^)). A comparison of

the MSE for LIML and B2SLS reveals that LIML has a lower MSE. The comparison of

2SLS with the other estimators depends on the variances and covariances in the model.

Not surprisingly large (fixed) values of K and reasonable levels of covariance between the

residuals would tend to lead to superior MSE for the other estimators relative to 2SLS.

The expressions in Propositions 4 and 5 also makes it possible to consider what

happens when there is no endogeneity problem, so that aue = 0. When aue = 0, the

optimal number of instruments for JIVE and B2SLS, using the criteria developed in

Section 3.2, is exactly the same as for LIML, which is equal to the optimal number of

terms required for estimating / in the first stage. On the other hand, the MSE expression

just given for 2SLS, (when a^e = 0) is monotonically decreasing in K which indicates

that the optimal choice of K is as large as possible. This, not surprisingly, makes 2SLS

identical to OLS, and is due to the fact that when a^^ = 0, OLS is the Best Linear

Unbiased Estimator. The reason that this does not occur with LIML is that the LIML

estimator would no longer be defined when there are as many instruments as observations

while the delete-one nature of the first stage used in JIVE makes first stage predictions
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based on as many instruments as observations very unreliable.

Because of the dependence of comparisons on the degree of correlation between resid-

uals, it is difficult to use the expressions in Propositions 2 and 4 to derive an convenient

optimal estimator in the class under consideration. It is possible, however to describe

the optimal estimator for classes of estimators that have similar bias properties.^ The

first result will use the expression in Proposition 2 to give a class of estimators that are

optimal with respect to the large sample large K MSE to order K/N. The class under

consideration consists of those estimators whose bias is of 0{N~^''^) (and hence have a

squared bias of 0{N^^)) which, as noted earlier, places restrictions on a and b that rule

out 2SLS but include LIML and B2SLS as possibilities. This result is stated below in

Lemma 1 and is an immediate consequence of Proposition 2.

Lemma 1 In the case where K ^ oo in such a way that {l — a)K — b = 0(1), the optimal

estimator, with respect to the large sample (large K) MSE to 0{K/N) must have

a = \ and b = 0(1).

Note that this result does not pin down a single estimator, since one can pick any

constant value for b and still have the same leading terms in the MSE expansion, since

terms involving K/N will dominate those of 0{N~^) for large K. It does suggest, how-

ever, that LIML, being one such estimator, will have better (large K) MSE properties

than the other estimators under consideration. Note, again, that 2SLS does not fit into

the class of estimators under consideration because its bias is not 0{N~^''^) (again as

K —> oo) as the condition in the result requires. The next result is for the class of

estimators that are unbiased to 0{N^^/'^) and follows similarly from Proposition 2.

Lemma 2 Restricting attention to estimators that are such that (1 — a)/C—6— (2— a) = 0,

the optimal estimator, with respect to the large sample large K MSE to 0{K/N)

must have a = 1 and consequently 6 = 1.

''Indeed this was done by Rothenberg (1983) for the class of (approximately) median unbiased esti-

mators, in which LIML was optimal.
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This result states that the optimal estimator in the class of estimators that are unbi-

ased to 0{N~^/'^) is the bias adjusted LIML estimator. It should be noted, however, that

for such an estimator the optimal choice of K is completely unaffected by the bias ad-

justment and that the criteria for choosing K will be identical to that obtained for LIML.

A similar result to that in Lemma 2 is obtained when one assumes that K is fixed and

considers approximately mean unbiased estimators with M3E given by the expression in

Proposition 4.

Lemma 3 Restricting attention to estimators that are such that {l —a)K—b—{2—a) = 0,

the optimal estimator, with respect to the large sample fixed K MSE to 0{N~^) must

have a = 1 and consequently 6 = 1.

This result shows that when there is misspecification in the first stage (as happens

in general with K fixed) the bias adjusted LIA-IL estimator is optimal with respect to

the MSE to 0{N~^). This is a minor extension, to the misspecified first stage case, of

the conclusions one draws from Rothenberg (1983) concerning the optimality of the bias

adjusted LIML estimator among the class of approximately mean unbiased estimators. In

addition to this, Rothenberg (1983) showed that for fixed K and a correctly specified first

stage LIML is optimal (with respect to the MSE to 0{N~^)) among all (approximately)

median unbiased estimators. Thus based on both the dominant terms in large K MSE

and peripheral or second order terms there appears to be ample evidence to suggest the

use of LIML or bias adjusted LIML.

3.4 Admitting Covariates

In this section we generalize the results to the model,

Vi = lYi + x\iP + e

where x^ is a rfj x 1 subvector of x^. The most important difference that arises in the more

general formulation is that we are now concerned with a vector of parameters, (7, /5i)'-
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However, it can be shown that the MSE of estimators of Pi are directly and positively

related to the MSE of estimators of 7. In particular, assuming that Xu is included in

the instrument set (which would be the case if one were using power series) then any

estimator of /^jwill have the form,

where Xi denotes the N x di matrix with zth row qual to Xu. ^ Since for all three

estimators the MSE of Pi depends on K only through its dependence on 7, we can focus

directly on the MSE of the 7 in each case. When covariates are present the estimators

of 7 take the form,

7 = ((1 + k)Y*'PY* - kY*'Y*)-\{1 + K)Y*'Py - KY*'y)

where Y* = [I — Pi)Y with Pi being the projection matrix formed using Xi. The JIVE

estimator will take the form,

^j = {Y'C'{I - Pi)YY'Y'C'{l - Pi)y.

Before presenting the MSE calculations we modify Assumption 2 as follows, letting tt

denote the population regression coefficients from the regression of Yi on Xu.

Assumption 2' The function f{xi) = E{yi\xi) is such that,

(i) f : X ^ R and has an extension to all of W^ that is s > times continuously

differentiahle in x and,

(a) with probability 1 < c < N~^ X]i=i(/(^i) ~
^'u^)'^ < ^~^ /'^'^ some small constant

c uniformly in N

(Hi) the smallest eigenvalue of X'lXi/N is bounded away from zero uniformly in N
with probability one.

^Note that this is true of JIVE as well since CXi = Xi.
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The adjustments in Assumption 3' are due to the fact that the identification condition

now suggests that Xi explain Xji beyond that provided by a hnear regression on x^. ^

The new condition (iii) along with Assumption l(v) is used to bound the elements of the

vector, (/ — Pi)/ and the variances and covariances of elements of [I — Pi)u and [I — P\)e.

Indeed these conditions ensure that the variance of a typical element of (/ — Pi)u, say

Ui — P'liU (with Pii denoting column i of Pi), is equal to that of w, plus a term that is

0{N~^) and that any covariances between these elements are of second order importance.

The same holds true for the vector (/ — Pi)e and for covariances between these vectors.

Once this has been noted one can obtain large K MSE expressions for the estimators

of interest that are the same as in the case of no covariates provided that the set basis

functions used as instruments contain linear terms in Xu.

Corollary 4 Given Assumptions 1,2' and 3 plus PPi = Pi the conclusions of Corol-

laries 1, 2 and 3 and Proposition 3 all hold.

It is easy to see why this result holds when PPi = Pi. The only difference that would

obtain by allowing for exogenous covariates in the equation would be that the second

terms in the approximate MSE would have the form,

/'(/ - Pi)(/ - P)(/ - Pi)//A^ = /'(/ - P)/

where the equality comes from the fact that PPi = P\. A simple consequence of this

result is that rules for choosing K and any optimahty results discussed previously apply

carry over to the situation with covariates.

4 Feasible Optimal Estimation of K

In this section we consider the properties of the estimated MSE criteria discussed in

Section 2. Throughout this section we will use the following assumptions concerning the

preliminary estimation of the parameters, o"^, o"^ and a^^.

®This is essentially a relevance condition and Donald (1997) has considered tests for the failure of

this condition in contexts where there are an arbitrary number of right hand side endogenous variables.
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Assumption 4 Assume the following,

(^) ^l - ol,

(n) al ^ al

(Hi) Gut -^ O-uc-

As noted in Section 2, this can be achieved by using some prehminary set of estimates

of the model obtained by using the number of instruments that provide the optimal fit

in the first stage, based on either the cross-validation or Mallows criteria. Note that the

other key ingredient used to form the estimated criteria is R{K) which can either be

based on cross validation or the Mallows criteria as discussed in Section 2. Li (1987) has

shown that each of these criteria are asymptotically optimal in the sense that the value

of K that minimizes these criteria, denoted K, satisfies the condition,

RJK)
,

.

infx /?(/<) '

in probability. ^° For a generic estimator 7 with estimated criteria S{K) and true criteria

S{K) we will define the data driven optimal choice of the number of instruments by,

K = argminS{K).

The minimum and all infimum will be relative to an index set of K values, which may

require some restrictions in order to prove certain results. Also, notice that although

R{K) only estimates R{K) up to a constant, which does not depend on K, one can

remove this constant from R{K) and hence from S{K) without affecting the choice of

K. To analyze the properties of K we follow the approach of Li (1987) and Andrews

(1991b). In our case we use the following definition of optimality.

Definition: A method of selecting K is defined to he "higher order asymptotically opti-

mal with respect to the criteria S{K) " if it can be shown that,

s{k) ,

inf;,5(/^)

^"Andrews (1991) proved the same results for appropriate adaptations of these criteria in the case

where the residuals are heteroskedastic.
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The use of the term "higher order" is necessitated by the fact that the optimal MSE

convergence rate in all cases will be A'^"^ (as N —
> oo) which cannot be improved upon,

and the criteria based on S{K) concerns the next largest terms in the MSE that depend on

the choice of K. A vital step in showing that the criteria are higher order asymptotically-

optimal, is showing that R{K) consistently estimates R{K) up to the constant in the

sense that, in probability,

This is the condition used by Li (1987) to show the asymptotic optimality of the Mallows

criteria and cross validation. In order to be able to verify this result we employ conditions

similar to those of Li (1987).

Assumption 5: Assume that the following conditions hold,

(i) E{u\\xi) < oo and

(a) inf^ NR{K) -^ oo,

and in addition when R{K) is the cross validation criteria, assume

(Hi) the index set satisfies the condition that sup^ sup^ F^j -^ in probability.

The conditions (i) and (ii) in Assumption 5 are needed for both the Mallows criteria and

cross validation, to show that they satisfy (7). These were employed by Li (1987) to

show that these criteria are asymptotically optimal. Here, this is an intermediate step to

showing higher order asymptotic optimality. The second of these requires either that /

not have a finite order representation in terms of the basis functions or else that the lower

bound on the set of K values over which one is doing the minimization grows with A'^,

which is perhaps undesirable from a practical standpoint. The condition (iii) is required

only for the cross validation based method, and is similar to the condition in Assumption

3, which was used to derive the MSE criteria. This condition will essentially place an
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upper bound on the rate at which the index set can grow with the sample size ^^ The

following results show that for each estimator the estimated criteria provides a means to

obtain higher order asymptotically optimal choices for the number of instruments.

Proposition 6: Given Assumptions 4 o-'^d 5, then the rule "select the value K that

minimizes S^{K) " is higher order asymptotically optimal with respect to the criteria

Sl{K).

Proposition 7: Given Assumptions 4 o-iT^d 5, then the rule "select the value K that

minimizes S2{K) " is higher order asymptotically optimal with respect to the criteria

S2{K).

Proposition 8: Given Assumptions 4 and 5, the rule "select the value K that minimizes

Sj{K)" is higher order asymptotically optimal with respect to the criteria Sj{K).

5 Simulation Study

In this section we report the results of a small Monte-Carlo experiment which has been

designed along the lines of that used in Angrist, Imbens and Krueger (1995) (hereafter

AIK). Three basic designs are used. All experiments are based on the estimation of the

equation,

Yr = Po + PiXn + e, (8)

where d^o, A) = (0, 1) and where X^ is an endogenous explanatory variable. Three cases

are considered and are distinguished by differences between Xn and a set of potential

instruments.

Case 1: In this case Xn is related to either A; = 10 or /c = 20 independent standard

normal random variables, Z^j through the linear equation,

k

Xii = 7^0 +^ 'n-jZij +r]i (9)

^^As noted below Assumption 3, based on Donald (1997) has shown, using the results in Newey (1995),

that for power series, if x; has a continuous distribution with density that is bounded and bounded away
from on X then the upper bound on the index set of K values, say K , should satisfy, K^/N —> 0.
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with TTi = 0.3 and iVj = for j 7^ 1, so that only the first Zij is relevant for predicting

Xii- In this case the residuals in the two equations are generated as,

m J VV y '

V 0-20 0.25

This case is identical to Model 2 of AIK, who used a complete set of /c = 20 instruments

in their experiments.

Case 2: This is the same as in Case 1, except that now in (9) ir^ = 0.3 and ttj = for

j ^ 5 so that only the fifth instrument is relevant. Again experiments are conducted for

both A: = 10 and A; = 20 potential instruments (in addition to the constant). The errors

are generated in the same way as in Case 1.

Case 3: This is the same as Model 3 of AIK and specifies,

Xi, = 710 + ^2 '^^^^^ + 0-3 Y.4 + ^^0 Y^ zy\^ (10)

with TTi = 0.3 and tt^ = for j 7^ 1, so that in addition to the first regressor being

relevant the others enter in a nonlinear fashion. Additionally, the errors in the first

stage are heteroskedastic. The selection process will, however, only consider using the

Zij variables themselves, and will consider either up to the first /c = 10 instruments or

the first fc = 20 instruments. The residuals in the pair of equations (8) and (10) are

generated as,

^^\ Ajff ^\ f
1-00 0-80

7?zo y Vv y A 0-so 1-00

For each of the three cases, experiments are conducted with samples of size A'^ = 100

and A'^ = 400, and using a maximum number of instruments of /c = 10 and k = 20.

Thus for each case a total of four different experiments were conducted. The number of

replications was set at 5,000. In each experiment the 2SLS, LIML and JIVE estimators

were obtained using the number of instruments that minimized the objective functions

discussed in the previous two sections. These criteria were constructed using delete-one

cross validation of the first stage relationship, along with estimates of cr^^, a^ and cr^

which were obtained as discussed in Section 4, using a preliminary estimator which used

all of the instruments.
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Tables 1.1, 2.1 and 3.1 contain the relevant summary statistics for each of the three

cases respectively. In each table we report the median of the 5, 000 estimates along with

the 0.1 and 0.9 quantiles of the estimates. The difference between these can be considered

a way of measuring dispersion. Additionally we report the Mean Absolute Error of the

estimates, which is an alternative measure of dispersion, and, finally, the coverage rate

of a nominal 95 percent confidence interval for each estimator. Additionally we report

the relevant statistics for the OLS estimator as well as 2SLS and LIML estimators that

use all fc = 20 instruments. These statistics were reported in AIK (1995, Tables 2 and

3). In Tables 1.2, 2.2 and 3.2 we report the frequencies with which the various possible

K values were chosen in the experiments.

A few features of the results are worth noting. First, the most dramatic improvements

occur in the use of 2SLS with the optimal number of instruments being used. As indicated

in Tables 1.1 and 3.1, 2SLS which uses all the instruments has very poor properties,

and is biased towards OLS. Moreover, confidence intervals generally have a very poor

coverage rate with the worst occurring in Case 1 with A'^ = 100 where the nominal 95%

confidence interval contains the true value just 22% of the time. The other cases are

similarly poor. When the criteria are used to choose the number of instruments there is

a substantial reduction in the bias (as measured by the median) and the coverage rates

for the confidence intervals are much closer to the nominal rate of 95% generally being

around 90%. The only exception to this is Case 2 with A'^ = 100 where the coverage

rate is below 80%, although this is a dramatic improvement from the 23% coverage rate

when all instruments are used. The other noticeable difference in 2SLS when the criteria

is used is that the dispersion is much lower as evidenced by reduced MAE and a lower

spread between the 10% and 90% quantiles. It also worth noting that the performance

of 2SLS using the criteria is not sensitive to the maximum K being considered. Indeed

the results for 2SLS when one uses the criteria to pick K with a maximum possible K
of 10 are almost identical to those when the maximum possible K is 20.

For LIML on the other hand, the main improvements relative to the estimator that

uses all the instruments appears to be in terms of reduced variability, either as measured
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by MAE or as the difference between the .1 and .9 quantiles. This is because LIML

performs fairly well when all of the instruments are used and is approximately median

unbiased and provides confidence intervals that have a coverage rate that is reasonably

close to the nominal rate of 95% being around 90%. The coverage rate for LIML when

the criteria is used is slightly lower than for LIMLALL in Cases 1 and 2. In Case 3,

however, there is an improvement in the coverage rate when the criteria is used with the

rate being very close to the nominal rate. The main improvement that comes from the

use of the criteria is in the decreased dispersion of the estimator which results in all cases.

The performance of JIVE is a little bit mixed relative to the other estimators. The

bias (using the median) of JIVE in some cases appears to be the lowest among the

estimators and other cases (notably Case 3 with 100 observations) is the worst so that

there is no clearly superior estimator as far as bias is concerned. What is striking is that

the dispersion for JIVE, using either measure, is larger in practically all cases relative to

either the LIML or 2SLS estimators that result from the use of the criteria for picking

the number of instruments. There is also no clear improvement in the coverage rates

from the use of JIVE rather than either 2SLS or LIML estimators that use the criteria

for picking the number of instruments.

In Tables 1.2, 2.2 and 3.2 we have provided frequencies with which the criteria chose

the respective number of instruments for each estimator in each case. A few features

stand out. First, for all estimators the criteria usually points to a value of K that is at

least as large as is required to include the relevant instrument - in Cases 1 and 3 this

\s K = \ while in Case 2 this is /C = 5. What is also interesting, is that in Case 2 the

criteria generally pick the correct number of instriiments more than half the time. Also,

as one might expect from the discussion in Section 3, the criteria for 2SLS generally points

to smaller values of K than does the criteria for JIVE, while the latter generally picks

values for K that are smaller (on average) than those for LIML. With LIML and JIVE

the criteria do with some positive probability point to an instrument set that includes

many irrelevant instruments. Fortunately, as evidenced by the other sets of results, this

does not cause much of a problem for either estimator.
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6 Application to the Returns to Schooling

Angrist and Krueger (1991) in an important paper used the quarter of birth as an in-

strument for the number of years of education - since laws typically dictate that people

should stay in school until they reach a certain age, one would think that for students

that drop out once they reach the age, the amount of education they receive will de-

pend to some extent on when in the year they were born. Using a sample drawn from

the 1980 U.S. Census that consisted of 329,500 men born between 1930-1939, Angrist

and Krueger (1991) estimate an equation where the dependent variable is the log of the

weekly wage, and the explanatory variable of interest is the number of years of schooling.

The set of excluded variables that were used as instruments included 30 variables that

were the result of interacting dummies for the year of birth with dummies for the quarter

of birth, plus another 150 variables that were the result of interacting the quarter of birth

dummy with dummies for the state in which the individual was born. Thus a total of

180 instruments were used. See Angrist and Krueger (1991) for more details.

Using OLS the returns to education (the coefficient of the schooling variable) was

0.067 with a standard error of 0.0003. Using 2SLS Angrist and Krueger (1991) obtained

0.093 and a standard error of 0.009. Table 4 contains various estimates for different

instrument sets. These instrument sets consist of the set of 30 instruments constructed

from interacting the quarter of birth and year of birth dummies plus the various sets

indicated in the table. These are a number of subsets of regional dummies, representing

various partitions of the U.S. up to and including the set of 50 state of birth dummies.

Also included as potential instruments is the interaction of these with the quarter of birth

dummies. Also indicated in the Table are the instrument selection criteria for 2SLS and

LIML. As can be seen the criteria indicate that only a very small set of the dummies

should be used - for 2SLS, only the 4 region dummies should be used, while LIML seems

to require that these plus their interactions with the quarter of birth dummy be used

as instruments. It is interesting to note that a straight cross validation measure for the

relationship between schooling and these dummies also indicates that the set of dummies
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that is optimal for LIML is also optimal for this first stage relationship (at least among

the sets of estimates used).

Although the estimates obtained from both 2SLS and LIML are not very different from

what one obtains when one uses all the instruments, it is noteworthy that the standard

error for 2SLS is somewhat larger with the smaller set of instruments. Moreover, it seems

to be the case that the standard error is close to that of LIML, and that LIML's standard

error is less sensitive to the inclusion of useless instruments.
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7 Appendix A

Proof of Proposition 1: For large enough K the expression for the MSE presented

in Proposition 4 remains vaUd by Assumption 2 which ensures that for large enough

K the term f'Pf/N is invertible. Take this expansion which, as shown in the proof

of Proposition 4, has a remainder term that is o{K'^ /N), and note that since we are

finding the MSE of HyN{^ — 7) we need to multiply each term in the expansion by H^

(noting that under Assumption 2(ii) H = 0(1)). Since K —* 00 and that since a = 0(1),

b = 0{K) and (1 — a) — b/K > then the leading term among those that increase with

K will be the term,

, [{l-a)K-bY ff'Pf
cr:

N N
//2 = 0{K^/N)

Also note that if /C ^- 00 then the term

,2 i'l'Pf
cr. N

decreases with K. Use the expansion,

I'Pf _ f'f f'jl - P)f

N N N

and the fact that under K —
> 00, /'(/ — P)f/N = o(l) by Assumption 2, so that.

f'Pf

N

-1

N
"' f'{i-p)f ff'fY^ ^ /'(/ - p)f

N

fj~i .ni p)f jj-2 QN
f'jl - P)f

N

Now, substitute this expansion into the (11) and (12) to obtain respectively,

, [{l-a)K-b]' ff'PfY'. „ [{l-a)K-b]'

N N H' = <rir ^;;^
" +o{^)N

and,

f'Pf

N N +
f'jl - P)f

N

(11)

(12)

(13)

(14)
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and take the dominant terms among those that increase with K and those that decrease

with K. Q.E.D.

Proof of Proposition 2: The proof is similar to that of Proposition 1, except that

after multiplying the expression in Proposition 4 by H"^ the leading term among those

that increase with K, as K ^>- oo, under the conditions that a = 0(1), b = 0{K) and

{l-a)K-h = 0{l) is,

2 , K - 2aK - 2ab \ ,
,K\ ff'Pfy' ^, , fK - 2aK - 2ab \ , ,K

^, ,K\ni-P)f
NJ N

This follows since under the condition (1 — a) A' — 6 = 0(1), we have that the term Wi

in the expansion in Proposition 4, satisfies,

^^^ u'Pe f e'{P-F)e b \

Then the expression given in the result follows using (14) and collecting leading terms

among those that increase with K and those that decrease with K. Q.E.D.

Proof of Proposition 3: This result follows directly from the result in Proposition

5. This follows even though we now only use Assumption 3 and not the stronger con-

dition used in Proposition 5, because we are interested in dominant terms among those

that increase with K and decrease with K and these are provided in the expression in

Proposition 5. Now, use similar arguments to those in the proofs of Propositions 1 and

2, and the fact that by Assumption 3,

f'{i - p)p{i - p)f „ ni-p)f
N - '""P " N

f f'{I-P)f
- ^[-^^

by Assumption 3 (note that the term P is defined in the proof of Proposition 5). Thus,

the leading term among those that decrease with K is the term that results from the in

(14),

J'{I-P)f
^^—Iv

—
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while, using the result in (13) the leading term among those that are increasing in K is

given by,

,„ .J<(rPfYrr2 ,2 2 X
^^ ^fKf'{I-P)f\

icrl + crD-
[^-jf)

H^ = {al + al)- + O (^^^^^J
with the second term on the right being of smaller order than the first, using Assumption

2. Q.E.D.

Proof of Proposition 4: Denote f = Pf , H = ff/N and h = fe/VN and write

the estimator as.

v/Ar(7-7) = H-\h + {H - H)H-^h (15)

+{H - H)H-\h -h) + {H - HfR-'^h + ...

where,

J.

Y'Pe . ^ b.Y'e.

and,

Y'PY b Y'Y

First we deal with h. Note that using Fujikoshi (1977) the term, 9 has the expansion,

e'{P-F)e

am= ;rTT Rn,k

where,

1 \ e'{P-F)e ^e'e ^ e' {P - F)v
fffy' f'e\ (K

with F = f{ f f)~^ f . Throughout this proof, which is done under the assumptions

of Proposition 4, with fixed K, we nevertheless indicate the how the order of remainder

terms will depend on K when K grows. Thus for instance the remainder term in the last

expression is 0{N~'^) when K is fixed. Use will also be made of the simple facts that,

u'e fu'e

Ar = ^-+Uv-^-
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u'u o f U'U

anc

N =""+lAr-^^

e'e
2

^e'e

with the second term on the right hand side of each expression being 0{N ^/^) by the

Lindberg-Levy Central Limit Theorem. Given this, for the h term the relevant expansion

is,

where,

u'Pe [ e'{P-F)e b \ ^f K

-ax/iVi?],^^a„, = O
(J^^

where the last two expressions are 0(A^ ^/^) and 0{A^ ^) respectively when K is fixed.

Also the remainder term is 0{N~^) when K is fixed. Also we have,

H = H + W3 + Wi + o (^^

w.here,

Ws = 2 (^l^^ = 0{N-y^)

where again the last term is 0{N~^) under the assumptions of the result.

Using (15) and again grouping terms that are o{K/N) (with K fixed) in the remainder

we can write,

3=1

where,
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Ti = h

T2 = Wi = 0'

Te = -W^H-'W,=o(^

Then the relevant terms in the MSE are those in the square of this expression that

are of the appropriate orders, (again remembering that K is held fixed) and terms up

to and including those that are 0{N~^) will be retained. Also note that since we are

conditioning on the exogenous variables the term H~^ will appear squared in the final

result but can be ignored until the final result is presented. Thus we calculate,

E = E{T^) + 2E{T2T,) + 2E{nT,) + E{T^) + E{T^) + 2£;(T2T3)(16)

+2E{TaTx) + 2E{T^Ti) + 2E{TeT,) + 2E{TjTi) + ...

where terms that are o{N^^) are omitted from the calculations. We calculate each of the

terms in this expression. First,

using the fact that,

E{T?) = B(^) = cr^H

eQ) = oU

which follows by Assumption 1 . Next , in order to calculate the remaining terms we make

repeated use of the fact that for a pair of double arrays, say {S}A and {5^} ,

N N N N N N N

EE^EE^S = E^«5«+EE5;si (17)
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A^ A^ N N

where the omitted terms will not be needed for our calculations because they will have

zero expectations in our context. This can be used to calculate the individual terms in

(16) the first of which is,

E{T.) - E[-^^j+aa^,E^ — ^+a^-

-2a^E (u'Pee'iP - F)e) - 2a^,^Eiu'Pe)
afl\ iV

Using (17) with
, S^j = Sf^ = UiEjP^j along with Assumption 1 we get,

(u'Pe)2\
j^E ij^nhlPfi] + \rE [Y,J2''.'^P^^ufyP,,

/ N N \ / N N

+]7^ J^ J^t/.ejPzjU,e,P,j + —E i^^UiejP^jUjeiPji

Now using Assumptions 1 and 3 and Lemma A.l(i) we have that,

1 f
^ ^

-^E i^Y^ UieiPiiUjejP,

^
/ N N \

-t^eI^Y^ u,e,PijU,e,P,, = al

^
/ N N \

j^Ei^Yl ^r^jPijUjeiPj,

N
\i=i /

2 2^ r^s

- -..^ + o(^)

SO combined we have that,

[u'PeY\ 2
^'

, 2 2 2^^ ,K.

iV /
ue j^ \ U€ u e/ j^r v^,
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2 J
,7<' 1\ (K

Next, using similar arguments the fact that FP = F and Lemma A. 2, we have

2a^,^E{u'Pe) = 2bal
(|)

K

and,

Therefore,

2-i^mP-^)e) = 2a5ai(^-l

E(r|) 0-,,

[{l-a)K-bf K-2aK-2ab

+<

N
4a — a^

N

+ N

Assumption l(iii) imphes that EiTiTi) = E{T^Ti) = 0. Next,

E{Ti) = E{TjT,)^4E N H~^h

= ^(^^^.^ + 20+0(1)

using Assumptions 1 and 2 and Lemmas A.l and A. 2. The next result concerns EiT^Ti).

Using Assumption l(iii) which implies that third moments are zero we have that,

EiTJ",)

Next,

E{TeT,) = E{T2Ts) = E ^ ,
fu] - ,- (u'Pe f e'(P-F)€ b

= -2E ( '-^H-'h^p= ) + 2£; ( aau/-T^H-'hN aWN
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K 1
= -2 ( ctI^ + {(tI + (^l(r!) ^ - aai:- - 2aal,j^ + 2aal,j^ - 2al^^N

^4^

Finally we have,

E{nT,) = E
u'Pu ( e'(P - F)e b .

,
„._._„

a^N

+E [j^(H + al)H-'W

Substituting each of these into (16) we get the expression given in the result. Q.E.D.

Proof of Proposition 5: Normalized JIVE can be written as,

where,

C = P - P{I - P)

with P = P{I— P)~^ with P being a diagonal matrix with element Pa on the zth diagonal.

Use the following notation. Let, / = Cf , H = f'f/N and h = f'e/y/N and write the

estimator as.

yiV(7-7) = H'\h+{H-H)H-^h

+{H - H)H-\h -h) + {H - H)H-'^h

(18)

In this expression we can write.

Y'C'e ~

h = —^ = h + Wi
N
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where,

follows from the fact that the diagonals of C are zero and using similar arguments to

those used in (17). Also,

, Y'C'YH = —^^ = H + W2 + W^

where,

W-i = —--— = oN \ N

The order for Wz follows similarly to that of W\ . To show the order for W2 we use the

following result that will also prove useful below:

^ = ^-^+0{sn^Pu) =^ + o(iV-^) (19)

which holds when D is any one of the matrices C, C , C'C, CC, CCC, C'C'C, C'C'C

and CCC . This can be shown in each case using the definition of C the Cauchy Schwarz

inequality, repeated use of the inequality,

b'Ah b'b x'Ax b'b^
, ,,

where, Ainax(-) is the largest eigenvalue of its argument, Assumption 2 and Assumption

3 which implies that the largest element of the diagonal of P is o(l). Similarly one can

show that,

^ m<i~\ fsupP,,^ (20)

for fi equal to the zth element of any of the vectors f,f = Cf or / = Pf (the last of

which was shown in Lemma A. 2).

As with the proof of Proposition 4, although K is fixed, we have nevertheless indicated

how the order of remainder terms will depend on K when K grows.
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Using (18) and again grouping terms that are o{K/N) (with K fixed) in the remainder

we can write,

Vn{i-i) = h-\Y.t,) + o{-)

where,

Te

= h

= Wi =

-W2H-^h^0{N-^''^)

-W3H-'h = 0' '

A^

-W2H~^Wi = O
K
N

Then the relevant terms in the MSE are those in the square of this expression that

are of the appropriate orders, (again remembering that K is held fixed) and terms up

to and including those that are 0{N~^) will be retained. Also note that since we are

conditioning on the exogenous variables the term H~^ will appear squared in the final

result but can be ignored until the final result is presented. Thus we calculate,

E E{T^) + 2E{T2T{) + 2E{T^T^) + E{T^) + E{Ti) (21)

+2E{T2n) + 2£;(T4Ti) + 2E{nT^) + 2E{TeT^) + ... (22)

where terms that are o{N~^) are omitted from the calculations. We calculate each of the

terms in this expression. First,

2/'/

using the fact that,

f'ff' f

E{Tl) = EC—-)

E(^) = -U

N
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which follows by Assumption 1. Next, using (17) we have that,

E{T^) = E
{v!C'e)

N ^ I

YH±2]^3^h\ ^^ (Y.i^j^i^i'^i^jCijCji

N N

^u^t ^ij^j ^Jl ,^ ^i^i CjjCji

N ' N
K K

= (o->,^ + f7L)-^+o(supPii—

)

Note that in the last line we have used Lemma A.l and the fact that,

i^i

< sup|(l-P..)-'-l|E4

= 0{snp Pu){K + {sup Pu))
i i

which follows from Assumption 3, and Lemma A.L Similarly,

JT^J i^i

< sup|(l-P,,)"'-l|E^^
i^i

0{supPu)iK + 0{supPii)).

Next we have that, by Assumption l(iii), EiT^Ti) = EiT^iTi) = 0. Next,

2^

E{Tl) = E{TeT,) = E f'u + u'f~^_.

N

= E

4

' N
2 17-2 7,2

H-'h

f'u.
H-'h'

\
+E[ {'-—yH-'h' + 2EN

f'uu'f

N H''h2u2

1
= ^(^X + 2aL) + o(^)

using Assumptions 1 and 2 and the results in (19) and (20). Next,

E{T,T,) = E{T2Ts) = E f'u + u'f\ ^_,~^(u'C'e-

N N
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N ^/7v A^

-^K+^y.)+oih

N

again using Assumptions 1 and 2 and the results in (19) and (20). Finally we have, using

similar arguments,

E{T,T,) = -E C-^)H~^h^

1 1

Substituting each of these into (21) and multiplying by H '^ we get the expression,

a'/-^^^ f ^^^ 1 " + {al + alal)
""

^^'^'^J'C'Cf ff'C'f

N N N V N

Now consider the following,

fc'f fpf f'p{i - pyf

with.

f'P{I - P)f

N

N

<

<

N N

2f\ 1/2
fp^iv" fni-p)r

sup

1/2

N J \ N )

1-pA N [ N
1/2

= 0{N-')

given the additional condition that supj P^i — OlN"^). Next,

(23)

(24)

f'c'cf f'Pf ^rp{i-p)f
N N N

^

j'{i-p)p{i-p)f ^ fV- P)P\i - P)f
N N

where the term,

ni-p)p{i-p)f p,, ff'{i-p)f< sup '

N I -Pa
= 0{N-^)

N

(25)

(26)
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f'{i-p)p\i-p)f ^ ( Pu yff'{i-p)f< sup

and,

using similar arguments. Next use the expansion,

f'c'f\
-'
^ (rpf\ -'

^ f'pji - p')f rf'pf\ ^ ^ .^_2^

N J \ N J N \ N

substitute this along with expansion (25) into the expression (23) and omit terms that

are o{N~^) and we obtain.

Similarly we have that

{-i+-yt)^ ^^ =i-L+-y.)^^if^ +o
-2K ff'C'fY' , , ,

,,,K ff'PfY'
,

^fK\
-

N \ N J
^ ue

'

u eJ^ \ N J \N^J

and,

2

so that we end up with the expression given in the result. Q.E.D.

Proof of Proposition 6: Notice that since the choice of K is unaffected by the removal

of constants from Sl{K) we can assume without loss of generality that Sl{K) has been

constructed using, R{K) = R{K) — a^. Using Lemma A. 3, the proof of which is given

below, we need only to show that,

T

—

suK)— = "'«

To show this, note that,

\Sl{K) - Sr.{K)\

T

—

sKkT—
< ,„, {\^!-^l)\ + K-cTl\)K/N \R{K)-R{K)\

-T ^fm +T

—

W)
—
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The first term is Op(l) by Assumption 4 (i) and (ii) while the second term is Op(l) given

the result of Lemma A. 4, which follows from Assumption 5. Q.E.D.

Proof of Proposition 7: As was the case with the Proof of Proposition 6, we can assume

without loss of generality that S2{K) has been constructed using R{K) = R{K) — a\.

Similar to the proof of Proposition 6, we need only to show that,

T

—

s^)— = "'<''

where 52 (A') and S2{K) are the estimated and actual approximate mean squared error

criteria for 2SLS. To show this, note that,

\S2{K) - S,{K)\ \al-crUKyN
T

—

Mk)
— ^T

—

s;m
—

la^RiK) - R{K)) + {al - al)R{K) - {al - al)K/N\
+ sup

K S2{K)

. le-^Ll ,
-2 \R{K)-R{K)\

- ^i +^uSUp ^-TJT-

1-2 21
R{K) ,,2 2,

K/N

We consider the four terms in the last expression separately. The first term is Op(l) by

Assumption 4(iii). Notice that, using the definition of R{K) we have that,

Em^Ek + L (27)

using the fact that K"^/N > K/N . Using these facts we have that for the second term,

.2 \R{K) - R{K)\

"^T S2{K)

2 \R{K)-R{K)\ R{K)

-^^T W) "7al,KlN + aini-P)f/N
which is Op(l) using Assumption 4(i), (27) and Lemma A.4 which follows from Assump-

tion 5. For the third term we have similarly that,

I

erf - (7^1 sup ^ \J^ < sup

«p(l)
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again using (27) and Assumption 5. Finally the last term is easily seen to be Op(l) using

(ii) and the fact that

K/N 1
sup o r^9/Ar ,

5-7777 T^^TTTt ^ ^UpT alK^N + aU'{I - P)I/N - / alK

which must be bounded since K > 1 (otherwise the order condition would not be satis-

fied!). Q.E.D.

Proof of Proposition 8: As in the two previous proofs, we can assume without loss of

generality that Sj{K) has been constructed using, -R(A') = R{K) — o"^. Again we must

show that

\Sj(K) - Sj(K)\

T SAK)
""'(^'^

To show this, note that,

\Sj{K)-Sj{K)\ {K.-^IMIN
K Sj{K) K cfl,K/N

a1 \R{K)-R{K)\
, _

\a^-a',\
+ — sup , 1- sup

a2 "^-- R{K) ' "Z a^

The first and third terms are Op(l) using Assumption 4. The second term is Op(l) using

Lemma A. 4, which follows from Assumption 5, and Assumption 4(ii).Q.E.D.

Lemma A.l Given Assumption 3 the following results hold for the matrix P = ^(^''I')"-^^',

(iiO Eil E;;, P^^P^, = Etl E^. P^^P^^ = K- o{K)

Proof: To show (i) note that,

N N

Y,Pl< {snpPu)J2P^^ = (supPi.)^ = 0(1)^ = o{K)
1=1 1=1

using the fact that P is a projection matrix and Assumption 3. For (ii) note that,

N N N N N

i=l j^i 2=1 j—1 1=1
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using the fact that P is a projection matrix and result (i). Finally, using the fact that P

is a symmetric projection matrix we have that,

N N N N N

J2E PiJP^J =ZE ^^^^^ = trace{P'P) -^ i^^ = trace{P) - o{K) = K- o{K)
1=1 j^i 2=1 i/t i=l

Q.E.D.

Lemma A.2 Given Assumption 3 and either Assumption 2 if K —^ oo or

f'Pf 10<c< ^^-^ <c-^N

with probability 1, uniformly in N, (for some small constant c), the following results

hold for the matrix F = Pf [fPf)'^fP and the vector / = Pf,

(ii) supj Fu = o(l)

(iii) sup, \U/y/N = 0(sup, PlP) = 0(1)

(iv) ff/N = 0(1)

(v) N-' Y.i^^ fJ,P, = f'f/N + 0(1)

(vi) N-' E.^^. fJ,P. = {f'flN){K/N) + o{N-^).

Proof: (i) This follows from the fact that

N

Y,Fu = trace{Pf{f'Pf)-'rP) = trace{f'PfifPf)-') = 1

i=l

To show (ii), letting Pi denote the 2th column of P (so that P^Pi = Pa) then,

Fii = P'JU'PfY'f'Pi

< P,trace{f{f'Pfr'f')

= Putraceii^-^y^i^)

< supP,,0(l)
i

where the last line follows from either Assumption 2 or the additional condition in the

statement of the result. Then (ii) follows from Assumptions.
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(iii) By Cauchy Schwarz,

^
'A7I < {p:p^'^'(^-^^''

f'f

= o{l)

where the last line follows from Assumptions 3 and 2. To show (iv),

f'Pf f'fl-LJ- < LjL = 0(1)

by Assumption 2. For (v),

Z^i^j JiJjPjj _ / / _ 22i fifiPji

N ~ N N

where,

-^^<supP..^^ = o{l)

by Assumption 3 and result (iv). Finally, (vi) follows for the same reason. Q.E.D.

Lemma A. 3 A sufficient condition for a method of selecting K based on,

K = argrmnSf^{K)

to he "higher order asymptotically optimal" is the condition that,

\Sm(K) - S^{K)\

T—s;ak)— = ">('>

Proof: By construction,

S{K)>mfS{K). (28)

Hence,

S{k)>{l/2){mfS{K) + S{k)). (29)

Now using (28) and (29),

Q ^
S{k) - infK S{K)

S{k)
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^ S{K)-mfKS{K) ^ S{k)-S{K)
< Z ; < Z sup :

S{K) + infkS{K) k S{K) + S{K)

{S{k) - S{k)) - {S{K) - S{K))
< Z sup x^" K S{K) + S{K)

^ \Sik)-Sik)\ \SiK)-SiK)\^
~ ^ S{K) / S{K) '

where the fourth inequality follows from the fact that,

S{k) - S{K) <

by the definition of K. Since the terms in the last expression are Op(l) by the condition

of the Lemma it follows that,

inf/c S{K) p

S{k)

and hence by the Slutsky Theorem,

s{k) p

and so K is asymptotically optimal with respect to S{K). Q.E.D.

Lemma A. 4: Given Assumption 5 (i) and (ii) if R{K) is the Mallows criteria and

Assumption 5 (i) (ii) and (Hi) if R{K) is the cross validation criteria, we have

that,

\R{K) ~ al - R{K)\

T W) ^ '^^-

Proof: For Mallows criteria the result is identical to Theorem 2.1 of Li (1987). For cross

validation the proof is adapted from Li (1987). First, we write,

14

''J

where the Tj differ from those used in other proofs. Throughout, we will let A denote a

generic large constant. The individual terms are:

_ u'Pu ,K
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T2 = ^f'{I-P)u

^ ,u'Pu u'Pu^

n = ^ni~p)Pu

n = --u'ppu

Te = -^f'{I-P)PPu

2
Tj = —u'PPPuN

n = ^ni-p)p{i-p)i

u'bu
^» = -IT

where P is a diagonal matrix which has Photl its ith diagonal and where D is the diagonal

matrix with the term Da = P^i{3 — 2Pii){l — Pii)~'^on the ith diagonal. The terms Tg

through Ti4 are identical to T4 through Tg but with P replaced by D, 2 replaced by 1

and 4 replaced by 2. These terms are obtained using the fact that,

{1 - Pu)-^ = I + 2Pu + D,i.

The proof proceeds by showing that,

where the supremum is taken over the relevant index set. Notice that this result holds for

j = 1,2, using Theorem 2.1 of Li (1987) given Assumption 5(i) and (ii). Also, note that

the results will hold for j = 10, 11, 12, 13, 14, if we can show the corresponding results

for j = 4,5,6,7, 8. Thus we must show the results for j = 3, 4, 5, 6,7, 8, 9. To do this we

follow Li (1987) and use the generalized Chebyshev inequality which implies that,

for any ^ > 0, where the sum on the right hand side is over the relevant index set. For

j = 3,4,6 this is done by showing that,

E{\Tj\^) < AN^R{Kf (32)
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which is sufficient to show (31) given that Assumption 5(ii) holds. First, for j = 3, we

have that (32) follows because, using Theorem 2 of Whittle (1960), Assumption 5(i) and

(iii) and the definition of R{K). Using the same result and Assumptions we have for

j = 4, that,

E{%\') < A{f'{I-P)Pp{I-P)ff

< A{snpsupP^){f{I-P)f)'
K i

= o,{l)N^R{Kf

so that (32) holds for j = 4. Similarly for j = 6, we have that,

E{\Te\') < A{f'{I-P)PPP{I-P)fY

< A(/'(/ - P)PP{I - P)ff = o,{l)N'R{K)'

where the second inequality follows from the fact that the largest eigenvalue of P is less

than 1 due to the fact that P is a projection matrix.

To show (30) for j = 5 we first note that,

N N
u'PPu = Y^ u^^Pl + Y^ PiPjUiUj (33)

and consider the two terms separately. For the first, note that,

T ^mt^) = "'^'^

can be shown using (31), (32), Theorem 2 of Whittle (1960) and Assumption 5. Then

since,

I

2y-A' p2|
I

2 7X1

T NR{K) ^ 'TT^«'T*Mw'
< 0,(1)

we have that the first term in (33) satisfies (30). For the second term in (33) we similarly

can show that it satisfies (30) by using (31), (32), Theorem 2 of Whittle (1960) and
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Assumption 5. To see this note that,

N N

N

K i ...

< Op{l)N'R{K)'

using Lemma A.l(iii). Therefore the second term in (33) satisfies (30), so by the triangle

inequahty (30) is satisfied for T5. For Tywe can note that, by the fact that,

\u'PPPu\
, „ ,

\vlPu\

'7 ~NRm - ^T '7 ^''^T imjq

we have that (30) is satisfied by Assumption 5(iii) and the fact that

\u'Pu\ \u'Pu-alK\
, \alK\ ,

'7NPm - T NR{K) ^T^NRiK)^
< Op(l)+l

using Theorem 2.1 of Li (1987) and the definition of R{K). Next, (30) is satisfied for Tg

using the fact that,

ni-p)p{i-p)f < (supsupp,,)(/'(/-p)/)
K i

< Op{l)NR{K)

where the second inequahty follows from the definition of R(K). Finally, (30) is satisfied

for Tg using similar arguments to those used to deal with the first term of T5. Q.E.D.
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Table 1.1: Case 1
12

Quantiles

Est. N Max K .10 .50 .90 MAE Gov. Rate

OLS 100 * .508 .588 .668 .588

2SLS 100 10 -.247 .016 .208 .117 .882

LIML 100 10 -.247 .018 .198 .114 .896

Jackknife IV 100 10 -.325 -.016 .190 .128 .893

2SLS 100 20 -.245 .018 .211 .118 .876

LIML 100 20 -.242 .020 .209 .116 .882

Jackknife IV 100 20 -.314 -.009 .203 .129 .877

2SLSALL 100 20 .137 .282 .410 .282 .220

LIMLALL 100 20 -.315 -.005 .202 .127 .909

OLS 400 * .548 .587 .628 .588

2SLS 400 10 -.116 .004 .101 .057 .898

LIML 400 10 -.114 .006 .101 .057 .903

Jackknife IV 400 10 -.123 -.001 .100 .057 .895

2SLS 400 20 -.112 .001 .103 .056 .897

LIML 400 20 -.111 .004 .106 .056 .895

Jacknife IV 400 20 -.124 -.004 .100 .058 .901

2SLSALL 400 20 -.001 .092 .181 .093 .627

LIMLALL 400 20 -.121 -.002 .102 .057 .902

^^Note that the entries for OLS, 2SLSALL and LIMLALL are taken from Angrist,

Imbens and Krueger (1995, Table 2). The estimators 2SLSALL and LIMLALL use all

K = 20 instruments in addition to the constant.
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Table 1.2: Case 1, Frequencies

N=100 N=400

K 2SLS LIML J-IV 2SLS LIML J-IV 2SLS LIML J-IV 2SLS LIML J-IV

1 84.18 48.34 70.06 83.94 44.04 69.70 89.00 48.00 70.94 88.70 44.62 71.32

2 10.58 12.36 11.84 10.44 12.06 11.32 8.76 11.60 11.92 9.12 11.08 11.22

3 3.06 8.84 6.40 3.56 8.08 6.54 1.94 8.08 5.90 1.72 6.66 5.62

4 1.28 6.72 4.10 .96 6.00 3.18 .24 6.66 3.66 .46 5.48 3.46

5 .38 5.26 2.22 .46 4.50 2.66 .06 4.68 2.48 4.20 2.06

6 .28 4.40 1.58 .22 4.00 1.44 4.54 1.58 3.36 1.20

7 .04 4.10 1.16 .12 2.92 1.12 4.28 1.40 2.82 1.32

8 .08 3.26 1.08 .06 2.72 .94 4.00 .88 2.88 .92

9 .06 3.36 .80 .10 1.88 .60 3.56 .58 2.82 .72

10 .06 3.36 .76 .06 2.16 .54 4.60 .66 2.08 .52

11 1.72 .56 2.04 .44

12 .02 1.50 .44 1.88 .24

13 .02 1.34 .22 1.62 .18

14 .02 1.30 .20 1.32 .26

15 .92 .06 1.18 .08

16 .98 .14 1.40 .08

17 .02 1.24 .08 1.04 .06

18 .92 .12 1.04 .06

19 .98 .06 1.14 .18

20 .74 .08 1.34 .06
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Table 2.1: Case 2^^

Quantiles

Est. A^ MaxK .10 .50 .90 MAE Co^^ Rate

OLS 100 * .506 .589 .671 .588

2SLS 100 10 -.106 .104 .282 .131 774

LIML 100 10 -.257 .017 .205 .121 887

Jackknife IV 100 10 -.377 -.027 .194 .134 867

2SLS 100 20 -.120 .097 .275 .131 787

LIML 100 20 -.246 .018 .211 .121 884

Jackknife IV 100 20 -.344 -.007 .216 .135 848

2SLSALL 100 20 .134 .284 .414 .284 231

LIMLALL 100 20 -.305 -.001 .208 .128 898

OLS 400 * .549 .589 .629 .589

2SLS 400 10 -.091 .023 .118 .058 877

LIML 400 10 -.114 .004 .102 .057 901

Jackknife IV 400 10 -.131 -.004 .098 .059 892

2SLS 400 20 -.094 .022 .120 .059 868

LIML 400 20 -.114 .006 .107 .058 888

Jackknife IV 400 20 -.132 -.004 .103 .062 881

2SLSALL 400 20 -.003 .093 .179 .095 624

LIMLALL 400 20 -.123 .103 .059 898

^^Note that the entries for OLS, 2SLSALL and LIMLALL are taken from Angrist,

Imbens and Krueger (1995, Table 2). The estimators 2SLSALL and LIMLALL use all

iC = 20 instruments in addition to the constant.
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Table 2.2: Case 2, Frequencies

N=100 N=400
K 2SLS LIML J-IV 2SLS LIML J-IV 2SLS LIML J-IV 2SLS LIML J-IV

1 4.50 .04 .06 4.00 .06 .06

2 .30 .12

3 .04 .06 .02

4 .02

5 91.30 58.42 73.02 91.64 51.86 69.86 99.34 55.56 73.06 99.06 47.60 71.46

6 2.50 13.52 11.84 2.74 11.90 11.70 .62 13.82 11.32 .86 11.12 10.98

7 .76 8.90 6.24 .84 8.06 5.82 .04 9.34 6.06 .08 7.72 5.26

8 .30 7.34 3.54 .26 5.28 3.84 7.66 3.96 5.70 3.86

9 .20 5.86 2.98 .08 4.12 2.44 6.76 3.24 4.30 2.42

10 .10 5.92 2.32 .08 3.58 1.50 6.86 2.36 3.46 1.50

11 .02 2.66 .98 3.42 1.28

12 .04 2.26 .92 2.28 .88

13 .04 1.90 .68 2.28 .52

14 .02 1.68 .56 2.04 .60

15 1.38 .44 1.84 .32

16 .02 .94 .32 1.70 .30

17 1.20 .24 1.60 .24

18 .78 .26 1.52 .14

19 .02 1.10 .14 1.50 .14

20 1.22 .24 1.92 .10
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Table 3.1: Case 3^^

Quantiles

Est. N MaxK .10 .50 .90 MAE Gov. Rate

OLS 100 * .113 .166 .223 .166 .012

2SLS 100 10 -.458 .050 .428 .200 .935

LIML 100 10 -.496 .029 .467 .206 .947

Jackknife IV 100 10 -.850 .063 .882 .310 .679

2SLS 100 20 -.460 .082 .429 .192 .897

LIML 100 20 -.522 .050 .514 .200 .935

Jackknife FV 100 20 -.694 .126 .784 .261 .496

2SLSALL 100 20 .033 .147 .268 .148 .474

LIMLALL 100 20 -.572 .097 .784 .253 .869

OLS 400 * .139 .167 .196 .167

2SLS 400 10 -.221 .019 .215 .117 .911

LIML 400 10 -.236 .009 .214 .112 .920

HLIML 400 10 -.249 .007 .218 .115 .943

Jackknife IV 400 10 -.343 -.018 .231 .137 .902

2SLS 400 20 -.247 .038 .211 .118 .889

LIML 400 20 -.259 .015 .219 .113 .927

Jackknife IV 400 20 -.523 -.009 .316 .158 .831

2SLSALL 400 20 .013 .121 .224 .121 .531

LIMLALL 400 20 -.364 .045 .359 .156 .890

i^Note that the entries for OLS, 2SLSALL and LIMLALL are taken from Angrist,

Imbens and Krueger (1995, Table 3). The estimators 2SLSALL and LIMLALL use all

K = 20 instruments in addition to the constant.
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Table 3.2: Case 3, Frequencies

N=100 N=400

K 2SLS LIML J-IV 2SLS LIML J-IV 2SLS LIML J-IV 2SLS LIML J-IV

1 62.92 59.16 67.62 61.96 52.64 67.16 60.48 64.04 72.20 62.62 56.88 69.74

2 11.18 12.94 11.62 10.02 12.60 11.86 12.72 12.62 11.42 10.58 12.32 11.00

3 6.50 7.38 6.64 6.10 7.72 5.86 7.20 7.52 5.84 6.00 6.94 6.08

4 4.34 4.84 3.80 3.88 4.82 3.60 4.28 4.24 3.84 4.06 5.18 3.56

5 3.86 3.98 2.84 3.40 3.74 2.94 3.90 3.06 2.14 2.90 3.14 2.46

6 2.42 2.84 2.18 2.32 2.80 1.80 2.78 2.26 1.62 2.40 2.28 1.92

7 2.42 2.28 1.46 1.92 2.10 1.52 2.44 1.76 1.00 1.50 1.78 1.08

8 2.06 2.34 1.38 1.32 1.86 1.02 2.16 1.60 .86 1.70 2.00 .94

9 1.92 1.88 1.24 1.22 1.50 .82 2.00 1.48 .72 1.30 1.28 .56

10 2.38 2.36 1.22 .98 1.38 .50 2.04 1.42 .72 1.06 1.10 .50

11 1.02 1.42 .56 .82 .98 .46

12 .80 1.28 .36 .92 94 .30

13 .86 .84 .38 .44 68 .30

14 .58 .64 .34 .62 74 .24

15 .70 .66 .30 .62 72 .12

16 .76 .60 .30 .42 62 .10

17 .54 .82 .26 .46 58 .16

18 .52 .80 .14 .58 86 ..16

19 .48 .80 .12 .36 36 .20

20 .62 .98 .16 .64 62 .12
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Table 4: Returns to Schooling Estimates^^

2SLS LIML
Instruments /? S{K) P S{K) Cross Val.

4 Regions .1011

(.014)

4.1939 .1028

(.014)

10.1515 10.15157

4 Regions + Qtr-Yr .0897

(.012)

4.1954 .0927

(.013)

10.1514 10.15154

9 Regions .0920

(.013)

4.1947 .0956

(.014)

10.1517 10.15185

9 Regions + Qtr-Yr .0841

(.012)

4.1963 .0875

(.013)

10.1515 10.15166

17 Regions .0979

(.012)

4.1963 .1077

(.014)

10.1515 10.15245

17 Regions + Qtr-Yr .0892

(.012)

4.1985 .0973

(.013)

10.1514 10.15235

32 Regions .1002

(.011)

4.2001 .1127

(.013)

10.1517 10.15300

32 Regions + Qtr-Yr .0927

(.010)

4.2033 .1034

(.012)

10.1515 10.15291

50 Regions .0985

(.010)

4.2073 .1143

(.013)

10.1517 10.15437

50 Regions + Qtr-Yr .0928

(.009)

4.2117 .1064

(.012)

10.1515 10.15428

"^^In this table the entries in the columns with header /? are the parameter estimates, with standard

errors in parentheses below the estimate. The columns labelled S{K) give the value of the criteria for

the set of instruments, while the column headed Cross Val. gives the cross validation statistic from the

first stage relationship between number of years of schooling and the instruments.
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