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1 Introduction

There has been a resurgence of interest in the application and properties of instrumental
variables (IV) estimators. Animportant problem in IV estimation is choosing the number
of valid instruments, or more generally a subset of all the instruments known to be valid.
The properties of estimators are sensitive to this choice (e.g. see Morimune, 1983), even
in applied work with many observations (e.g. see Bound, Jaeger and Baker, 1996). We
address this problem by providing simple approximate mean-square error (MSE) criteria,
that can be minimized to choose the instruments. We give these criteria for two-stage
least squares (2SLS), limited information maximum likelihood (LIML), and the Jacknife
IV (JIVE) estimator of Angrist, Imbens, and Kreuger (1995). We also compare the
approximate MSE of these estimators, and find LIML is best. '

Our criteria is based on higher-order asymptotic theory, like that of Nagar (1959),
Anderson and Sawa (1979), Morimune (1983), and Rothenberg (1983). Our approximate
MSE criteria are like those of Nagar (1959), being based on the MSE of leading terms in

an expansion of the estimator.This approach is well known to give the same answer as the

MSE of leading terms in an Edgeworth expansion, under suitable regularity conditions
(e.g. Rothenberg, 1984), and has been used in nonparametric and semiparametric models
by Andrews (1991a), Linton (1995), and Powell and Stoker (1996). For k-class estimators
our calculations extend those of Nagar (1959) and Rothenberg (1983) to the misspecified
first-stage case. We also provide new results for the jacknife IV estimator (JIVE) of
Angrist, Imbens and Krueger (1995).

A number of recent studies have considered the properties of IV estimators when
instruments are only weakly correlated with the endogenous right hand side variables. In
particular Nelson and Startz (1990), Maddala and Jeong (1992), Bekker (1994), Bound,
Jaeger and Baker (1996), and Staiger and Stock (1997) have shown that standard IV
estimators, including the 2SLS estimator, tend to be biased towards the inconsistent
OLS estimator and that inferences based on 2SLS can be quite misleading, when the

endogenous variable is only weakly correlated with the instrument. As a practical mat-



ter, choosing the instruments may help improve the approximation, particularly when
the source of weak correlation is extraneous instruments that should be excluded. For
example, we show that in data like that of Angrist and Krueger (1991) our criteria will
choose the smallest number of instruments, where there is less evidence of a problem of
weak correlation.

Our criteria for choosing a subset of valid instruments is the estimated MSE of leading
terms in an expansion. This approach is different than Andrews (1996), who bases instru-
ment choice on the GMM criterion function. We are choosing instruments from a subset
that is known to be valid while he is searching for the largest set of valid instruments.
Our approach seems ideally suited to many applications in microeconomic data, where
there is a large set of instruments all thought to be valid. Examples include the draft lot-
tery number as an instrument for military service, as in Angrist (1990), and interactions
of covariates with instruments, as in Angrist and Krueger (1991). Our results also apply
to the choice of nonlinear functions to use in the efficient semiparametric instrumental
variables estimator of Newey (1990). Here we derive the optimal, MSE minimizing num-
ber of instruments to use, answering the important question of how to pick the number
of instruments in optimal semiparametric estimation. The number of instruments can
be thought of as a smoothing parameter for the nonparametric component, as has been
considered by Linton (1995) and Powell and Stoker (1996) for other models.

In Section 2 we describe the IV estimators we consider, present the criteria for in-
strument choice, and compare these criteria for different estimators, seeking the one with
smallest higher order MSE. In section 3 we derive the approximate MSE for LIML, 2SLS
and JIVE when there are no covariates. Section 4 studies the properties of the criteria
theoretically and shows that they can be implemented in a way that is optimal in a
certain sense. Section 5 allows for covariates in the theoretical results. In section 6 we
present a Monte-Carlo experiment. Section 7 presents the results of applying the criteria

in the Angrist and Krueger (1991) application.



2 The Model, Estimators, and Instrument Selection
Criteria

The model that we consider is,

yi = Wi+ 28+ e, Blalz] = 0,Var(elz:) = o?

€

Y; = f(z:) +w, Elus|z;] = 0, Var(u|z;) = o2

U’

for i =1,..., N, where y;, and Y; are scalars, z; is a d X 1 vector of exogenous variables,
and z1; is a d; X 1 vector of exogenous variables which are assumed to be a subset of
z;, where we assume homoskedasticity throughout. We also assume that conditional
third moments are zero throughout the paper. The first equation is the equation of
interest and the right hand side variable Y; is possibly correlated with ¢; so that generally
E(ue;|z;) = 0ye # 0, The second equation represents the reduced form relationship
between Y; and the exogenous variables z; which is allowed to be nonparametric, with
fl@i) = E(Yilz:).

Because of the conditional moment restriction E(¢;|z;) = 0, functions of z; can be used
as instruments in estimating the equation of interest. Let ) = (Y1 (z:), ..., Y (T:)) be
a vector of K functions to be used as instrumental variables, where we assume throughout
that ¢X includes z1;. They could be approximating functions, such as power series
or regression splines, as in Newey (1990). The problem we consider is how to choose
this instrument vector so that the associated IV estimators have good properties. For
simplicity we have allowed K to serve as both the number of instruments and the index
of the instruments, but we could proceed more generally by specifying a different index
for the instruments. If we did that the criteria could be used to compare instrumental
variables estimators with the same number of instruments.

We consider several different IV estimators. To describe them let X = [pf .. XY
be the matrix of observations on the instrumental variables, PX = UK (TE'@K) 1T K/ the
assoclated projection matrix, ¥ = (y1,...,%n)’, ¥ = (Y1,.., Ya), X1 = [Z11, ..., T1a), W =
[Y,X1],and 6§ = (v, 8'). Also, let 6 be the minimum of N'Y'(PX — P)YA/XY'(I—P))Y A



over A, where P, = X (X]X;) 'X]. The main class of estimators considered is the k-class

which includes estimators which have the form,
§ = ((14 KW' PXW — sW'W) (1 4+ &)W PEy — kW'y)

where the scalar k is given by,
o ab+ %
C1—af— %

for constants a and b. This class of estimators includes 2SLS, where a = b = 0, LIML,

K

where a = 1 and b = 0, and a bias-corrected 2SLS estimator like that of Nagar (1959),
denoted here by B2SLS, where a = 0 and b = K — (2 + d;). This class of estimators is
similar to that considered by Rothenberg (1983).

The other estimator considered is the Jackknife IV estimator (JIVE) proposed by
Angrist, Imbens and Krueger (1995). It has the form,

( A > B ( Y'C'Y Y'CX, )‘1 ( Y'Cly >

By )\ XY XX, X1y

where C' is the matrix with Cj; = P,;/(1 — B;) for i # j and Cj;; = 0. Note that C'Y has
the interpretation as the vector of predictions of the Y; given all but the ith observation,
hence the Jackknife terminology.

The instrument selection criteria are based on the approximate mean square error
(MSE) for the endogenous variable coefficient estimator 4. Implementing these criteria
requires preliminary estimates of some of the parameters of the model and a goodness of
fit criteria for estimation of the reduced form using the instruments 1. Let § denote a

preliminary IV estimator and let € = y—WS. Also, let % denote some preliminary reduced

form residual estimator, such as that obtained from the residuals from the regression of

Y on UX for some fized K. Then let
62 =¢&¢/N,6% = a'a/N,6,. = Weé/N.

It is important in what follows that none of these preliminary estimators depend on K.
For example B might be an IV estimator with just one instrument for V;, or it might be

an IV estimator where the instruments are chosen to minimize the first stage goodness
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of fit criteria given below. Similarly, the reduced form residual 4 might be from the first
stage regression with the best fit. In any case these estimates must remain fixed as the
criteria for different instruments sets is calculated.

The reduced form goodness of fit criteria can be formed in at least two ways. Let 4%
denote the reduced form residual vector from regressing ¥ on X, The Mallows goodness

of fit criterion for the reduced form is

21

R(K) = (@X'aX /N)(1 + T )

The cross-validation goodness of fit measure is

N N
o 1 ('u,K )2
R(K) = — —_—t
M) =52 @y
Either of these will have suitable theoretical properties for use in the instrument selection
criteria.

The preliminary estimates of covariance parameters can be combined with the reduced

form goodness of fit measures to form criteria for the choice of instruments for each of

25LS, LIML, and JIVE as

A . K2 ., oK
Sasrs(K) = 03:_,—\,—+0?(R(K)—03N)

~2
~2 » . O—ueﬁ
57 <R(K) 5 N>

I

Scrui(K)

27)
R ~2 [ D O ue K
S_]]VE(K) = O (R(I{) + a_g N)

For each estimator, choosing K to minimize the corresponding S (K) will result in 4 that
has relatively small MSE asymptotically. These criteria also will apply when K is not
the sole index of the instruments, e.g. for comparing two different sets of instruments
that have the same number of instruments. Choosing the estimator where the expression
on the right-hand side is smallest will result in the best asymptotic MSE in that case as
well.

It is interesting to compare the size of the criteria for different estimators, because

this parallels the MSE comparison of the estimator. As both N and K increase, the
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LIML and JIVE criteria are both of smaller order than the 2SLS criteria. This reflects
that the bias of 2SLS increases with the number of instruments at a higher rate than the
other estimators, a result previously established by Morimune (1983). Consequently, for
large numbers of instruments both LIML and JIVE should dominate 2SLS in terms of
MSE. Also, the criteria for LIML is smaller than that for JIVE, so that LIML is best
among these three estimators. As previously shown by Rothenberg (1983) for the fixed
instrument case, it turns out that LIML is best median unbiased to the order we consider

in the k-class of estimators.

3 The Mean Square Error

For much of this section we focus on the simplest model which is a special case of the

mode] considered in Section 2. In particular we focus on the model:

yi = Wite
Yi = flz)+uw

fori =1,..., N, where y;, Y; and ¢; are all scalars and where Y; is possibly correlated with
€;. In Section 3.5 below we show how the MSE criteria can be extended to models with

covariates as considered in Section 2. In this case, the estimator for 7y is given by,
4=+ r)Y'PY —sY'Y) Y (1 +K)Y'Py— &kY'y)

where,
b
o — ad + N
1—af— %
with 0 being the minimum value of, NY'PYA/NY'Y A\. The other specific estimator

considered is JIVE, which 1s denoted by,
’3’] — (chly)——lylcly

where C' was described in Section 2. Unfortunately JIVE does not appear to fit into the

k-class of estimators so that MSE calculations will have to be performed separately.
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3.1 Calculation

Our approach to finding the approximate MSE is similar to that of Nagar (1959). First

we normalize the estimator (let 4 denote a generic estimator),

VNH =) =Hh
where H and h are different for different estimators and have population counterparts,

1
b= —NfIE

and

Then we use the expansion,

~

H''h = [(I —(H—-HH YH Y(h+ (h—h))

= H'h+(H- H)H "W+ (H - DH " (h—h)+(H - A2H h+ ...
and note that since H~! is a common factor for all terms in the expansion, we can

calculate an approximate MSE by taking expectations of the square of the expression,

HVN(#H—v) = h+(H—-H)H 'h

+(H-H)H '(h—h)+ (H- H?*H %h +...
Then following Nagar (1959) we find the MSE of this expression using the largest (in
probability) terms in the square of this expression, although since we are interested in the
selection of K and allow K — oo we include only those leading terms in the MSE that are
pertinent to the choice of K for the estimator of interest. Thus terms that do not depend
on K will be omitted. Because of this fact, terms beyond the second will not (in general)
contribute to the approximate MSE criteria to be used for selection of K, even though
they do contribute to the MSE in the case where one has a fixed K and one obtains an
approximation to the MSE to O(1/N). For the purposes of completeness and to enable

other types of comparisons we also provide approximate O(1/N) MSE calculations for
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fixed K. These calculations extend the work of Nagar (1959) and Rothenberg (1983) to
the case where there is a possible misspecification in the first stage. In such a calculation
the third and fourth terms do contribute to the approximate (to O(1/N)) MSE.! Note
that the leading term (which is O(1)) in the approximate MSE will be

2 f'f

E(hh') = o N

and that this will be common to all of our approximate MSE’s. Since this term has no
bearing on the choice of K and since it is common to all of our estimators we omit the
term from the expressions we present and focus on the remaining terms. All calculations

are done conditional on the exogenous variables ;.

The assumptions which are used to derive an approximate MSE are now stated and

discussed.

Assumption 1 Assume that {x;,u;, ¢;} are iid, and satisfy,
(i) E(us|z;) = E(es|z:) =0,
(i) 0 < B(u?|z;) = 02 < 00 and 0 < E(e?|z;) = 0? < o0,
(1) E(uie;®|x;) = 0, for j+ k being a positive odd integer such that k + j <5,
(iv) E(Juwi|?|e;|*|z:) < o0, for any positive integers j and k such that k + j < 5,
(v) T; have support X C R? that is the Cartesian product of compact intervals..

Assumption 1(i) was noted in Section 2. Assumption 1(ii) is a homoskedasticity assump-
tion that simplifies the calculations while Assumption 1(iii) is a symmetry assumption
which implies that both residuals have symmetric distributions. This will be satisfied if
the residuals are jointly normally distributed. Assumption 1(iv) requires the existence of
at least five moments for the residuals. Assumption 1(v) is standard in the literature on
series based nonparametric regression. The next Assumption concerns the nature of the

optimal instrument function f.

'We thank Tom Rothenberg for this observation.



Assumption 2 The function f(z;) = E(Yi|z;) is such that,

(i) f : X — R and has an eztension to all of R* that is s > 0 times continuously

differentiable in z,

(ii) with probability 1, 0 < ¢ < N SN f(@)? < ¢! for some small constant c

uniformly in N.

Assumption 2(i) is a smoothness condition that allows one to obtain approximation
rates for series based methods. The second part of this assumption is an identification
assumption that requires that f(z;) not be identically zero which would result in 7 being
unidentified. This will be modified when we consider the introduction of covariates into

the structural equation.

Assumption 3: Letting P;; denote the ith diagonal element of P, assume that
sup F; — 0
i<N

as N — oo with probability one.

It should be stressed that this assumption is not required for one to show that \/N(’?— v)
is asymptotically normal, and is only necessary to obtain tractable expressions for the
MSE. It requires some restrictions on the rate at which K increases with the sample size
that are much stronger than those needed to show asymptotic normality of the estimators.
It should be noted however that as long as s in Assumption 3 is sufficiently large the
restrictions will allow for K to increase at a rate that results in the fastest possible rate

of convergence of the MSE expression to zero.?

Our first result gives an approximation to the MSE for a subclass of the k-class
estimators we are considering. In obtaining all of our approximations we have restricted
attention to k-class estimators that have values of a and b that satisfy certain properties.

In particular it is assumed that a = O(1) while & = O(K), which includes all of the

*Donald (1997) has shown that for power series one requires that £°/N — 0 when z; has a continuous
distribution with density that is bounded and bounded away from 0 on X.
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estimators mentioned above and ensures that the estimators will be consistent.* The
first subclass of estimators consists of those for which the approximate bias (to order
N~1/2) is increasing in K. Unless otherwise stated all MSE will refer to the terms in the
large sample large K MSE that are dominant amongst those that increase with K and
those that decrease with K.

Proposition 1 Given Assumptions 1-3, assuming that a = O(1) and b = O(K) such
that (1—a)—b/K is bounded away from 0, the MSE for /N (§—=) is approzimately

YT S YT

It is straightforward to show that the approximate bias, to O(N~'/?) is of the form?,

(1 —a)K —\% (2 — 0)]0u <ﬁ> i

N
and that for estimators in the class under consideration whose bias term grows with K|

(1)

the leading term in the MSE comes directly from the square of this bias. The second term
in our approximate MSE comes from the approximation error inherent in the estimation
of f by a series based approximation. The result in Proposition 1 leads directly to an
approximate MSE for 2SLS which is the only estimator under consideration which falls

into this class.

Corollary 1 For 2SLS, %, which has a = 0 and b = 0, the approzimate MSE of
\/N(% — ), under Assumptions 1-3, is given by,

K* L, f'I-P)f
2l 2\ T )
O + o; N :

3Note that, as will be seen, these conditions on their own do not ensure root-N consistency. In general
this will require restrictions on the rate of increase of K.

4See Rothenberg (1983) for example. Also note that the expression for the bias is the same as Nagar
(1959) when a = 0.
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The result in Proposition 1 does not reveal the large K approximate MSE for either
LIML or B2SLS because neither of these estimators have a bias (to O(N~Y?)) that
depends on K. Thus we need to provide an additional result that will yield approximate

MSE’s for such estimators.

Proposition 2 Given Assumptions 1-3, assuming that a = O(1) and b = O(K) such
that (1 — a)K — b= O(1), the MSE for \/N(¥ — ) is approzimately

(K — 20K — 2ab) K f’(I — P)f
12“ N 0503N+03——N ) .

ag.

This result can be used to obtain approximate MSE’s for LIML and B2SLS.

Corollary 2 For LIML, 41,,which hasa = 1 and b = 0, the approzimate MSEfor\/NﬁL—

v) under Assumptions 1-3, is given by,

K, o fU=P)

2 2
UG g )N € N

Corollary 3 For B2SLS, yg,which has a = 0 and b = K — 2, the approzimate MSE

for\/]_V('SfB — ) under Assumption 1-3, is given by,

/ —
(o202 + a2 e oa =2

The expressions derived thus far do not allow one to derive a criteria for JIVE.
Interestingly, the following result shows that JIVE has the same MSE expression as
B2SLS.

Proposition 3 For JIVE, 4;, the approzimate MSE forv/N(4; — 7y) is given by,

K Lf'(I-P)f
e 2
(0202 + Uue)N+Ue N

12



3.2 Discussion

Some insight into the differences between the approximate MSE for the estimators can
be gained by looking at the terms in the expansion of each that contributes to the leading

terms in the MSE expressions. For 2SLS this term has the form,

’PE (Z'u, 6P + Z Z U6 11) (2)

o=il gz

where the first term on the right reflects part of the bias that occurs due to the endogeneity
in the model (i.e. correlation of u; and ¢;) and which grows with K .° The square of this
bias term gives the leading term in the MSE for 2SLS. The variance of the complete
expression contributes O(K/N) terms to the MSE, and these are dominated by the
leading bias squared term. Both LIML and B2SLS have the leading bias term (which

depends on K) removed and so the leading terms in their MSE come from the variance
terms. An alternative derivation of LIML shows how this bias reduction occurs. In
particular the LIML estimator 4, can be shown to be the solution to the following

problem, o
. KYPYy,
min ————
v NYYy
where Y = (y,Y), and v, = (1,—7). Given this, it is straightforward to show that the
LIML estimator satisfies the following first order condition,

1 R Ye(hL) . R >
— [ Y'Pe = ' Pe =0
i < (4z) EATIETS () Pe(L)
where €(4.) =y — LY. Letting,

aon v Y'e(A)
0L = Goyee)

we can rewrite the first order condition as,

=V = 8(3n)e(in)) Pelic) =0 (3)

SNote that Zfil P;; = K since P is a projection matrix with rank K.

13



Since 4 can be interpreted as being the coefficient in the linear regression of Y on € the
first term in the above can be viewed as being the residual from this regression, which
should then not be linearly related to €. Thus the term for LIML that corresponds to (2)

has the form,

N N N
1 1
—v'Pe=— v;6; Py + v;€; Py 4)
where,
_ Uue
V; = U; — 0_—6261'

is by construction uncorrelated with ¢;. Note also that the leading term in the MSE
expression for LIML is equivalent to, 020?%. The term for B2SLS corresponding to (2) and
(4) is equal to,

’LLIPG _ KUue 1 N N -
Tt = = | e = Kow) + 303w Py (5)

i=1 i=1 j#i

where the leading term has, by construction, zero expectation. This, again, results
in a lower order leading term in the MSE for B2SLS. The lower leading term for LIML
compared to that of B2SLS comes about because of the lower variance that arises because
v; 1s uncorrelated with €; and because v; has a lower variance than u;. Finally, it is easy
to see why JIVE has the same leading term as B2SLS, since for JIVE the expression that

is analogous to (2), (4) and (5) has the form,

u'Ce 1 gl
N - TN (;;Wﬁj@j> (6)

which has zero expectation. This expression results because of the use of the Jackknife

in the first stage.
3.3 Further Comparisons

Our discussion thus far has indicated that, in terms of dominant terms in the approximate
(large K) MSE, LIML dominates JIVE and B2SLS and that all of these estimators
dominate 2S5LS because of the larger order (in K) leading term of the latter. Another

14



type of comparison that can be made is in terms of the MSE for a fixed value of K
for which, generally speaking, the chosen instrument set may be suboptimal. The nice
feature of this comparison, is that if the expansion is taken up to terms of order N~! then
one can see clearly the opposing effects of increasing K more clearly. In addition such an
expansion extends the work of Nagar (1959) and Rothenberg (1983) to the misspecified
first stage case and may reveal any potential differences between estimators when one

uses an imperfect fixed set of fixed instruments in the first stage.®

Proposition 4: Given Assumplions 1, 2(i), 8, assuming that a,b and K are fized and

that (for some small constant c),

f'rf 1

0<C<T<C

with probability 1, uniformly in N, then the MSE for \/N(’“y — ) using terms up
to those of O(N™Y) is approzimately

o; <flpf>‘l L2 =K - <f’Pf>-2

N ue N N

i {(K —2aK — 2ab) — 8[(1 —a)K — 8]}\ [ f'Pf\°
( {K—2[1—a)]év—b]} J'Pf ‘>< ! )
& ) (F)

/ -2 / -2

+ﬁ< %‘“>U£® +otot (457) (7))
a(K—1)+0b\ f'(I - P)f [(fPF\°
+2af< _ ) _ ( N)

The conditions used to derive the expression in Proposition 4 are the same as used

previously except that we have introduced a condition that modifies Assumption 2(ii) to

6Indeed our result reduces to that of Nagar (1959) in the perfect first stage case when a = 0 as he
assumed. The expression obtained in Proposition 4 does differ from the MSE expression one obtains
from Theorem 2 of Rothenberg (1983). Additionally, in the a = 0 case, the expression one obtains from
Rothenberg (1983) is not consistent with that obtained by Nagar (1959). The difference between that
obtained from Rothenberg (1983) and Nagar (1959) and ours is minor and appears appear to be due to
typographical error in the statement of Theorem 2 of Rothenberg (1983). Indeed a single sign change
results in all espressions being consistent with one another.
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ensure identification in the fixed K case. Note that the leading term in this expression,

when taken to the limit, is the asymptotic variance of the estimator, when K is fixed.
When K is fixed and when the instruments are imperfect (in the sense that they cannot

predict f perfectly) then it is the case that,

(5 ()

since f'(I — P)f > 0 which follows because / — P is positive semidefinite. In fact

if the instruments are imperfect (in the sense that they cannot predict f perfectly)
then it is the case that the inequality is strict. Note that the expression on the right
of the inequality is the lowest variance possible for this particular problem. Given the
expression in Proposition 4, one can then see clearly that increasing K will have opposing
effects. First, increasing K will cause the limiting variance to be closer to the optimal

approximate variance for the estimator. That is,

(5 ()

because when K — oo then by Assumption 2, f'(I —P)f/N — 0. On the other hand the

other terms will generally increase. Our expressions derived earlier, involve the largest
terms reflecting each of these effects. The optimal choice of K | then, will be the one

that balances these two opposing effects.

The expression in Proposition 4 can also be used to compare the different estimators

in the class under consideration. In particular the approximate MSE for 2SLS is,

o (P s (K2 —TK 412 s A=K [f'Pf\?
Ue < N > + Uue N +Uu06 N N

for LIML we have,

’ -1 7 -2
2 (L) + (10202 - a2mr (ot - otod) 1) (22

+20? <(Kz\_r 1)> f’(I;[P)f. <f/§f>—2
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and finally for B2SLS we have,

! -1 _ 1y _ 1 -2
o’ <—f—]1\;—f> + {(aﬁaf +03E)%+203 <KN 2) / (INP)f}. (fj}\;f)

To allow comparisons of these k-class estimators with JIVE in the fixed K case we derive

the appropriate MSE expression for JIVE below in Proposition 5.

Proposition 5: Given Assumptions 1, 2(i), 3, assuming that a,b and K are fized,
sup; P = O(N™1) and thal,

0<c< < ¢!

fr'e'f
N

with probability 1, uniformly in N, then the MSE for \/N (4, — 7) using terms up
to those of O(N™1)

' —1 ! DI =% 7 DI -2
ag<1¥5i> +(ai—k0&ﬁ)§:<f}3f> +(1mﬁe+4o§£)3;<f})f>

N N N N N
fU=P)PU-P)f\ (fPF\"
+203< N )( N )

Note the additional condition in the statement of the result which concerns the rate
at which the largest diagonal of the matrix P goes to zero which is a strengthening of
Assumption 3 and is not needed for any other result. It is fairly easy to provide conditions
that justify this condition in the fixed K case considered in the result — for instance given
that Assumption 2 holds one can verify this condition if the smallest eigenvalue of the
matrix W'¥/N is bounded away from zero. The reason for imposing this condition is to

get an estimate of,

w -1 f/C/f -1 flC/Cf f/C/f -1
&) -(5) =)

where the complicated form for JIVE comes from the use of the Jackknife in the first
stage, and similar to the results for LIML and B2SLS, introduces an additional O(N 1),
term in the MSE. Such an additional term does not appear in the expression for 2SLS.

Thus any comparison in the fixed K case will depend not only on K, and the values for
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the variances and covariances but also on the degree of misspecification of the first stage.
It is interesting to note that although this misspecification obviously affects all estimators
through the leading term (the approximate variance) it also affects LIML, B2SLS and
JIVE in the smaller order terms. Indeed one could envision scenarios where K is fixed
at some large number and where there is still a great deal of misspecification in the first
stage - in such a scenario it may be possible for the final term in the MSE for LIML,
B2SLS and JIVE to be large and indicate poor behavior of these estimators relative to
2SLS.

One can do more general comparisons of the estimators in the case where there is
a correct specification in the first stage so that Pf = f . In this case the last terms in
the MSE for LIML, B2SLS and JIVE would be omitted. Comparing the resulting MSE
reveals that although JIVE and B2SLS have similar bias reduction properties and the
same criteria for picking K, B2SLS appears to be superior with respect to terms that do
not depend on K (at least using the approximate MSE to O(N~!)). A comparison of
the MSE for LIML and B2SLS reveals that LIML has a lower MSE. The comparison of
2SLS with the other estimators depends on the variances and covariances in the model.
Not surprisingly large (fixed) values of K and reasonable levels of covariance between the
residuals would tend to lead to superior MSE for the other estimators relative to 2SLS.

The expressions in Propositions 4 and 5 also makes it possible to consider what
happens when there is no endogeneity problem, so that o, = 0. When o0, = 0, the
optimal number of instruments for JIVE and B2SLS, using the criteria developed in
Section 3.2, is exactly the same as for LIML, which is equal to the optimal number of
terms required for estimating f in the first stage. On the other hand, the MSE expression
just given for 2SLS, (when o, = 0) is monotonically decreasing in K which indicates
that the optimal choice of K is as large as possible. This, not surprisingly, makes 2SLS
identical to OLS, and is due to the fact that when o, = 0, OLS is the Best Linear
Unbiased Estimator. The reason that this does not occur with LIML is that the LIML
estimator would no longer be defined when there are as many instruments as observations

while the delete-one nature of the first stage used in JIVE makes first stage predictions
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based on as many instruments as observations very unreliable.

Because of the dependence of comparisons on the degree of correlation between resid-
uals, it is difficult to use the expressions in Propositions 2 and 4 to derive an convenient
optimal estimator in the class under consideration. It is possible, however to describe
the optimal estimator for classes of estimators that have similar bias properties.” The
first result will use the expression in Proposition 2 to give a class of estimators that are
optimal with respect to the large sample large K MSE to order K/N. The class under
consideration consists of those estimators whose bias is of O(N~1/2?) (and hence have a
squared bias of O(N™!)) which, as noted earlier, places restrictions on a and b that rule
out 2SLS but include LIML and B2SLS as possibilities. This result is stated below in

Lemma 1 and is an immediate consequence of Proposition 2.

Lemma 1 In the case where K — oo in such a way that (1—a)K —b = O(1), the optimal
estimator, with respect to the large sample (large K) MSE to O(K/N) must have
a=1andb=0(1).

Note that this result does not pin down a single estimator, since one can pick any
constant value for b and still have the same leading terms in the MSE expansion, since
terms involving K/N will dominate those of O(N ') for large K. It does suggest, how-
ever, that LIML, being one such estimator, will have better (large K) MSE properties
than the other estimators under consideration. Note, again, that 2SLS does not fit into
the class of estimators under consideration because its bias is not O(N~/2) (again as
K — o0) as the condition in the result requires. The next result is for the class of

estimators that are unbiased to O(N~1/2) and follows similarly from Proposition 2.

Lemma 2 Restricting attention to estimators that are such that (1—a) K —b—(2—a) = 0,
the optimal estimator, with respect to the large sample large K MSE to O(K/N)

must have a = 1 and consequently b = 1.

“Indeed this was done by Rothenberg (1983) for the class of (approximately) median unbiased esti-
mators, in which LIML was optimal.
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This result states that the optimal estimator in the class of estimators that are unbi-
ased to O(N~1/2) is the bias adjusted LIML estimator. It should be noted, however, that
for such an estimator the optimal choice of K is completely unaffected by the bias ad-
justment and that the criteria for choosing K will be identical to that obtained for LIML.
A similar result to that in Lemma 2 is obtained when one assumes that K is fixed and
considers approximately mean unbiased estimators with MSE given by the expression in

Proposition 4.

Lemma 3 Restricting attention to estimators that are such that (1—a) K—b—(2—a) = 0,
the optimal estimator, with respect to the large sample fired K MSE to O(N ') must

have a = 1 and consequently b = 1.

This result shows that when there is misspecification in the first stage (as happens

in general with K fixed) the bias adjusted LIML estimator is optimal with respect to
the MSE to O(N™1!). This is a minor extension, to the misspecified first stage case, of
the conclusions one draws from Rothenberg (1983) concerning the optimality of the bias
adjusted LIML estimator among the class of approximately mean unbiased estimators. In
addition to this, Rothenberg (1983) showed that for fixed K and a correctly specified first
stage LIML is optimal (with respect to the MSE to O(N™!)) among all (approximately)
median unbiased estimators. Thus based on both the dominant terms in large K MSE

and peripheral or second order terms there appears to be ample evidence to suggest the

use of LIML or bias adjusted LIML.

3.4 Admitting Covariates

In this section we generalize the results to the model,
yi =7Yi+ ;0 +¢€

where z,; is a d; X 1 subvector of z;, The most important difference that arises in the more

general formulation is that we are now concerned with a vector of parameters, (v, 4})’.
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However, it can be shown that the MSE of estimators of 3, are directly and positively
related to the MSE of estimators of . In particular, assuming that z;; is included in
the instrument set (which would be the case if one were using power series) then any

estimator of B3;will have the form,
B = (X1 X)X (y — 4Y)

where X denotes the N x d; matrix with 7th row qual to z;;. ® Since for all three
estimators the MSE of Bl depends on K only through its dependence on 4, we can focus
directly on the MSE of the 7 in each case. When covariates are present the estimators

of 7y take the form,
4=(1+r)Y"PY" —cY"Y*) (1 + &)Y Py — kY*'y)

where Y* = (I — P,)Y with P, being the projection matrix formed using X;. The JIVE

estimator will take the form,
;= Y'C'(I - P)Y)'Y'C'(I — P)y.

Before presenting the MSE calculations we modify Assumption 2 as follows, letting 7

denote the population regression coeflicients from the regression of Y; on zy;.

Assumption 2’ The function f(x;) = E(Yi|z;) is such that,

(i) f : X — R and has an extension to all of R® that is s > 0 times continuously

differentiable in x and,

(i1) with probability 10 < ¢ < N? Zf;](f(a:l) — ;)2 < ¢! for some small constant

¢ uniformly in N

(1ii) the smallest eigenvalue of X1X,/N is bounded away from zero uniformly in N

with probability one.

8Note that this is true of JIVE as well since CX, =X,.
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The adjustments in Assumption 3’ are due to the fact that the identification condition
now suggests that z; explain y; beyond that provided by a linear regression on zy;. °
The new condition (iii) along with Assumption 1(v) is used to bound the elements of the
vector, (I — P;) f and the variances and covariances of elements of (/ — P )u and (I — P )e.
Indeed these conditions ensure that the variance of a typical element of (I — P)u, say
u; — Pj;u (with Py; denoting column i of Py), is equal to that of u; plus a term that is
O(N™1) and that any covariances between these elements are of second order importance.
The same holds true for the vector (I — Py )e and for covariances between these vectors.
Once this has been noted one can obtain large K MSE expressions for the estimators
of interest that are the same as in the case of no covariates provided that the set basis

functions used as instruments contain linear terms in ;.

Corollary 4 Given Assumptions 1,2” and 3 plus PP, = P, the conclusions of Corol-
laries 1, 2 and 8 and Proposition 3 all hold.

It is easy to see why this result holds when PP, = P,. The only difference that would
obtain by allowing for exogenous covariates in the equation would be that the second

terms in the approximate MSE would have the form,

f=PR)I = P)I-P)f/N=[f(I-P)f

where the equality comes from the fact that PP, = P;. A simple consequence of this
result is that rules for choosing K and any optimality results discussed previously apply

carry over to the situation with covariates.

4 Feasible Optimal Estimation of K

In this section we consider the properties of the estimated MSE criteria discussed in

Section 2. Throughout this section we will use the following assumptions concerning the

2

preliminary estimation of the parameters, 02, 02 and o,,.

9This is essentially a relevance condition and Donald (1997) has considered tests for the failure of
this condition in contexts where there are an arbitrary number of right hand side endogenous variables.

22



Assumption 4 Assume the following,

(i) 6% 5 o,

(ii) 62 5> o

(i81) Gue 2> Oue.-
As noted in Section 2, this can be achieved by using some preliminary set of estimates
of the model obtained by using the number of instruments that provide the optimal fit
in the first stage, based on either the cross-validation or Mallows criteria. Note that the
other key ingredient used to form the estimated criteria is R(K) which can either be
based on cross validation or the Mallows criteria as discussed in Section 2. Li (1987) has

shown that each of these criteria are asymptotically optimal in the sense that the value

of K that minimizes these criteria, denoted K , satisfies the condition,
R(K)
_—
inf x R(K)

in probability.!® For a generic estimator 4 with estimated criteria S(K) and true criteria

S(K) we will define the data driven optimal choice of the number of instruments by,
K =arg m}in S(K).

The minimum and all infimum will be relative to an index set of K values, which may
require some restrictions in order to prove certain results. Also, notice that although
R(K) only estimates R(K) up to a constant, which does not depend on K, one can
remove this constant from R(K) and hence from S(K) without affecting the choice of
K. To analyze the properties of K we follow the approach of Li (1987) and Andrews

(1991Db). In our case we use the following definition of optimality.

Definition: A method of selecting K is defined to be “higher order asymptotically opti-
mal with respect to the criteria S(K)” if it can be shown that,

S(K)
inf x S(K)

10 Andrews (1991) proved the same results for appropriate adaptations of these criteria in the case
where the residuals are heteroskedastic.
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The use of the term “higher order” is necessitated by the fact that the optimal MSE
convergence rate in all cases will be N~! (as N — 00) which cannot be improved upon,
and the criteria based on S(K) concerns the next largest terms in the MSE that depend on
the choice of K. A vital step in showing that the criteria are higher order asymptotically
optimal, is showing that R(K ) consistently estimates R(K) up to the constant in the
sense that, in probability,

— 0. (7)

This is the condition used by Li (1987) to show the asymptotic optimality of the Mallows

criteria and cross validation. In order to be able to verify this result we employ conditions

similar to those of Li (1987).

Assumption 5: Assume that the following conditions hold,
(i) E(u}|z;) < oo and

(i) infx NR(K) — oo,

and in addition when R(IK) is the cross validation criteria, assume

(1i1) the indez set satisfies the condition that supg sup; P; — 0 in probability.

The conditions (i) and (ii) in Assumption 5 are needed for both the Mallows criteria and
cross validation, to show that they satisfy (7). These were employed by Li (1987) to
show that these criteria are asymptotically optimal. Here, this is an intermediate step to
showing higher order asymptotic optimality. The second of these requires either that f
not have a finite order representation in terms of the basis functions or else that the lower
bound on the set of K values over which one is doing the minimization grows with N,
which is perhaps undesirable from a practical standpoint. The condition (iii) is required
only for the cross validation based method, and is similar to the condition in Assumption

3, which was used to derive the MSE criteria. This condition will essentially place an
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upper bound on the rate at which the index set can grow with the sample size '!. The
following results show that for each estimator the estimated criteria provides a means to

obtain higher order asymptotically optimal choices for the number of instruments.

Proposition 6: Given Assumptions 4 and 5, then the rule “select the value K that

minimizes S L(K)” is higher order asymptotically optimal with respect to the criteria

S1(K).

Proposition 7: Given Assumptions 4 and 5, then the rule “select the wvalue K that

minimizes SZ(K )” is higher order asymptotically optimal with respect to the criteria

Sy (K).

Proposition 8: Given Assumptions 4 and 5, the rule “select the value K that minimizes

SJ(K) ” is higher order asymptotically optimal with respect to the criteria S;(K).

5 Simulation Study

In this section we report the results of a small Monte-Carlo experiment which has been
designed along the lines of that used in Angrist, Imbens and Krueger (1995) (hereafter
AIK). Three basic designs are used. All experiments are based on the estimation of the
equation,

Yi=0o+ 5 Xa +e& (8)
where (3, 31) = (0,1) and where X;; is an endogenous explanatory variable. Three cases
are considered and are distinguished by differences between X;; and a set of potential
instruments.

Case 1: In this case Xj; is related to either £ = 10 or £ = 20 independent standard
normal random variables, Z;; through the linear equation,

k
Xa =7TO+Z7FjZij+77i (9)

J=1

1 As noted below Assumption 3, based on Donald (1997) has shown, using the results in Newey (1995),
that for power series, if z; has a continuous distribution with density that is bounded and bounded away
from 0 on X then the upper bound on the index set of K values, say K, should satisfy, K>/N — 0.
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with 1 = 0.3 and 7; = 0 for j # 1, so that only the first Z;; is relevant for predicting

X;1. In this case the residuals in the two equations are generated as,

(fi)NN«O) <0.25 o.2o>>
" 0 /)’\ 020 0.25
This case is identical to Model 2 of AIK, who used a complete set of k = 20 instruments
in their experiments.

Case 2: This is the same as in Case 1, except that now in (9) 75 = 0.3 and 7; = 0 for
j # 5 so that only the fifth instrument is relevant. Again experiments are conducted for
both £ = 10 and k = 20 potential instruments (in addition to the constant). The errors

are generated in the same way as in Case 1.

Case 3: This is the same as Model 3 of AIK and specifies,
k k k
Xo=mo+ Y mZ; +03> ZX+mo Y Z5/19 (10)
= =2 =2

with 7 = 0.3 and 7; = 0 for j # 1, so that in addition to the first regressor being
relevant the others enter in a nonlinear fashion. Additionally, the errors in the first
stage are heteroskedastic. The selection process will, however, only consider using the
Z;; variables themselves, and will consider either up to the first & = 10 instruments or

the first k¥ = 20 instruments. The residuals in the pair of equations (8) and (10) are

()= ((0) - (o0 vi0)

For each of the three cases, experiments are conducted with samples of size N = 100

generated as,

and N = 400, and using a maximum number of instruments of £k = 10 and k£ = 20.
Thus for each case a total of four different experiments were conducted. The number of
replications was set at 5,000. In each experiment the 2SLS, LIML and JIVE estimators
were obtained using the number of instruments that minimized the objective functions
discussed in the previous two sections. These criteria were constructed using delete-one

cross validation of the first stage relationship, along with estimates of o2,

2 2
o; and o
which were obtained as discussed in Section 4, using a preliminary estimator which used

all of the instruments.

26



Tables 1.1, 2.1 and 3.1 contain the relevant summary statistics for each of the three
cases respectively. In each table we report the median of the 5,000 estimates along with
the 0.1 and 0.9 quantiles of the estimates. The difference between these can be considered
a way of measuring dispersion. Additionally we report the Mean Absolute Error of the
estimates, which is an alternative measure of dispersion, and, finally, the coverage rate
of a nominal 95 percent confidence interval for each estimator. Additionally we report
the relevant statistics for the OLS estimator as well as 2SLS and LIML estimators that
use all £ = 20 instruments. These statistics were reported in AIK (1995, Tables 2 and
3). In Tables 1.2, 2.2 and 3.2 we report the frequencies with which the various possible
K values were chosen in the experiments.

A few features of the results are worth noting. First, the most dramatic improvements
occur in the use of 2SLS with the optimal number of instruments being used. As indicated
in Tables 1.1 and 3.1, 2SLS which uses all the instruments has very poor properties,
and is biased towards OLS. Moreover, confidence intervals generally have a very poor
coverage rate with the worst occurring in Case 1 with N = 100 where the nominal 95%
confidence interval contains the true value just 22% of the time. The other cases are
similarly poor. When the criteria are used to choose the number of instruments there is
a substantial reduction in the bias (as measured by the median) and the coverage rates
for the confidence intervals are much closer to the nominal rate of 95% generally being
around 90%. The only exception to this is Case 2 with N = 100 where the coverage
rate is below 80%, although this is a dramatic improvement from the 23% coverage rate
when all instruments are used. The other noticeable difference in 2SLS when the criteria
is used is that the dispersion is much lower as evidenced by reduced MAE and a lower
spread between the 10% and 90% quantiles. It also worth noting that the performance
of 2SLS using the criteria is not sensitive to the maximum K being considered. Indeed
the results for 2SLS when one uses the criteria to pick K with a maximum possible K
of 10 are almost identical to those when the maximum possible K is 20.

For LIML on the other hand, the main improvements relative to the estimator that

uses all the instruments appears to be in terms of reduced variability, either as measured
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by MAE or as the difference between the .1 and .9 quantiles. This is because LIML
performs fairly well when all of the instruments are used and is approximately median
unbiased and provides confidence intervals that have a coverage rate that is reasonably
close to the nominal rate of 95% being around 90%. The coverage rate for LIML when
the criteria is used is slightly lower than for LIMLALL in Cases 1 and 2. In Case 3,
however, there is an improvement in the coverage rate when the criteria is used with the
rate being very close to the nominal rate. The main improvement that comes from the
use of the criteria is in the decreased dispersion of the estimator which results in all cases.

The performance of JIVE is a little bit mixed relative to the other estimators. The
bias (using the median) of JIVE in some cases appears to be the lowest among the
estimators and other cases (notably Case 3 with 100 observations) is the worst so that
there is no clearly superior estimator as far as bias is concerned. What is striking is that
the dispersion for JIVE, using either measure, is larger in practically all cases relative to
either the LIML or 2SLS estimators that result from the use of the criteria for picking
the number of instruments. There is also no clear improvement in the coverage rates
from the use of JIVE rather than either 2S5LS or LIML estimators that use the criteria
for picking the number of instruments.

In Tables 1.2, 2.2 and 3.2 we have provided frequencies with which the criteria chose
the respective number of instruments for each estimator in each case. A few features
stand out. First, for all estimators the criteria usually points to a value of K that is at
least as large as is required to include the relevant instrument — in Cases 1 and 3 this
is K = 1 while in Case 2 this is K = 5. What is also interesting, is that in Case 2 the
criteria generally pick the correct number of instruments more than half the time. Also,
as one might expect from the discussion in Section 3, the criteria for 25LS generally points
to smaller values of K than does the criteria for JIVE, while the latter generally picks
values for K that are smaller (on average) than those for LIML. With LIML and JIVE
the criteria do with some positive probability point to an instrument set that includes
many irrelevant instruments. Fortunately, as evidenced by the other sets of results, this

does not cause much of a problem for either estimator.
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6 Application to the Returns to Schooling

Angrist and Krueger (1991) in an important paper used the quarter of birth as an in-
strument for the number of years of education — since laws typically dictate that people
should stay in school until they reach a certain age, one would think that for students
that drop out once they reach the age, the amount of education they receive will de-
pend to some extent on when in the year they were born. Using a sample drawn from
the 1980 U.S. Census that consisted of 329,500 men born between 1930-1939, Angrist
and Krueger (1991) estimate an equation where the dependent variable is the log of the
weekly wage, and the explanatory variable of interest is the number of years of schooling.
The set of excluded variables that were used as instruments included 30 variables that
were the result of interacting dummies for the year of birth with dummies for the quarter
of birth, plus another 150 variables that were the result of interacting the quarter of birth
dummy with dummies for the state in which the individual was born. Thus a total of
180 instruments were used. See Angrist and Krueger (1991) for more details.

Using OLS the returns to education (the coefficient of the schooling variable) was
0.067 with a standard error of 0.0003. Using 2SLS Angrist and Krueger (1991) obtained
0.093 and a standard error of 0.009. Table 4 contains various estimates for different
instrument sets. These instrument sets consist of the set of 30 instruments constructed
from interacting the quarter of birth and year of birth dummies plus the various sets
indicated in the table. These are a number of subsets of regional dummies, representing
various partitions of the U.S. up to and including the set of 50 state of birth dummies.
Also included as potential instruments is the interaction of these with the quarter of birth
dummies. Also indicated in the Table are the instrument selection criteria for 2SLS and
LIML. As can be seen the criteria indicate that only a very small set of the dummies
should be used — for 2SLS, only the 4 region dummies should be used, while LIML seems
to require that these plus their interactions with the quarter of birth dummy be used
as instruments. It is interesting to note that a straight cross validation measure for the

relationship between schooling and these dummies also indicates that the set of dummies
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that is optimal for LIML is also optimal for this first stage relationship (at least among
the sets of estimates used).

Although the estimates obtained from both 2SLS and LIML are not very different from
what one obtains when one uses all the instruments, it is noteworthy that the standard
error for 2SLS is somewhat larger with the smaller set of instruments. Moreover, it seems
to be the case that the standard error is close to that of LIML, and that LIML’s standard

error is less sensitive to the inclusion of useless instruments.
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7 Appendix A

Proof of Proposition 1: For large enough K the expression for the MSE presented
in Proposition 4 remains valid by Assumption 2 which ensures that for large enough
K the term f'Pf/N is invertible. Take this expansion which, as shown in the proof
of Proposition 4, has a remainder term that is o(K?/N), and note that since we are
finding the MSE of H+/N (% — ) we need to multiply each term in the expansion by H?
(noting that under Assumption 2(ii) H = O(1)). Since K — oo and that since a = O(1),
b=0O(K) and (1 — a) — b/K > 0 then the leading term among those that increase with
K will be the term,

Uig[(l—a})\{{—b] (f,j{;f)‘ H2=O(I{2/N) (11)

Also note that if K — oo then the term
'p =il
(&) (12

decreases with K. Use the expansion,

I'ef_f'if  ff=P)f
N N N

and the fact that under K' — oo, f'(I — P)f/N = o(1) by Assumption 2, so that,

()= ) S ) o((57]) oo

o LD e ([f’(fj;P)f]j

Now, substitute this expansion into the (11) and (12) to obtain respectively,

o2 (1 —a)K — b)* (ffpf)'2 H? — o2 [(1 - a)K—b]2

KZ

and,

] =l ' ’ 2
(LY PP (B0

31



and take the dominant terms among those that increase with K and those that decrease
with K. Q.E.D.

Proof of Proposition 2: The proof is similar to that of Proposition 1, except that
after multiplying the expression in Proposition 4 by H? the leading term among those
that increase with K, as K — oo, under the conditions that a = O(1), b = O(K) and
(1—a)K —b=0(1) is,

K — 2aK — 2ab K\ [ f'Pf\ ? K — 2aK — 2ab K
2 2 2% H2 = o2 2 2%
<Uu€ < N > + UUUC N> < N > ch N + Uuae N

(&) 7F)

This follows since under the condition (1 — a)K — b = O(1), we have that the term W,

in the expansion in Proposition 4, satisfies,

- () =o ())

Then the expression given in the result follows using (14) and collecting leading terms

among those that increase with K and those that decrease with K. Q.E.D.

Proof of Proposition 3: This result follows directly from the result in Proposition
5. This follows even though we now only use Assumption 3 and not the stronger con-
dition used in Proposition 5, because we are interested in dominant terms among those
that increase with K and decrease with K and these are provided in the expression in
Proposition 5. Now, use similar arguments to those in the proofs of Propositions 1 and
2, and the fact that by Assumption 3,

f'0—P)PI - P)f
N

fU=-pf
N

o(L41)

by Assumption 3 (note that the term P is defined in the proof of Proposition 5). Thus,

sup P

the leading term among those that decrease with K is the term that results from the in

(14),
U?f (I;/P)f
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while, using the result in (13) the leading term among those that are increasing in K is

given by,

1 =2 ! —
vty () 1 =cetroiy o ()

with the second term on the right being of smaller order than the first, using Assumption

2. Q.E.D.
Proof of Proposition 4: Denote f = Pf , H = f'f/N and h = f'e¢//N and write

the estimator as,

VN(H —v) = H Y h+ (H—HHh (15)
+(H-MHA Y h—h)+(A-H)*HA*h + ...

where,
- Y'Pe b . Y'e
h=(— —(a0+ =)—
F @R
and,
~ Y'PY b Y'Y
— — (af + —
A= (a0 + ) =)
First we deal with h. Note that using Fujikoshi (1977) the term, 6 has the expansion,
¢(P— F)e
e oiN Bk
where,
1 [é(P—F)e de e(P—Fw ([N [e K
Ryvx = N3/2{ o \/N(']‘V"Ue)_QT N N + O N2

K
with ' = f( f' f)~! f' . Throughout this proof, which is done under the assumptions
of Proposition 4, with fixed K, we nevertheless indicate the how the order of remainder

terms will depend on K when K grows. Thus for instance the remainder term in the last

expression is O(N~2) when K is fixed. Use will also be made of the simple facts that,

u'e u'e
—ﬁ = Oye + W = Oue
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u'u 9 u'u
N -ty T

€e o €e
—_— e _a‘e
NI N

with the second term on the right hand side of each expression being O(N~Y2) by the

and,

Lindberg-Levy Central Limit Theorem. Given this, for the h term the relevant expansion
is,

.- K

h=h+W, + W, + O(N)

where,

W, = —(aw-l— b) {JN(“—,E—%&)HL}

a’N N N

—a\/NR}V’KGué =0 (%)

where the last two expressions are O(N~™Y2) and O(N ') respectively when K is fixed.
Also the remainder term is O(N ') when K is fixed. Also we have,

. _ K
H=H+Ws3+W,+o0|—
N
where,

- & atl —1//9
Wy = 2<N>—O(N )

_ u'Pu ¢(P—Fle b o K
o (P 0y o (K)

where again the last term is O(/N ') under the assumptions of the result.
Using (15) and again grouping terms that are o( K/N) (with K fixed) in the remainder

we can write,

where,
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Ty = —W3H 'h=0(N"'7?)
Y

T - —W4I_{‘ll_z=0<%>
Ty = —W3H‘1W1=O(%>

T, = W2H ?h=0O(N™1)

Then the relevant terms in the MSE are those in the square of this expression that
are of the appropriate orders, (again remembering that K is held fixed) and terms up
to and including those that are O(N ') will be retained. Also note that since we are
conditioning on the exogenous variables the term H ! will appear squared in the final

result but can be ignored until the final result is presented. Thus we calculate,

= E(T}) +2E(TyTh) + 2BE(TxTh) + E(TE) + E(T?) + 2E(TyT5)(16)

F2E(TyTY) + 2E(15Ty) + 2E(TeTy) + 2E(T4Ty) + ..

where terms that are o(N~1) are omitted from the calculations. We calculate each of the

terms in this expression. First,

flee' f _

B(w?) = Bl = o2m
using the fact that,
!
E(%) = o?]

which follows by Assumption 1. Next, in order to calculate the remaining terms we make

repeated use of the fact that for a pair of double arrays, say {S};} and {S3} ,

N N N N N N N
ZZSSJZZS% - Zszlz‘szzz + ZZSi]iS?j (17)
i=1

i=1 j=1 i=1 j=1 i=1 jAi
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N N N
12 12
IS ) ST
i=1 j#1 i=1 j#£1
where the omitted terms will not be needed for our calculations because they will have
zero expectations in our context. This can be used to calculate the individual terms in

(16) the first of which is,

) = E<(UTP,€)2) +a%0%E <M) il

g
giN ‘N
Uu €

= b
02NE (v Pee' (P — F)e) — ZUWW

—2a

E(u'Pe)

b -
+20ue QA{E( (P—F)E)

Using (17) with , S}; = S = u;e;P;; along with Assumption 1 we get

(u' Pe)? 2.2 p2 S
E(T) ZUIQP” + E ZZUIEZPHUJEJ 73

=1 j#i

N N N
+ E (Z ZU EJBJUIEJ U) + N —F (Z ZuiejPijujeiPﬁ)
A=l g4l

=il s3I
Now using Assumptions 1 and 3 and Lemma A.1(i) we have that

(z ufefzzz> = oL

1 j K

E(Zzuzez 55 €5 n> = Uiejv—"FO(“N)
a=il J;éz

1 Y K
Z Z UIE] ulej ij = 050z ar O(—)
<z =1 j#1 > A N

e K K

7

ZZUlGJ Ui Py | = oy +o(%)

<z—1 J#1 ) = N

so combined we have that

(u'Pe)?\ 52 K? 2 e K
E( N - ueN +(Oue+0uac)N+o( )
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Next, using similar arguments the fact that F'/P = F' and Lemma A.2, we have

2 2 (€@ -1\ _ 5 5 ﬁ_i K
"ME< oIN Y% N TN T\

Oue - K* K 2 K
2a—— 2Nb(uPEE(P F))—2aaﬁe<w+———-—>—|—o<-—>

QUUG%E(u’Pe) = 2bo? <K>

N
and,
b = K 1
2 ; . _ Ll
2aau€UgNE(e’(P F)e) = 2abo? <N N)
Therefore,
, [(1—a)K —b)° K —2aK — 2ab
mat) = ot (ST ot
4a — a? K
7 < = ) +alol
Assumption 1(iii) implies that E(1311) = E(15T;) = 0. Next,

1
N( ol +202,) +o (N)

using Assumptions 1 and 2 and Lemmas A.1 and A.2. The next result concerns F(7T,1}).

Using Assumption 1(iii) which implies that third moments are zero we have that,

"(P-F b . -

E(T4T1) = —E{{G%N—E‘Fﬁ}hh}
K 1 1 b)) -
. {(UGN”"N"?"’NH"N}H

Next,

RICHCILIEI)

! ! £l !
- —2E< %1552 | ok (o L g 1R E = F)>

N 02V/N
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K 1 K 1 1
= (UUEN + ( e+ 05(73) N aaueN\ = ZaUuGN + 3ac? N 2036%)
+o(x)

Finally we have,

BIER) = E‘[ {”Pu ( (P - F)e +3> (H+ag)}ﬁ-152

02N N
u' P "(P-F S
= < N“H h2> +aE <(—)5(H + ag)H—lfﬁ)

02N
b 2
H—{—a H 1h
1 1

1 K
= (02022 4202 — — —302—
(o N+U”€N)+G(H+U)( N ey~ 3ey)

1

HH + 02023+ of 1)

Substituting each of these into (16) we get the expression given in the result. Q.E.D.
Proof of Proposition 5: Normalized JIVE can be written as,

- - (Z2) LS

where,

C=P-PI-P)
S — P(I—P)"l with P being a diagonal matrix with element P; on the ith diagonal.
Use the following notation. Let, f=cf, H= f’f/N and h = f’e/\/ﬁ and write the

estimator as,




where,

u'Ce K
"N ‘O(W

follows from the fact that the diagonals of C are zero and using similar arguments to

those used in (17). Also,
A Y'C'Y ~
H=—]€—~=H+W2+W3

where,

W, — <ulCrf . f’C/u> _ O(N-12)

N N
u'C'u VK
e = —§ _O<_N—>

The order for W5 follows similarly to that of W;. To show the order for W, we use the

following result that will also prove useful below:

fDf _ fPf . ['Pf
¥ - N +0(sgpPz)— N

+o(N71) (19)

which holds when D is any one of the matrices C, C', C'C, CC, CCC, C'C'C’, C'C'C
and CCC'. This can be shown in each case using the definition of C' the Cauchy Schwarz

inequality, repeated use of the inequality,

b’Ab<@S a:’Aa:_b’_b
N NPz TN

Amax (A)

where, Apac(.) is the largest eigenvalue of its argument, Assumption 2 and Assumption

3 which implies that the largest element of the diagonal of P is o(1). Similarly one can

i PN 1/2 1/2
%Iﬂlﬁ(%) (sgpPiz) (20)

for f; equal to the ith element of any of the vectors f, f = C'f or f = Pf (the last of

show that,

which was shown in Lemma A.2).
As with the proof of Proposition 4, although K is fixed, we have nevertheless indicated

how the order of remainder terms will depend on K when K grows.
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Using (18) and again grouping terms that are o( K/N) (with K fixed) in the remainder

we can write,
3 6 K
VNG =) = B3 T) +ol5)
j=1

where,

T1=h,

=I5

_— leo( 5)

Ty = —WoH 'h=0(N""?)
T, = 4%?1*‘11:0(%)

- K
Ty = —WQH“]WI=O<£N_—)

Te = WZH%h=0O(N7")

Then the relevant terms in the MSE are those in the square of this expression that
are of the appropriate orders, (again remembering that K is held fixed) and terms up
to and including those that are O(N™') will be retained. Also note that since we are
conditioning on the exogenous variables the term H? will appear squared in the final

result but can be ignored until the final result is presented. Thus we calculate,

= E(T}) +2E(TyTh) +2E(T:Th) + E(T}) + E(T?) (21)

F2E(TyT3) + 2E(TyTh) + 2B(TsTy) + 2E(TeTy) + ... (22)

where terms that are o(/N ') are omitted from the calculations. We calculate each of the

terms in this expression. First,

. f’fﬁ’ r i /f
E(Tl)_E( N )_O—E]V
using the fact that,
/
E‘(%) = o]



which follows by Assumption 1. Next, using (17) we have that,

E(TZZ) = L <M> = F (M) +E (Zi;éj UiEinEjCijCji)

N N N
_ 01210? i£] C’Z + 01216 i£j CZ]C]z
- N N
K K
= (Uﬁaf +056)N+0(sgppiiﬁ)

Note that in the last line we have used Lemma A.l and the fact that,

1D (Ch=Pl < D Fi-P) =1

i#] i£]

< sup|(1—Pii)*2_1|ZPz§
: 5
= O(sup Py)(K + O(sup Py))

which follows from Assumption 3, and Lemma A.1. Similarly,

| Y (CiiCsi = PyPii)l = Y PE(1—Pa)(1~ Py) -1

147 i#j

< sup|(l—Py)2 1) P2
‘ i#j

Next we have that, by Assumption 1(iii), F(75T,) = E(15T1) = 0. Next,

fU+Ufﬁ_~

EB(T}) = EB(Teh)=E 'h

= B ((%)QH‘W) +E ((fjl\, )2H 2h2> +2F (f“—;[”c 2h2>

(0207 +202) + o)

using Assumptions 1 and 2 and the results in (19) and (20). Next,

f’U-I-UIf ~ .~ (uCe
(P )
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again using Assumptions 1 and 2 and the results in (19) and (20). Finally we have, using

similar arguments,

To LT
E(IiTy) = —E [(“ u)H‘th]
N
1 1
= _9g2 —
o+ o)
Substituting each of these into (21) and multiplying by H?

we get the expression,

'C'C Yol -2 el
ffo<fo> + (o2, +00)N(fo> (23)
+ (1202, + 40?2 2)N <f§1f)
Now consider the following,
f'cf _ f'Pf  f'PUI—-P)f
N N N
with,
f'P{I - P)f fP2f §
R < () (RS 2
< mp B (L1 > (f’(l Iy "
- oY)
given the additional condition that sup; P; = O(N~1). Next,
f'ect f'Pf  f'PU-P)f
N N —2 N (25)
flU=P)P(I-P)f [{I-P)P(I-P)f
+2 N =F N (26)
where the term,
MU= DPU=PIf o B (TP
N =T, N
= O(N 7Y



and,

[U=PPU-P) _ ( P >2<f’(1-P)f
N i N
— O(N"?)

using similar arguments. Next use the expansion,

0. -1 'p =Il 'P(] — P 'p =2
(£OLY" - (LEL)" LR PU (£20)

substitute this along with expansion (25) into the expression (23) and omit terms that
are o(N 1) and we obtain,

1w revpN 2 ! -1 "y _ DT _ / -2
210! (f;f) <ot (LE0) " g (LU= DP B (£E1)

Similarly we have that,

(02 + 0503)5 (ﬂ>_2 = (02, + alo? K (flpfy +0 <—K—)

N N t“)N N N2

and,

e -2 ; -2
(120§€+40503)%<f o ) =(1205€+40503)%(f 2 ) +O(N-Y)

so that we end up with the expression given in the result. Q.E.D.
Proof of Proposition 6: Notice that since the choice of K is unaffected by the removal
of constants from S, (K) we can assume without loss of generality that S, (K) has been

constructed using, R(K) = R(K) — 2. Using Lemma A.3, the proof of which is given

below, we need only to show that,

ISL(K) — S,(K)|

= 0,(1).
Sl}l{p SL(]{) OP( )
To show this, note that,
- 1SL(K) — Si(K))|
K SL(K)
52 2 ~2 2 B _
 oup (2= HIGE—GADIIN IR = R(E)
K g2K/N K R(K)
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The first term is 0,(1) by Assumption 4 (i) and (ii) while the second term is 0,(1) given
the result of Lemma A.4, which follows from Assumption 5. Q.E.D.

Proof of Proposition 7: As was the case with the Proof of Proposition 6, we can assume
without loss of generality that Sy(K) has been constructed using R(K) = R(K) — 2.

Similar to the proof of Proposition 6, we need only to show that,

|52(K) — S(K)|
e 5,05 = 0p(1)

where S,(K) and Sy(K) are the estimated and actual approximate mean squared error

criteria for 2SLS. To show this, note that,

152(K) = $y(K)| 52, — 02 |K?/N
T ame o e
62(R(K) — R(K)) + (67 — 0?) R(K) — (62 — 02) K/N]|
K Sa(K)

|a-12te B 01215 ~2 IR(K) _ R([{)I
= @, s1I1{p Sz(K)
RK) ., o  K/N
+ u Yu
Sy T lsip Sy(K)

IA

2
Oue

+|62 — 02| sup
K

We consider the four terms in the last expression separately. The first term is 0,(1) by
Assumption 4(iii). Notice that, using the definition of R(K) we have that,

RK) _ o2 1
Sy(K) ~ oye 0

€

(27)

using the fact that K?/N > K/N. Using these facts we have that for the second term,

2 e LK) = RUK)|

s 5>(K)

57 euy )= RN R(K)
T K R(K) k 04 K/N+a2f'(I-P)f/N
which is 0,(1) using Assumption 4(i), (27) and Lemma A.4 which follows from Assump-

tion 5. For the third term we have similarly that,

|a_2 _ O_Zl sup R(K) < sup |af — UEIR(I()
TR GE) S R TLK/IN +orr (- PYf/N
= op(1)
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again using (27) and Assumption 5. Finally the last term is easily seen to be 0,(1) using
(i1) and the fact that

K/N 1
S
& 02 K2JN +o2f(I - P)f/N = & 02K

which must be bounded since K > 1 (otherwise the order condition would not be satis-

fied!). Q.E.D.

Proof of Proposition 8: As in the two previous proofs, we can assume without loss of

generality that S;(K) has been constructed using, R(K) = R(K) — 52.Again we must

show that X
|54(K) — Sy(K)|
= 1).
SI}\I’p S_](]\') 07’( )

To show this, note that,

$5(5) = S,() (62~ S/

W 5(K) = ST 2 K/N
" |R(K) — R(K)| N |62 —o?|
— Su u
o2 R(K) X o2

The first and third terms are 0,(1) using Assumption 4. The second term is 0,(1) using

Lemma A.4, which follows from Assumption 5, and Assumption 4(ii).Q.E.D.

Lemma A.1 Given Assumption 3 the following results hold for the matriz P = U(0'0)~ 10/
(i) 3235, B = o(K),
oy N N
(i) > i Zj;éi PyPj; = K? — oK),
(35) ity g PiiPis = T Yogs PP = K — o(K)

Proof: To show (i) note that,
N N
> PZ < (sup Py) Z i = suan VK = o(1)K = o(K)
— i p—

using the fact that P is a projection matrix and Assumption 3. For (ii) note that,

N N
ZZPiiaJ_ZR,ZP], ZPZ_K2 o(K)

i=1 j#i
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using the fact that P is a projection matrix and result (i). Finally, using the fact that P

is a symmetric projection matrix we have that,

BJPU = PﬂPU = trace(P'P) = trace(P) — o(K) = K — o(K
(K)

i=1 j#i i=1 j#i

Q.E.D.

Lemma A.2 Given Assumption 3 and either Assumption 2 if K — oo or

fef
N

0<c< <c!

with probability 1, uniformly in N, (for some small constant c), the following results
hold for the matriz F' = Pf(f'Pf)~'f'P and the vector f = Pf,

() o Fa =1,
(i1) sup; Fi; = o(1)

(it}) sup; | 5|/ VN = Ofsup, /") = o(1)

(iv) £ f/N =0(1)

(v) N2 3 FifiPy = f f/N +0(1)

(Vi) N7 3254, fifiPa = (I J/N)(K/N) + o(N 7).

Proof: (i) This follows from the fact that

N
" Fu = trace(Pf(f'Pf)7 f'P) = trace(f Pf(f'Pf)™) =

i=1

To show (ii), letting P; denote the ith column of P (so that P/P; = P;) then,

Fy = Pf(fPF'fP

< Putrace(f(f'Pf)~f')
I'PLyAT'f
N N

= Pjytrace((

IA

sup F;0(1)

where the last line follows from either Assumption 2 or the additional condition in the

statement of the result. Then (i) follows from  Assumption3.

46



(11i) By Cauchy Schwarz,

I oY 5 py1/2 f,_f £~
-ﬁljifl < (lilz) (N)
fl

1/2 f 1/2
< i€
< () (F)

= o)

where the last line follows from Assumptions 3 and 2. To show (iv),

[Pf . [l
N SN~ o)

by Assumption 2. For (v),

Zi;!:j fifjpij _ Lf—__ Zi fifiPii

N N N

where, e B
> Jifibs > 17
4 < Lt =
N B sfp B N o(1)

by Assumption 3 and result (iv). Finally, (vi) follows for the same reason. Q.E.D.

Lemma A.3 A sufficient condition for a method of selecting K based on,
K =arg m}n Sn(K)

to be “higher order asymptotically optimal” is the condition that,

1Sn(K) — Sy (K))|

Sil(p Sn(K) = 0,(1).
Proof: By construction,
S(K) > inf S(K). (28)
Hence,
S(K)> (1 /2)(inf S(K) + S(K)). (29)

Now using (28) and (29),
S(K) — infx S(K)
S(K)
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2S( ) me K) o S(K) - S(K)
x S(K)+ S(K)

)
K)) = (S(K) - 5(K))

SZsup(S(‘)— (i

K S(K) + S(K)

SR) = SR IS(K) — (k)|
S T sm )

where the fourth inequality follows from the fact that,
S(K) - S(K) <0

by the definition of K. Since the terms in the last expression are 0p(1) by the condition

of the Lemma it follows that,

S(K)

and hence by the Slutsky Theorem,
_SW) 5,
and so K is asymptotically optimal with respect to S(K). Q.E.D.

Lemma A.4: Given Assumption 5 (i) and (ii) if R(K) is the Mallows criteria and
Assumption 5 (i) (ii) and (ii) if R(K) is the cross validation criteria, we have

that, A
|R(K) — 64 — R(K))
R(K)

%5 L)

sup
K

Proof: For Mallows criteria the result is identical to Theorem 2.1 of Li (1987). For cross
validation the proof is adapted from Li (1987). First, we write,

14

R(K) -2 - R(K) =) T;

where the T} differ from those used in other proofs. Throughout, we will let A denote a
generic large constant. The individual terms are:

u' Pu o K

T] = N —O'u"j-v—
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2

T = N (~ Plu
! D, )

T, = 2(u]<]uﬂu]{[)
T, = %f’(I—P)Pu
Ty = —%u'P]E‘u
s = —%f’(I—P)PPu
T = %u'PﬁPu

2
Ty = Nf(f— P)P(I - P)f

w' Du
To = N

where P is a diagonal matrix which has Pj;on its ith diagonal and where D is the diagonal
matrix with the term D;; = P2(3 — 2P;)(1 — P;) %on the ith diagonal. The terms Ty
through Ty, are identical to Ty through T but with P replaced by [), 2 replaced by 1

and 4 replaced by 2. These terms are obtained using the fact that,
(1= Pu)*=1+2P;+ Dy

The proof proceeds by showing that,
|1
= 0p(1

where the supremum is taken over the relevant index set. Notice that this result holds for

(30)

j =1,2, using Theorem 2.1 of Li (1987) given Assumption 5(i) and (ii). Also, note that
the results will hold for 5 = 10,11,12,13,14, if we can show the corresponding results
for 7 =4,5,6,7,8. Thus we must show the results for j = 3,4,5,6,7,8,9. To do this we

follow Li (1987) and use the generalized Chebyshev inequality which implies that,

il BE(|T; |
P § 1
(U R NR(K) EAN1R (1)

for any £ > 0, where the sum on the right hand side is over the relevant index set. For

7 =3,4,6 this is done by showing that,
E(|T;|*) < AN*R(K)? (32)
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which is sufficient to show (31) given that Assumption 5(ii) holds. First, for j = 3, we
have that (32) follows because, using Theorem 2 of Whittle (1960), Assumption 5(i) and
(iii) and the definition of R(K). Using the same result and Assumptions we have for
Ptz

E(IT\") < A(f'(I- P)PP(I - P)f)*
< A(sip sup PO(f'(I - P)f)?

= 0(1)N*R(K)?
so that (32) holds for j = 4. Similarly for j = 6, we have that,

E(Ts|Y) < A(f'(I—-P)PPP(I - P)f)?
< A(f'I - P)PP(I — P)f)? = 0,(1)N*R(K)?

where the second inequality follows from the fact that the largest eigenvalue of P is less

than 1 due to the fact that P is a projection matrix.

To show (30) for j = 5 we first note that,

N N
u' PPy = Z ulP% + Z By Pojuiu; (33)
=y oy

and consider the two terms separately. For the first, note that,

N N
sup | Zi:l uzzpz% - 05 Zi:l Pz%| -

. NR(K) = (1)

can be shown using (31), (32), Theorem 2 of Whittle (1960) and Assumption 5. Then

since,
o2 >0, P oz K|
sup —=2=L_2 < (supsup P;)su .
W NR() S (upsup B sup(Snas)
< 0p(1)

we have that the first term in (33) satisfies(30). For the second term in (33) we similarly
can show that it satisfles (30) by using (31), (32), Theorem 2 of Whittle (1960) and
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Assumption 5. To see this note that,

N
uatts]*) < A(Z Pif’f])
i#j i#]
< A (sup sup Py)* Z 2

i#]
< 0,(1)N*R(K)?

using Lemma A.1(iii). Therefore the second term in (33) satisfies (30), so by the triangle
inequality (30) is satisfied for T5. For Tywe can note that, by the fact that,

lu' PP Pu)
sup

% NR(K)

|u' Pu|
¥ NR(K)

< (supsup Py)
K i

we have that (30) is satisfied by Assumption 5(iil) and the fact that

|u/ Pul - ju' Pu— o2 K| ( |02 K| )
—— SUp ————————— su
“CNRK) = "¢ NR(K) % NR(K)
< 0,(1) +1

using Theorem 2.1 of Li (1987) and the definition of R(K). Next, (30) is satisfied for T
using the fact that,

fiU-P)PI-P)f < (supsup P:)(f'(I = P)f)
< o0,(1)NR(K)

where the second inequality follows from the definition of R(K). Finally, (30) is satisfied

for Ty using similar arguments to those used to deal with the first term of 75. Q.E.D.
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Table 1.1: Case 112

Quantiles

Est. N Max K .10 .50 90 MAE Cov. Rate
OLS 100 * 508 588 668 .58 0
2SLS 100 10 -.247 .016 .208 .117  .882
LIML 100 10 -.247 018 .198 .114 .89
Jackknife IV 100 10 -.325 -.016 .190 .128 .893
2SLS 100 20 -245 018 .211 .118 876
LIML 100 20 -.242 020 .209 .116  .882
Jackknife IV 100 20 -.314 -.009 .203 .129 877
2SLSALL 100 20 137 282 410 282  .220
LIMLALL 100 20 -315 -.005 .202 .127 .909
OLS 400 * 548 587 628 588 0
2SLS 400 10 -.116 .004 .101 .057  .898
LIML 400 10 -.114 .006 .101 .057  .903
Jackknife IV 400 10 -.123 -.001 .100 .057 .895
2SLS 400 20 -.112 .001 .103 .056  .897
LIML 400 20 -.111 .004 .106 .056  .895
Jacknife IV 400 20 -.124 -004 .100 .058 .901
2SLSALL 400 20 -.001 .092 .181 .093 .627
LIMLALL 400 20 -.121 -.002 .102 .057  .902

12Note that the entries for OLS, 2SLSALL and LIMLALL are taken from Angrist,
Imbens and Krueger (1995, Table 2). The estimators 2SLSALL and LIMLALL use all
K = 20 instruments in addition to the constant.
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Table 1.2: Case 1, Frequencies

N=100 N=400

K 2SLS LIML J-IV 2SLS LIML J-IV 2SLS LIML J-IV 2SLS LIML J-IV

1 84.18 4834 70.06 83.94 44.04 69.70 89.00 48.00 70.94 88.70 44.62 71.32
2 10.58 12.36 11.84 1044 12.06 11.32 876 11.60 11.92 9.12 11.08 11.22
3 306 88 640 356 808 654 194 808 590 172 6.66 5.62
4 1.28 6.72 410 96 6.00 3.18 24 6.66 3.66 46 548  3.46
5 38 526 222 46 450 2.66 06 468 248
6
7
3

0 420 206

28 440 1.58 22 400 1.44 0 454 1.58 0 336 1.20

04 410 1.16 .12 N2 0 22 0 428 1.40 0 282 132

08 326 1.08 06  2.72 94 0 4.00 .88 0 2.88 .92

9 06  3.36 .80 10 1.88 .60 0 3.56 .08 0 282 72
10 06  3.36 .76 06 2.16 .54 0 4.60 .66 0 2.08 .52
11 0 172 .56 0 2.04 44
12 .02 1.50 44 0 1.88 .24
13 02 134 2 0 1.62 .18
14 .02 1.30 .20 0 1.32 .26
15 0 92 .06 0 1.18 .08
16 0 98 14 0 1.40 .08
17 02 1.24 .08 0 1.04 .06
18 0 92 12 0 1.04 .06
19 0 98 .06 0 1.14 .18
20 0 74 .08 0 1.34 .06
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Table 2.1: Case 213

Quantiles

Est. N Max K .10 50 .90 MAE Cov. Rate
OLS 100 * 506 589 .671  .588 0
25LS 100 10 -.106 .104 .282 .131 774
LIML 100 10 -.257 017 .205 .121 887
Jackknife IV 100 10 =377 -027 194 134 .867
25LS 100 20 SHE0 SN0 7 S 5 B3 ! 787
LIML 100 20 -.246 .018 211 121 .884
Jackknife IV 100 20 -344 -.007 .216 .135 .848
2SLSALL 100 20 134 284 414 284 2231l
LIMLALL 100 20 -305 -.001 .208 .128 .898
OLS 400 * .549 589 .629 .589 0
2SLS 400 10 -.091 .023 .118 .058 877
LIML 400 10 -.114 .004 .102 .057 .901
Jackknife IV 400 10 -.131 -.004 .098 .059 .892
25LS 400 20 -.094 .022 .120 .059 .868
LIML 400 20 -.114 .006 .107 .058 .888
Jackknife IV 400 20 -132 -.004 .103 .062 .881
2SLSALL 400 20 -003 .093 .179 .095 .624
LIMLALL 400 20 -123 0 .103 .039 .898

13Note that the entries for OLS, 2SLSALL and LIMLALL are taken from Angrist,
Imbens and Krueger (1995, Table 2). The estimators 2SLSALL and LIMLALL use all
K = 20 instruments in addition to the constant.
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Table 2.2: Case 2, Frequencies

N=100 N=400
K 2SLS LIML J-IV 2SLS LIML J-IV 2SLS LIML J-IV 2SLS LIML J-IV
1 4.50 .04 .06 4.00 .06 .06 0 0 0 0 0 0
2 .30 0 0 12 0 0 0 0 0 0 0 0
3 .04 0 0 .06 .02 0 0 0 0 0 0 0
4 0 0 0 .02 0 0 0 0 0 0 0 0
5 91.30 5842 73.02 91.64 51.86 69.86 99.34 55.56 73.06 99.06 47.60 71.46
6 250 13.52 1184 274 11.90 11.70 .62 13.82 11.32 .86 11.12 10.98
7 76 890 6.24 .84 8.06 582 .04 9.34 6.06 .08 772 5.26
8 .30 734 354 .26 5.28 3.84 0 7.66  3.96 0 570  3.86
9 .20 586 298 .08 412 2.44 0 6.76  3.24 0 4.30 242
10 .10 592 232 .08 3.98  1.50 0 6.86 2.36 0 3.46  1.50
11 .02 2.66 .98 0 342 1.28
12 .04 2.26 .92 0 2.28 .88
13 .04 1.90 .68 0 2.28 .52
14 .02 1.68 .56 0 2.04 .60
15 0 1.38 44 0 1.84 .32
16 .02 .94 .32 0 1.70 .30
17 0 1.20 24 0 1.60 .24
18 0 78 .26 0 1.52 14
19 .02 1.10 14 0 1.50 .14
20 0 1.22 24 0 1.92 .10
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Table 3.1: Case 3

Quantiles

Est. N Max K .10 50 .90 MAE Cov. Rate
OLS 100 * 113 166 .223 .166 012
2SLS 100 10 -458 .050 .428 .200 935
LIML 100 10 -496 .029 .467 .206 947
Jackknife IV 100 10 -850 .063 .882 .310 .679
DSIES 100 20 -460 .082 429 192 897
LIML 100 20 -.522 .050 .514 .200 935
Jackknife IV 100 20 -694 126 .784 .261 .496
2SLSALL 100 20 033 147 .268 .148 AT4
LIMLALL 100 20 -.572  .097 .784 .253 .869
OLS 400 * 139 .167  .196 167 0
2SLS 400 10 -.221 .019 .215 .117 911
LIML 400 10 -.236 .009 .214 112 920
HLIML 400 10 -.249 .007 .218 .115 .943
Jackknife IV 400 10 -.343 -.018 .231 .137 902
2SLS 400 20 -.247 .038 .211 .118 .889
LIML 400 20 -.239 .015 .219 .113 927
Jackknife IV 400 20 -.523 -.009 .316 .158 .831
2SLSALL 400 20 LS T 04 .01 el
LIMLALL 400 20 -.364 .045 .359 .156 .890

Note that the entries for OLS, 2SLSALL and LIMLALL are taken from Angrist,
Imbens and Krueger (1995, Table 3). The estimators 2SLSALL and LIMLALL use all
K = 20 instruments in addition to the constant.
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Table 3.2: Case 3, Frequencies

N=100 N=400
K 2SLS LIML J-Iv 2SLS LIML J-IV 2SLS LIML J-IV 2SLS LIML J-IV
1 6292 59.16 67.62 61.96 52.64 67.16 60.48 64.04 72.20 62.62 56.88 69.74
2 11.18 1294 11.62 10.02 1260 11.86 12.72 12.62 11.42 10.58 12.32 11.00
3 650 738 6.64 610 772 58 7.20 7.52 584 6.00 694 6.08
4 434 484 380 388 482 360 428 424 384 406 518 3.56
5 386 398 28 340 374 294 390 3.06 214 290 3.14 2.46
6 242 284 218 232 280 180 278 226 1.62 240 228 1.92
7 242 228 146 192 210 152 244 176 1.00 1.50 1.78 1.08
8 206 234 138 132 18 102 216 1.60 86  1.70  2.00 .94
9 192 188 124 122 1.50 82 200 1.48 720 1300 1.28 .56
10 238 236 1.22 .98 1.38 B0 2.04  1.42 72 1.06  1.10 .50
11 1.02 1.42 .56 .82 .98 .46
12 .80 1.28 .36 .92 94 .30
13 .86 .84 .38 .44 .68 .30
14 .58 .64 34 .62 .74 .24
15 .70 .66 .30 .62 72 12
16 .76 .60 .30 A2 .62 .10
17 .04 .82 .26 .46 .58 .16
18 .02 .80 14 .58 .86 ..16
19 A48 .80 12 .36 .36 .20
20 .62 .98 .16 .64 .62 12
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Table 4: Returns to Schooling Estimates'®

2SLS LIML

Instruments Ié; S(K) Ié) S(K) Cross Val.

4 Regions 1011 4.1939 .1028 10.1515 10.15157
(.014) (.014)

4 Regions + Qtr-Yr  .0897 4.1954 .0927 10.1514 10.15154
(.012) (.013)

9 Regions 0920 4.1947 .0956 10.1517 10.15185
(.013) (.014)

9 Regions + Qtr-Yr  .0841 4.1963 .0875 10.1515 10.15166
(.012) (.013)

17 Regilons 0979  4.1963 .1077 10.1515 10.15245
(.012) (.014)

17 Regions + Qtr-Yr .0892 4.1985 .0973 10.1514 10.15235
(.012) (.013)

32 Regions 1002 4.2001 .1127 10.1517 10.15300
(.011) (.013)

32 Regions + Qtr-Yr .0927 4.2033 .1034 10.1515 10.15291
(.010) (.012)

50 Regions 0985 4.2073 .1143 10.1517 10.15437
(.010) (.013)

50 Regions + Qtr-Yr .0928 4.2117 .1064 10.1515 10.15428
(.009) (.012)

!5In this table the entries in the columns with header 3 are the parameter estimates, with standard
errors in parentheses below the estimate. The columns labelled S(K) give the value of the criteria for
the set of instruments, while the column headed Cross Val. gives the cross validation statistic from the
first stage relationship between number of years of schooling and the instruments.
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