
Lourenço et al. Journal of Big Data (2015) 2:18
DOI 10.1186/s40537-015-0025-0

RESEARCH Open Access

Choosing the right NoSQL database for the
job: a quality attribute evaluation
João Ricardo Lourenço1* , Bruno Cabral1, Paulo Carreiro2, Marco Vieira1 and Jorge Bernardino1,3

*Correspondence:
joaoml@student.dei.uc.pt
1CISUC, Department of Informatics
Engineering, University of Coimbra,
Pólo II – Pinhal de Marrocos,
3030-290 Coimbra, Portugal
Full list of author information is
available at the end of the article

Abstract
For over forty years, relational databases have been the leading model for data storage,
retrieval and management. However, due to increasing needs for scalability and
performance, alternative systems have emerged, namely NoSQL technology. The rising
interest in NoSQL technology, as well as the growth in the number of use case
scenarios, over the last few years resulted in an increasing number of evaluations and
comparisons among competing NoSQL technologies. While most research work
mostly focuses on performance evaluation using standard benchmarks, it is important
to notice that the architecture of real world systems is not only driven by performance
requirements, but has to comprehensively include many other quality attribute
requirements. Software quality attributes form the basis from which software engineers
and architects develop software and make design decisions. Yet, there has been no
quality attribute focused survey or classification of NoSQL databases where databases
are compared with regards to their suitability for quality attributes common on the
design of enterprise systems. To fill this gap, and aid software engineers and architects,
in this article, we survey and create a concise and up-to-date comparison of NoSQL
engines, identifying their most beneficial use case scenarios from the software
engineer point of view and the quality attributes that each of them is most suited to.

Keywords: NoSQL databases; Key-value; Document store; Columnar; Graph; Software
engineering; Quality attributes; Software architecture

Introduction
Relational databases have been the stronghold of modern computing applications for
decades. ACID properties (Atomicity, Consistency, Isolation, Durability) made relational
databases the solution for almost all data management systems. However, the need to
handle data in web-scale systems [1–3], in particular Big Data systems [4], have led to the
creation of numerous NoSQL databases.
The term NoSQL was first coined in 1988 to name a relational database that did not

have a SQL (Structured Query Language) interface [5]. It was then brought back in 2009
for naming an event which highlighted new non-relational databases, such as BigTable [3]
and Dynamo [6], and has since been used without an “official” definition. Generally speak-
ing, a NoSQL database is one that uses a different approach to data storage and access
when compared with relational database management systems [7, 8]. NoSQL databases
lose the support for ACID transactions as a trade-off for increased availability and scala-
bility [1, 7]. Brewer created the term BASE for these systems - they are Basically Available,

© 2015 Lourenço et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-015-0025-0-x&domain=pdf
http://orcid.org/0000-0001-5042-0538
mailto: joaoml@student.dei.uc.pt
http://creativecommons.org/licenses/by/4.0/

Lourenço et al. Journal of Big Data (2015) 2:18 Page 2 of 26

have a Soft state (during which they are not yet consistent), and are Eventually consistent,
as opposed to ACID systems [9]. This BASE model forfeits the essential ACID properties
of consistency and isolation in order to favor “availability, graceful degradation, and per-
formance” [9]. While originally the term stood for “No SQL”, it has recently been restated
as “Not Only SQL” [1, 7, 10] to highlight that these systems rarely fully drop the relational
model. Thus, in spite of being a recurrent theme in literature, NoSQL is a very broad term,
encompassing very distinct database systems.
There are hundreds of readily available NoSQL databases, and each have different use

case scenarios [11]. They are usually divided in four categories [2, 7, 12], according to their
data model and storage: Key-Value Stores, Document Stores, Column Stores and Graph
databases. This classification is due to the fact that each kind of database offers different
solutions for specific contexts. The “one size fits all” approach of relational databases no
longer applies.
There has been extensive research in the comparison of relational and non-relational

databases in terms of their performance for different applications. However, when devel-
oping enterprise systems, performance is only one of many quality attributes to be
considered. Unfortunately, there has not yet been a comprehensive assessment of NoSQL
technology in what concerns software quality attributes. The goal of this article is to fill
this gap, by clearly identifying which NoSQL databases better promote the several quality
attributes, thus becoming a reference for software engineers and architects.
This article is a revised and extended version of our WorldCIST 2015 paper [13]. It

improves and complements the former in the following aspects:

• Three more quality attributes (Consistency, Robustness and Maintainability) were
evaluated.

• A new section describing the evaluated NoSQL databases was introduced.
• The state of the art was extended to provide more up to date and thorough

information.
• All of the previously evaluated quality attributes were reevaluated in light of new

studies and new developments in the NoSQL ecosystem.
• New conclusions and insights derived from the quality attribute based analysis of

several NoSQL databases.

Henceforth, the main contributions of this article can be summarized as follows:

• The development of a quality-attribute oriented evaluation of NoSQL databases
(Table 2). Software architects may use this information to assess which NoSQL
database best fits their quality attribute requirements.

• A survey of the literature on the evaluation of NoSQL databases from a historic
perspective.

• The identification of several future research directions towards the full coverage of
software quality attributes in the evaluation of NoSQL databases.

The remainder of this article is structured as follows. In Section ‘Background and
literature review’, we perform a review of the literature and evaluation surround-
ing NoSQL systems. In Section ‘Research design and methodology’, we introduce the
methodology used to select the quality attributes and NoSQL databases that we evalu-
ated, as well as the methodology used in that evaluation. In Section ‘Evaluated NoSQL

Lourenço et al. Journal of Big Data (2015) 2:18 Page 3 of 26

databases’, we present and describe the evaluated NoSQL databases. In Section ‘Soft-
ware quality attributes’, we analyze the different quality attributes and identify the best
NoSQL solutions for each of these quality attributes according to the literature. In
Section ‘Results and discussion’, a summary table and analysis of the results of this
evaluation is provided. Finally, Section ‘Conclusions’ presents future work and draws
the conclusions.

Background and literature review
The word NoSQL was re-introduced in 2009 during an event about distributed databases
[5]. The event intended to discuss the new technologies being presented by Google
(Google BigTable [3]) and Amazon (Dynamo [14]) to handle high amounts of data.
Interest in the research of NoSQL technologies bloomed since then, and lead to the
publication of works, such as those by Stonebraker and Cattell [12, 15, 16]. Sonebraker
began his research by describing different types of NoSQL technology and differences
among those when compared to relational technology. The author argues that the main
reasons to move to NoSQL databases are performance and flexibility. Performance is
mainly focused on sharing and management of distributed data (i. e. dealing with “Big
Data”), while flexibility relates to the semi-structured or unstructured data that may arise
on the web.
By 2011, the NoSQL ecosystem was thriving, with several databases being the

center of multiple studies [17–20]. These included Cassandra, Amazon SimpleDB,
SciDB, CouchDB, MongoDB, Riak, Redis, and many others. Researchers categorized
existing databases, and identified what kinds of NoSQL databases existed according
to different architectures and goals. Ultimately, the majority agreed on four cate-
gories of databases [11]: Document Store, Column Store, Key-value Store and Graph-
oriented databases.
Hecht and Jablonski [11] described the main characteristics offered by different NoSQL

solutions, such as availability and horizontal scailability. Konstantinou et al. [19] per-
formed a study based on the elasticity of non-relational solutions and compared HBase,
Cassandra and Riak during execution of read and update operations. The authors con-
cluded that HBase provided high elasticity and fast reads while Cassandra was capable of
delivering fast inserts (writes). On the other hand, according to the authors, Riak did not
show good scaling and high performance increase, regardless of the type of access. Many
studies focused on evaluating performance [4, 11, 21].
Performance evaluations were made easier by the popularization of the Yahoo! Cloud

Serving Benchmark (YCSB), proposed and implemented by Cooper et al. [21]. This
benchmark, still widely used today, allows testing the read/write, latency and elasticity
capabilities of any database, in particular NoSQL databases. The first studies using YCSB
evaluated Cassandra, HBase, PNUTS and MySQL to conclude that each database offers
its own set of trade-offs. The authors warn that each database performs at its best in dif-
ferent circumstances and, thus, a careful choice of the one to use must be made according
to the nature of each project.
Since 2012, NoSQL databases have been most often evaluated and compared to

RDBMSs (Relational Database Management Systems). Performance evaluation carried
by [22] compared Cassandra, MongoDB and PostgreSQL, concluding that MongoDB
is capable of providing high throughput, but mainly when it is used as a single server

Lourenço et al. Journal of Big Data (2015) 2:18 Page 4 of 26

instance. On the other hand, the best choice for supporting a large distributed sensor sys-
tem was considered Cassandra due to its horizontal scalability. Floratou et al. [4] used
YCSB and TPC-H to compare the performance of MongoDB and MS SQL Server, as
well as Hive. The authors state that NoSQL technology has room for improvement and
should be further updated. Ashram and Anderson [7] studied the data model of Twitter
and found that using non-relational technology creates additional difficulties on the pro-
grammers’ side. Parker et al. [23] also chose MongoDB and compared its performance
with MS SQL Server using only one server instance. According to their results, when
performing inserts, updates and selects, MongoDB is faster, but MS SQL Server out-
performs MongoDB when running complex queries instead of simpler key-value access.
In [24], Kashyap et al. compare the performance, scalability and availability of HBase,
MongoDB, Cassandra and CouchDB by using YCSB. Their results show that Cassandra
and HBase shared similar behaviour, but the former scaled better, and that MongoDB
performed better than HBase by factors in the hundreds for their particular workload.
The authors are prudent, and note that NoSQL is constantly evolving and that eval-
uations can quickly become obsolete. Rabl et al. [25] studied Cassandra, Voldemort,
HBase, Redis, VoltDB and MySQL Cluster with regards to throughput, latency and scal-
ability. Cassandra’s throughput is consistently better than that of the other databases,
but it exhibits high latency. Voldemort, HBase and Cassandra all show linear scalabil-
ity, and Voldemort has the most stable, lowest latency. Of the tested NoSQL databases,
VoltDB has the worst results and HBase also lagged behind the other databases in terms
of throughput.
Already in 2013, with the research focus on performance, Thumbtack Technologies

produced two white papers comparing Aerospike, Cassandra, Couchbase and MongoDB
[26, 27]. In [26], the authors compare the durability and performance trade-offs of several
state of the art NoSQL systems. Their results firstly show that Couchbase and Aerospike
have good in-memory performance, and that MongoDB and Cassandra lagged behind
in bulk loading capabilities. Regarding durability, Aerospike beats the competition in
large balanced and read-heavy datasets. For in-memory datasets, Couchbase performed
similarly to Aerospike as well. In their second paper [27], the authors study failover char-
acteristics. Their results allow for many conclusions, but overall tend to indicate that
Aerospike, Cassandra and Couchbase give strong availability guarantees.
In [28], MongoDB and Cassandra are compared in terms of their features and their

capabilities by using YCSB. MongoDB is shown to be impacted by high workloads,
whereas Cassandra seemed to experience performance boosts with increasing amounts
of data. Additionally, Cassandra was found to be superior for update operations. In [29],
the authors studied the applicability of NoSQL to RDF (Resource Description Framework
data) processing, and make several key observations: 1) distributed NoSQL systems can
be competitive with RDF stores with regards to query times; 2) NoSQL systems scalemore
gracefully than RDF stores when loading data in parallel; 3) complex SPARQL (SPARQL
Protocol and RDF Query Language) queries, particularly with joins, perform poorly on
NoSQL systems; classical query optimization techniques work well on NoSQL RDF sys-
tems; 5) MapReduce-like operations introduce higher latency. As their final conclusion,
the authors state that NoSQL represents a compelling alternative to native RDF stores for
simple workloads. Several other studies were performed in the same year regarding the
applicability of NoSQL to diverse scenarios, such as [30–32].

Lourenço et al. Journal of Big Data (2015) 2:18 Page 5 of 26

More recently, as of 2014, experiments have stopped being so focused on performance,
and having additional focus on applicability. NoSQL has seen validation and widespread
usage, and so, in [10], a survey of some of the most popular NoSQL solutions is described.
The authors state some of the advantages andmain uses according to the NoSQL database
type. In another evaluation, [33] performed their tests using real medical scenarios using
MongoDB and CouchDB. They concluded thatMongoDB and CouchDB have similar per-
formance and drawbacks and note that, while applicable to medical imaging archiving,
NoSQL still has to improve. In [34], the Yahoo! Cloud Serving Benchmark is used with
a middleware layer that allows translating SQL queries into NoSQL commands. They
tested Cassandra and MongoDB with and without the middleware layer, noting that it
was possible to build middleware to ease the move from relational data stores to NoSQL
databases. In [35], a write-intensive enterprise application is used as the basis for com-
paring Cassandra, MongoDB and Couchbase with MS SQL server. The results show that
Cassandra outperforms the other NoSQL databases in a four-node setup, and that a MS
SQL Server running on a single node vastly outperforms all NoSQL contenders for this
particular setup and scenario.
The latest trends in NoSQL research, although still related to applicability and per-

formance, have also concerned the validity of the benchmarking processes and tools
used throughout the years. The authors of [36] propose an improvement of YCSB,
called YCSB++, to deal with several shortcomings of the benchmark. In [37], the author
proposes a method to validate previously proposed benchmarks of NoSQL databases,
claiming that rigorous algorithms should be used for benchmarking methodology before
any practical use. Chen et al., in [38], perform a survey of benchmarking tools, such as
YCSB and TPC-C and list shortcomings and difficulties in implementingMapReduce and
Big Data related benchmark systems, proposing methods for overcoming these difficul-
ties. Similar work had already been done by [39], where benchmarks are reviewed and
suggestions are given on building better benchmarks.
As we have seen, to the best of our knowledge, there are no studies focused on quality

attributes and how each NoSQL system fits each of these attributes. Our work attempts
to fill in this gap, by reviewing the literature, in Section ‘Software quality attributes’, with
regards to the different quality attributes, finally presenting our findings in a summary
table in Section ‘Results and discussion’.
It is important to notice that the analysis of NoSQL systems is inherently bound

to the CAP theorem [40]. The CAP theorem, proposed by Brewer, states that no
distributed system can simultaneously guarantee Consistency, Availability and Partition-
Tolerance. In the context of the CAP theorem [40, 41], consistency is often viewed
as the premise that all nodes see the same data at the same time [42]. Indeed, of
Brewer’s CAP theorem, most databases choose to be “AP”, meaning they provide
Availability and Partition-Tolerance. Since Partition-Tolerance is a property that often
cannot be traded off, Availability and Consistency are juggled, with most databases
sacrificing more consistency than availability [43]. In Fig. 1, an illustration of CAP is
shown.
Some authors (Brewer being one of them) have come to criticize the way the CAP

theorem is interpreted and some have claimed that much has been written in literature
under false assumptions [41, 44–46]. The idea of CA (systems which ensure Consistency
and Availability) is now most often looked at as a trade-off on a micro-scale [41], where

Lourenço et al. Journal of Big Data (2015) 2:18 Page 6 of 26

Fig. 1 CAP theorem with databases that “choose” CA, CP and AP

individual operations can have their consistency guarantees explicitly defined. Thismeans
that some operations can be tied to full consistency (in the ACID semantics sense), or to
one of a vast range of possible consistency options. Modern NoSQL systems allow for this
consistency tuning and should therefore not be looked at under such a simplistic view
which narrows the whole system to “CA”, “CP” or “AP”.

Research design andmethodology
This work was developed to answer the following research question: “Is there cur-
rently enough knowledge on quality attributes in NoSQL systems to aid a software
engineer’s decision process”? In our literature survey, we did not find any similar work
attempting to provide a quality attribute guided evaluation of NoSQL databases. Thus,
we devised a methodology to develop this work and answer our original research
question.
We began by identifying several desirable quality attributes to evaluate in NoSQL

databases. There are hundreds of quality attributes, yet some are nearly ubiquitous to
every software project [47], and others are intimately tied to the topic of database sys-
tems, storage models and web applications (where the database backend often requires
certain quality attributes) [48]. This lead us to identify the following quality attributes
to evaluate: Availability, Consistency, Durability, Maintainability, Read and Write perfor-
mance, Recovery Time, Reliability, Robustness, Scalability and Stabilization Time. These
attributes are interdependent and have impact on most software projects. Most of these
attributes have also been the target (even if indirectly) of some studies [18, 27, 27, 49, 50],
rendering them ideal picks for this work.
Once these quality attributes had been identified, we identified which NoSQL systems

were more popular and used, so as to narrow our research to a fixed set of NoSQL
databases. This search lead us to selecting Aerospike, Cassandra, Couchbase, CouchDB,

Lourenço et al. Journal of Big Data (2015) 2:18 Page 7 of 26

HBase, MongoDB and Voldemort as the systems to evaluate. These are often found in
literature [6, 10, 11, 26, 51, 52] and other sources [53] as the most popular and used
systems, as well as the most versatile or appropriate to certain scenarios. For instance,
while Couchbase and CouchDB share source-code and several similar original design
goals, they have evolved into different systems, both with very high success and differ-
ent characteristics. In much the same way, MongoDB and Cassandra, which are probably
the most used NoSQL databases in the market, have fundamentally different approaches
to storage model. Thus, our selection of databases attempted to find not only the most
popular and mature databases in general, but also those that find high applicability in
specific areas.
We surveyed the literature to evaluate the selected quality attributes on the aforemen-

tioned databases. This survey took into account already available evaluations regarding
certain quality attributes, such as performance [51, 54], consistency [43] or durability
[26]. Each of the surveyed papers was taken into account according to the versions of
the database tested (e.g. papers with outdated versions were given less relevance), gen-
erality of results and overall relevance to this evaluation. The summary table presented
in Section ‘Results and discussion’ is the result of this careful evaluation of the NoSQL
literature, technical knowledge found on the NoSQL ecosystem and expert opinions and
positions. We also took into account the overall architectures of each NoSQL system (e.g.
systems built with durability limitations are intrinsically limited in terms of this quality
attribute). The result of this methodology is the aforementioned summary table, which we
hope will aid software engineers and architects in their decision process when selecting a
given NoSQL database according to a certain quality attribute.
In the following sections, we present the databases that we evaluated from the literature,

as well as that evaluation.

Evaluated NoSQL databases
There are several popular NoSQL databases which have gained recognition and are usu-
ally considered before other NoSQL alternatives. We studied several of these databases
(Aerospike, Cassandra, Couchbase, CouchDB, HBase, MongoDB and Voldemort) by per-
forming a literature review and introduce the first quality attribute based evaluation of
NoSQL databases. In this section, these selected databases are presented, with a summary
table at the end (Table 1) detailing their characteristics.

Aerospike

Aerospike (formerly known as Citrusleaf [10] and recently open-sourced) is a NoSQL
shared-nothing key-value database which offers mainly AP (Availability and Partition-
Tolerance) characteristics. Additionally, the developers claim that it provides high con-
sistency [55] by trading off availability and consistency at low granularity in specific
subsystems, restricting communication latencies, minimizing cluster size, maximizing
consistency and availability during failover situations and automatic conflict resolution.
Consistency is guaranteed by using synchronous writes to replicas, guaranteeing imme-
diate consistency. This immediate consistency can be relaxed if the software architects
view that as a necessity. Durability is ensured by guaranteeing the use of flash/SSD on
every node and performing direct reads from flash, as well as replication on several
different layers.

Lourenço
etal.JournalofBig

D
ata

 (2015) 2:18
Page

8
of26

Table 1 Summary table with characteristics of the selected NoSQL databases

Aerospike Cassandra Couchbase CouchDB HBase MongoDB Voldemort

Category Key-Value Column-Store Document-Store Document-Store Column-Store Document-Store Key-Value

CAP AP AP/CP CP AP CP CP AP

Consistency Configurable Configurable Eventual Eventual Configurable Configurable Read-Repair
(several options) (several options) Consistency Consistency (strong and

eventual
consistency)

(several options) (client handles
conflicts)

Durability Notified written
to replica nodes

Configurable
(several options)

Configurable
(several options)

Configurable
(notified written
to at least one
disk)

Configurable
(several options)

Configurable
(several options)

Notified written
to desired nodes

Querying Internal API Internal API, SQL
like (CQL)

Internal API
(MapReduce)

Internal API
(MapReduce)

Internal API Internal API,
MapReduce,
complex query
support

Internal API
(get, put
delete)

Concurrency
Control

Read-commited
isolation level
(support for
optimistic
concurrency
control)

MVCC MVCC (application
can select
Optimistic or
Pessmistic
locking)

MVCC (application
can select
Optimistic or
Pessmistic
locking)

Optimistic
locking with
MVCC

Master-slave with
multi-granularity
locking

Optimistic
locking with
MVCC

Partitioning
Scheme

Proprietary
(Paxos based)

Consistent
Hashing

Consistent
Hashing

Consistent
Hashing
(third party)

Range Based Consistent
Hashing

Consistent
Hashing

Native
Partitioning Yes Yes Yes No Yes Yes Yes

Lourenço et al. Journal of Big Data (2015) 2:18 Page 9 of 26

Failover can be handled in two different ways [55]: focusing on High consistency on AP
mode, or on Availability in CP (Consistency and Partition-Tolerance) mode. The former
uses techniques to “virtually eliminate network based partitioning”, including fast heart-
beats and consistent Paxos based cluster formation. These techniques favor Consistency
over Availability to ensure that the system does not enter a state of network partition. If,
however, partitioning occurs, Aerospike offers two conflict handling policies: one relies
on the database’s auto-merging capabilities, and the other offloads the conflict to the
application layer so that application developers can resolve the conflicts by themselves
and re-write the right data back to the database. The second way that Aerospike manages
failover is to provide Availability while in CP mode. In this mode, availability needs to
be sacrificed by, for instance, forcing the minority quorum(s) to halt, thus avoiding data
inconsistency if a network split occurs.
Aerospike is, henceforth, an in-memory database with disk persistence, automatic

data partitioning and synchronous replication, offering cross data center replication and
configurability in the failover handling mechanism, preferring full consistency or high
consistency [10, 52, 55].

Cassandra

Cassandra is an open-source shared-nothing NoSQL column-store database developed
and used in Facebook [10, 52, 56]. It is based on the ideas behind Google BigTable [3] and
Amazon Dynamo [14].
Cassandra is similar to BigTable in what concerns the data model. The minimal unit of

storage is a column, with rows consisting of columns or super columns (nested columns).
Columns themselves consist of the name, value and timestamp, all of which are pro-
vided by the client. Since it is column-based, rows need not have the same number of
columns [10].
Cassandra supports a SQL-like language called CQL, together with other protocols [10].

Indexes and secondary indexes are supported, and atomicity is guaranteed at the level of
one table row. Persistence is ensured by logging. Consistency is highly tunable according
to the desired operation – the application developer can specify the desired level of con-
sistency, trading off latency and consistency. Conflicts are resolved based on timestamps
(the newest record is kept). The database operates in master-master mode [52], where no
node is different from another, and combines disk-persistence with in-memory caching
of results, resulting in high write throughput operations [52, 56]. The master-master
architecture makes it easy for horizontal scalability to happen [56]. There are several
different partitioning techniques and replication can be automatically managed by the
database [56].

CouchDB

Apache CouchDB is another open-source project, written in Erlang, and following a
document-oriented approach [10]. Documents are written in JSON and are meant to
be accessed with CouchDB’s specific implementation of MapReduce views written in
Javascript.
This database uses a B-tree index [10], updated during data modifications. These

modifications have ACID properties on the document level and the use of MVCC
(Multi-Version Concurrency Control) enables readers to never block [10]. CouchDB’s

Lourenço et al. Journal of Big Data (2015) 2:18 Page 10 of 26

document manipulation uses optimistic locks by updating an append-only B-tree for data
storage, meaning that data must be periodically compressed. This compression, in spite
of maintaining availability, may hinder performance [10].
Regarding fault-tolerant replication mechanisms [57], CouchDB supports both master-

slave and master-master replication that can be used between different instances of
CouchDB or on a single instance. Scaling in CouchDB is achieved by replicating data,
a process which is performed asynchronously. It does not natively support shard-
ing/partitioning [10]. Consistency is guaranteed in the form of strengthened eventual
consistency [10], and conflict resolution is performed by selecting the most up to date
version (the application layer can later try to merge conflicting changes, if possible, back
into the document). CouchDB’s programming interface is REST-based [10, 57]. Ideally,
CouchDB should be able to fit the whole dataset into the RAM of the cluster, as it is
primarily a RAM-based database.

Couchbase

Couchbase is a combination of Membase (a key-value system with memcached compat-
ibility) and CouchDB. It can be used in key-value fashion, but is considered a document
store working with JSON documents (similarly to CouchDB) [10].
Documents, in Couchbase, have an intrinsic unique id and are stored in what are called

data buckets. Like CouchDB, queries are built using MapReduce views in Javascript. The
optimistic locking associated with an append-only B-tree is also implemented like in
CouchDB. The default consistency level is eventual consistency (due toMapReduce views
being constructed asynchronously). There is also the option of specifying that data should
be indexed immediately [10].
A major difference when comparing Couchbase with CouchDB regards sharding [10].

Whereas CouchDB does not natively support sharding (there are projects, such as
CouchDB Lounge [10] which enable this), Couchbase comes with transparent sharding
off-the-shelf, with application transparency. Replication is also a major point of difference
between the two databases, as couchbase supports intercluster and intracluster replica-
tion. The latter is performed within a cluster, guaranteeing immediate consistency. The
former kind of replication ensures eventual consistency and is made asynchronously
between geographically distributed clusters (conflict resolution is performed in the same
way CouchDB does it). This database is mostly intended to run in-memory, so as to hold
the whole dataset in RAM [10, 29].

HBase

HBase is an open-source database written in Java and developed by the Apache Software
Foundation. It is intended to be the open-source implementation of the Google BigTable
principles, and relies on the Apache Hadoop Framework and the Apache ZooKeeper
projects. It is, therefore, a column-store database [10].
HBase’s architecture is highly inspired by Google’s BigTable [3, 10], and, thus, their

capabilities are similar. There are, however, certain differences. The Hadoop Distributed
File System (HDFS) is used for distributed storage, although other backends can be used
(e.g. Hadoop MapReduce), in place of the Google File System. HBase also supports sev-
eral master servers to improve system reliability, but does not support the concept of
locality. Similarly to Google BigTable, it does not support full ACID semantics, although

Lourenço et al. Journal of Big Data (2015) 2:18 Page 11 of 26

several properties are guaranteed [58]. Atomicity is guaranteed within a row and con-
sistency ensures that no rows result of interleaving operations (i.e. the row must have
effectively existed at some point in time). Still on the topic of consistency, rows are
guaranteed to only move forward in time, never backward, and scans do not exhibit snap-
shot isolation, but, rather, the “read commited” isolation level. Durability is established
in the sense that all data which is read has already been made durable (i.e. persisted
to disk), and that all operations returning success have ensured this durability prop-
erty. This can be configured, so that data is only periodically flushed to disk [58]. HBase
does not support secondary indexes, meaning that data can only be queried by the
primary key or by a table scan. It is worth noting that data, in HBase is also absent
of data types (everything is a byte array) [52]. Regarding the programming interface,
HBase can be interfaced using a Java API, a REST interface, and the Avro and Thrift
protocols [10].

MongoDB

MongoDB is an open-source document-oriented database written in C++ and devel-
oped by the 10gen company. It uses JSON (data is stored and transferred in a binary,
more compact form named BSON), allowing for a schemaless data model where the only
requirement is that an id is always present [10, 56].
MongoDB’s horizontal scalability is mainly provided through the use of automatic

sharding [56]. Replication is also supported using locks and the asynchronous master-
slave model, meaning that writes are only processed by the master node and reads can
be made from both the master node and from one of the slave nodes. Writes are propa-
gated to the slave nodes by reading from the master’s oplog (operation log) [56]. Database
clients can choose the kind of consistency models they wish, by defining whether reads
from secondary nodes are allowed and from how many nodes the confirmation must be
obtained.
Document manipulation is a strong focus of MongoDB, as the database provides

different frameworks (e.g. MapReduce and Aggregation Framework) and ways of inter-
acting with documents [10]. These can be queried, sorted, projected, iterated with
cursors, aggregated, among other operations. The changes to a document are guaran-
teed to be atomic. Indexing can be used on one or several fields (implemented using
B-trees), with the possibility of using two-dimensional spatial indexes for geometry-based
data [10]. There aremany different programming interfaces supported byMongoDB, with
most popular programming languages having native bindings. A REST interface is also
supported [10].

Voldemort

Project Voldemort is an open-source key-value store implemented in Java which presents
itself as an open-source implementation of the Amazon Dynamo database [10, 14, 59, 60].
It supports scalar values, lists and records with named fields associated with a single key.
Arbitrary fields can be used if they are serializable [10].
Operations on the data are simple and limited: there are put, get and delete commands

[10, 60]. In this sense, Voldemort can be considered (as the developers themselves put
it), “basically just a big, distributed, persistent, fault-tolerant hash table” [59]. For data
modification, the MVCC mechanism is used [10].

Lourenço et al. Journal of Big Data (2015) 2:18 Page 12 of 26

Replication is supported using the consistent hashing method (proposed in [61])
[10, 60]. Sharding is implemented transparently with support for adding and removing
nodes in real-time (although this feature was not always easily available [62]). Data is
meant to stay in RAM as much as possible, with persistent data storage using several
mechanisms, such as Berkley DB [60]. Voldemort uses a Java API [52].

Summary

Table 1 summarizes the characteristics of the studied NoSQL databases, similar to the
work seen in [1, 11, 17, 49, 63], but providing a broader and more up to date view of
these characteristics. Its information is derived from the previous sections and addi-
tional relevant sources ([12, 64–71]). Each NoSQL database is described according to key
characteristics: category (e.g. Key-Value database), positioning in the context of the CAP
theorem, consistency guarantees and configurability, durability guarantees and configura-
bility, querying possibilities and mechanisms (i.e. how are queries made and how complex
can queries be?), concurrency control mechanisms, partitioning schemes and the exis-
tence of native partitioning. It should be noted that, as we have previously discussed,
modernNoSQL databases often allow for fine-tuning of consistency and availability prop-
erties on a per-query basis, making the CAP-based classification (“AP”, “CP”, etc) overly
simplistic [41, 44–46].

Software quality attributes
In the previous section we identified and described several NoSQL databases. In this
section, we survey the literature on NoSQL databases to find how each of these satisfy
the software quality attributes that we selected. Each subsection explores the NoSQL
literature on a given quality attribute, drawing conclusions regarding all of the evalu-
ated NoSQL databases. This information is then summarized in the following section
(Section ‘Results and discussion’), where a table is provided to aid software architects and
engineers in their decision process.

Availability

Availability concerns what percentage of time a system is operating correctly [1]. NoSQL
technology is inherently bound to provide availability more easily than relational systems.
In fact, given the existence of Brewer’s CAP theorem [40], and the presence of failures in
real-world systems (whether they are related to the network or to an application crash),
NoSQL databases opposemost relational databases by favoring availability instead of con-
sistency. Thus, one can assert that the higher the availability of a NoSQL system, the less
likely it is that it provides high consistency guarantees. Several NoSQL databases provide
ways to tune the trade-off between consistency and availability, including Dynamo [14],
Cassandra, CouchDB and MongoDB [9].
Apache CouchDB uses a shared-nothing clustering approach, allowing all replica nodes

to continue working even if they are disconnected, thus being a good candidate for sys-
tems where high availability is needed [9]. It is worth noting, however, that this database
periodically requires a compaction step whichmay hinder system performance, but which
does not affect the availability of its nodes under normal operation [3].
In 2013, [27] tested several NoSQL Databases (Aerospike, Cassandra, Couchbase and

MongoDB) concerning their failover characteristics. Their results showed that Aerospike

Lourenço et al. Journal of Big Data (2015) 2:18 Page 13 of 26

had the lowest downtime, followed by Cassandra, with MongoDB having the least favor-
able downtime. One should note that the results shown in the paper are limited to
RAM-only datasets and hence might not be the best source for real-world scenarios.
MongoDB’s results are also not surprising, as even though it allows for fine-tuning (to
adjust the consistency-availability trade-offs), several tests have shown that it is not the
best choice for a highly available system, in particular due to overhead when nodes are
rejoining the system (see, for instance, [1, 9] and our section on reliability). Lastly, [5]
tested several NoSQL databases on the Cloud and noted that Riak could not provide
high-availability under very high loads.
Thus, there is no obvious candidate for a highly available system, but there are several

competing solutions, in particular when coupled with systems such as Memcached [2].
The specific architecture (number of replicas, consistency options, etc.) employed will
play a major role, as pointed by several authors [27, 72]. Furthermore, the popular
MongoDB and Riak databases seem less likely to be good picks for this use case scenario.

Consistency

Consistency is related to transactions and, although not universally defined, can be seen
as the guarantee that transactions started in the future see the effects of transactions com-
mitted in the past, coupled with the insurance of database constraints [73–75]. It is useful
to recall that, in the context of the CAP theorem [40, 41], consistency is often seen as the
premise that all nodes see the same data at the same time [42] (i.e., the CAP version of
consistency is merely a subset of the ACID version of the same property [41]). We have
previously seen that consistency and availability are highly related properties of NoSQL
systems.
Cassandra has several different consistency guarantees [76]. The database allows for

tunable consistency at both the read and write level, even with near-ACID semantics if
consistency level “ALL” is picked. MongoDB, in spite of being generally regarded as a
CP system, offers similar consistency options [76, 77]. Couchbase offers strong consis-
tency guarantees for document access, whereas query access is eventually consistent [67].
HBase provides eventual consistency without fine-tuning being possible [58] (there is only
the choice of opting for strong or eventual consistency), and CouchDB, being an AP sys-
tem, fully relies on eventual consistency [78]. The Voldemort project puts more stress on
application logic to deal with inconsistencies in data, by using read repair [60].
Regarding concrete experiments, not much has been done to study consistency as a

property in itself. Recent work by Bermbach et al. [76] has seen the proposal of a general
architecture for consistency benchmarking. The authors test their proposal on Cassan-
dra and MongoDB, concluding that MongoDB performed better, but also noting that
they are merely proposing an architecture and that their tests might have been impacted
negatively due to their testing environment. The authors of [54] study Cassandra and
Couchbase in a real world microblogging scenario, concluding that Couchbase provided
consistent results faster (i.e. the same value took less time to reach all node replicas). In
[79], the authors study Amazon S3’s consistency behavior and conclude that it frequently
violates the monotonic read consistency property (other related work is presented by
Bermbach et al. [76]). It seems that a general framework for testing consistency might
provide with more in depth answers to the effectiveness of consistency trade-offs and
techniques provided by each NoSQL database.

Lourenço et al. Journal of Big Data (2015) 2:18 Page 14 of 26

In summary, as the NoSQL ecosystem matures, there is a tendency towards micro-
management of consistency and availability [41], with some solutions opting to provide
consistency (withholding availability), others providing availability (withholding consis-
tency) and another set, such as Cassandra and MongoDB, allowing for fine-tuning based
on a query basis.

Durability

Durability refers to the requirement that data be valid and committed to disk after a
successful transaction [1]. As we have previously covered, NoSQL databases act on the
premise that consistency doesn’t need to be fully enforced in the real world, preferring
to sacrifice it in adjustable ways for achieving higher availability and partition tolerance.
This impacts durability, as if a system suffers from consistency problems, its durability
will also be at risk, leading to potential data loss [26].
In [26], the authors test Aerospike, Couchbase, Cassandra and MongoDB in a series of

tests regarding durability and performance trade-offs. Their results featured Aerospike
as the fastest performing database by a factor of 5-10 when the databases were set to
synchronous replication. However, most scenarios do not rely on synchronous replica-
tion, but rather asynchronous (meaning that changes aren’t instantly propagated among
nodes). In that sense, the same authors, which in [27] studied the same databases in the
context of failover characteristics, show that MongoDB loses less data upon node fail-
ure when asynchronous replication is used. Cassandra comes as forerunner to MongoDB
by about a factor of 100, and Aerospike and Couchbase both lose very large amounts of
data. In [1], MongoDB is found to have issues with data loss when compared to CouchDB,
in particular during recovery after a crash. In the same paper, the authors highlight that
CouchDB’s immutable append only B+ Tree ensures that files are always in a valid state.
CouchDB’s durability is also noticed and justified by the authors of [2]. It should be noted
that document-based systems such as MongoDB usually use a single-versioning system,
which is designed specifically to target durability [49]. HBase’s reliance on Hadoop means
that it is inherently durable in the way requests are processed, as several authors have
noted [80–82]. Voldemort’s continuing operation as the backend to Linkedin’s service is
backed by strong durability [83], although there is a lack of studies focusing specifically
on Voldemort’s durability.
In conclusion, as with other properties, the durability of NoSQL systems can be fine-

tuned according to specific needs. However, databases based on immutability, such as
CouchDB, are good picks for a system with good durability due to their inherent prop-
erties [1]. Furthermore, single-version databases, such as MongoDB, should also be the
focus of those interested in durability advantages.

Maintainability

Maintainability is a quality attribute that regards the ease with which a product can be
maintained, i.e., upgraded, repaired, debugged andmet with new requirements [84]. From
an intuitive point of view, systems with many components (e.g. several nodes) should add
complexity and difficult maintainability, and this is a view that several authors agree with
[7, 85]. On the other hand, as some have hypothesized, the benefits of thoughtful mod-
ularity and task division make the case for a more maintainable system [86]. Assessing
maintainability is a difficult problem which has seen vast amounts of research throughout

Lourenço et al. Journal of Big Data (2015) 2:18 Page 15 of 26

the years, but it has seldom been focused explicitly on the database itself (in particular
due to the widespread usage of the relational model with similar database interfaces).
In spite of the perceived difficulty in assessing the maintainability of NoSQL systems,

there has been some research on the subject. Dzhakishev [50] studied the usability and
maintainability of several NoSQL solutions in a real enterprise scenario. The author
notes how MongoDB and Neo4j have “great shell applications”, easing maintainability,
and that Neo4j even has a web interface (other NoSQL databases have such software,
e.g. Couchbase Server). The authors of [87] study social network system implementa-
tion processes and rely on their own application-specific code to ensure maintainability
of their application. They claim that versioning the schema using subversion is good
for their goals. Throughout their work, maintainability seems to be moved more into
the application layer and less into the database layer, possibly suggesting that NoSQL
maintainability must be achieved with help of the developer. In [29], another real world
experiment, the authors note the added maintainability difficulties in using HBase,
Couchbase, Cassandra and CouchDB to replace their RDF data system. Similarly, Han
[88] also faced maintainability problems with MongoDB when comparing it with the
maintainability of relational alternatives. Although no particular study in literature has
focused on the maintainability of Voldemort, from the point of view of ease of use, this
database seems harder to configure (in particular in terms of node topology changes)
than others [62].
It seems that most NoSQL systems offer limited maintainability when compared with

traditional RDBMSs, but the literature has little to say with regards as to which is the
more maintainable. Some authors [50, 87] point in the direction of the ease of use of web
interfaces and the readiness of tools. In that sense, Couchbase and Neo4j are prominent
examples of easy to use and setup databases. On the other hand, MongoDB and HBase
are known to be hard to install [89, 90] or to confuse first users, thus limiting ease of use.
Further research can and should be developed in this area so as to be able to truly compare
the maintainability of NoSQL solutions.

Performance

When it comes to the performance and execution of different types of operations, NoSQL
databases are divided mostly into two categories: read and write optimized [21, 91]. That
means that, in part, regardless of the system type and records, the database has an opti-
mization that is granted by its mechanisms used for storage, organization and retrieval
of data. For example, Cassandra is known for being very highly optimized during exe-
cution of writes (inserts) and is not able to show the same performance during reads
[21, 91]. The database achieves this by using a cache for write operations (updates
are immediately written to a logfile, then cached in memory and only later written
to disk, making the insertion process itself faster). In general, Column Store and Key-
Value databases use more memory to store their data, some of those being completely
in-memory (and, hence, completely unsuited for other attributes such as durability).
Document Stores, on the other hand, are considered as being more read optimized.

This behavior resembles that of relational databases, where data loading and organi-
zation is slower, with the advantage of better preparing the system for future reads.
Examples of this are MongoDB and Couchbase. If one compares most Column Store
databases, such as Cassandra, to the document-based NoSQL landscape, with regards

Lourenço et al. Journal of Big Data (2015) 2:18 Page 16 of 26

to read-performance, then the latter wins. This has been seen in numerous works such
as [51, 54] and [26]. We should also consider that databases such as MongoDB and
Couchbase are considered more enterprise solutions with a set of mechanisms and
functionality besides traditional key-value retrieval, which is mostly used not only by
Key-Value stores but also by Column Store databases. This impacts performance signifi-
cantly, as the need for additional functionality is usually associated with high performance
costs.
Much work has been done with regards to performance testing of databases. Since

NoSQL is constantly changing, past evaluations quickly become obsolete, but recent eval-
uations have been performed, some of which we now enumerate. In [51], a performance
overview is given for Cassandra, HBase, MongoDB, OrientDB and Redis. The conclu-
sions are that Redis is particularly well suited for all kinds of workloads (although this
result should be taken lightly, since the database has many trade-offs with other qual-
ity attributes), that Cassandra performs very well for write/update scenarios, that overall
OrientDB performs poorly when tested in this scenario and that HBase deals poorly
with update queries. In [33], MongoDB and CouchDB are tested in a medical archiving
scenario, withMongoDB showing better performance. In [92], MongoDB is shown to per-
form poorly for CRUD (create, read, update and delete) bulk operations when compared
with PostgreSQL. Regarding write-heavy scenarios, a real-world enterprise scenario is
presented in [35], where Cassandra, Couchbase and MongoDB are compared with MS
SQL Server. In a four-node environment, Cassandra outperforms the NoSQL competition
greatly (which is expected, since it is a write-optimized database), but is outperformed
by a single-node MS SQL Server instance. Less recent, but also relevant, is the work pre-
sented in [26, 27], where Cassandra, Couchbase, MongoDB and Aerospike are tested.
Aerospike is shown to have the better performance, with Cassandra coming in as second
in terms of read-throughput, and Couchbase in terms of write-throughput. Rabl et al. [25]
compared Voldemort, Redis, HBase, Cassandra, MySQL Cluster and VoltDB with regards
to throughput, scalability and disk usage, and noted that while Cassandra’s throughput
dominated most tests, Voldemort exhibits a good balance between read and write perfor-
mance, competing with the other databases. The authors also note that VoltDB had the
worst performance and HBase’s throughput is low (although it scales better than most
other databases).
In conclusion, performance highly depends on the database architecture. Column Store

databases, such as Cassandra, are usually more oriented towards writing operations,
whereas document based databases are more read-oriented. This last group of databases
is also generally more feature-rich, bearing more resemblance to the traditional relational
model, thus tending to have a bigger performance penalty. Experiments have been vali-
dating this theory and we can conclude that, in contrast with some of the other quality
attributes studied in this article, performance is definitely not lacking in terms of research
and evaluation.

Reliability

Reliability concerns the system’s probability of operating without failures for a given
period of time [49]. The higher the reliability, the less likely it is that the system fails.
Recently, Domaschka et al., in [49], have proposed a taxonomy for describing distributed
databases with regards to their reliability and availability. Since reliability is significantly

Lourenço et al. Journal of Big Data (2015) 2:18 Page 17 of 26

harder to define than availability (as it depends on the context of the application require-
ments), the authors suggest that software architects consider the following two questions:
“(1) How are concurrent writes to the same item resolved?; (2) What is the consistency
experienced by clients?”. With these in mind, and by using their taxonomy, we can see
that systems which use single-version techniques, such as Redis, Couchbase, MongoDB
and Neo4j, all perform online write conflict resolution detection, being good picks for a
reliable system in the sense that they answer question (1) with reliable options. Regarding
question (2), MongoDB, CouchDB, Neo4J, Cassandra and HBase all provide strong con-
sistency guarantees. Thus, in order to achieve strong consistency guarantees and good
concurrent write conflict resolution, as proposed by the authors, one should look at
systems which have both these characteristics - MongoDB and Neo4j.
In conclusion, in spite of reliability being an important quality attribute, we have found

that there is little focus in current literature about this topic, and, therefore, are limited in
our answers to this research question.

Robustness

Robustness is concerned with the ability of the database to cope with errors during exe-
cution [93]. Relational technology is known for its robustness, but many questions still
arise when such a topic is discussed in the context of NoSQL [4]. If, from one point
of view, one might consider that NoSQL databases are more robust due to their repli-
cation (i.e. crashes are “faded out” by appropriate replication and consensus algorithms
[94]), from another, lack of code maturity and extensive testing might make NoSQL less
robust in general [4, 12]. Few [12, 95] has been written on this subject, although there
have been some real world studies where the impact of NoSQL on a system’s robust-
ness was considered (even if only indirectly). In [88], Han experiments with MongoDB
as a possible replacement for a traditional RDBMS in an air quality monitoring scenario.
With regards to robustness, the author notes that as cluster scale and workloads increase,
robustness becomes a more pressing issue (i.e. problems become more evident). Ranjan,
in [95], studies Big Data platforms and notes that lack of robustness is a question in Big
Data scheduling platforms and, in particular, in the NoSQL (Hadoop) case. In 2011, the
authors of [12] postulated that robustness would be an issue for NoSQL, as the technol-
ogy was new and needed testing. Neo4j is seen by some as a robust graph-based database
[96, 97]. Lior et al. [98] reviewed security issues in NoSQL databases and found that
Cassandra and MongoDB were subject to Denial of Service attacks, which can be seen
as a system with a lack of robustness. Similarly, Manoj [77] presents a comparative table
of features for Cassandra, MongoDB and HBase, where HBase is identified as having
an intrinsic single point of failure that needs to be overcome by explicitly using failover
clustering. Lastly, in [87], the authors claim Cassandra is robust due to Facebook’s con-
tribution to its development and the fact that it is used as one of the backends of the
social network.
Overall, not much can be concluded for each individual database in terms of robustness.

A benchmark for robustness is currently lacking in the NoSQL ecosystem, and software
engineers looking for the most robust database would benefit from research into this
area. The most up to date information and research indicates that more popular and used
databases are more robust, although in general these systems are seen as less robust than
their relational counterparts when tested in practice.

Lourenço et al. Journal of Big Data (2015) 2:18 Page 18 of 26

Scalability

Scalability concerns a system’s ability to deal with increasing workloads [1]. In the con-
text of databases, it may be defined as the change in performance when new nodes are
added, or hardware is improved [99]. NoSQL databases have been developed specifically
to target scenarios where scalability is very important. These systems rely on horizontal
and “elastic” scalability, by adding more nodes to a system instead of upgrading hardware
[3, 4, 9]. The term “elastic” refers to elasticity, which is a characterization of the way a
cluster reacts to the addition or removal of nodes [99].
In [18], the authors compared Cassandra and HBase, improving upon previous work.

They concluded that both databases scale linearly with different read and write perfor-
mances. They also provided a more in-depth analysis at Cassandra’s scalability, noticing
how performing horizontal scalability with this platform leads to less performance hassles
than performing vertical scalability.
In [99], the authors measure the elasticity and scalability of Cassandra, HBase andMon-

goDB. They showed surprise by identifying “superlinear speedups for clusters of size 24”
when using Cassandra, stating that “it is almost as if Cassandra uses better algorithms
for large cluster sizes”. For clusters of sizes 6 and 12, their results show HBase the fastest
competitor with stable performance. Regarding elasticity, they found that HBase gives the
best results, stabilizing the database significantly faster than Cassandra and MongoDB.
Rabl et al. [25] studied the scalability (and other attributes) of Cassandra, Voldemort,

HBase, VoltDB, Redis and MySQL cluster. They noted the linear scalability of Cassan-
dra, HBase and Voldemort, noting, however, that Cassandra’s latency was “peculiarly
high” and that Voldemort’s was stable. HBase, while the worst of these databases in terms
of throughput, scaled better than the rest. Regarding the different scalability capabili-
ties of the databases themselves, Cassandra, HBase and Riak all support the addition of
machines during live operation Key-value databases, such as Aerospike and Voldemort,
are also easier to scale, as the data model allows for better distribution of data across sev-
eral nodes [12]. In particular, Voldemort was designed to be highly scalable, being the
major backend behind LinkedIn.
Further studies regarding scalability are needed in literature. It is clear that NoSQL

databases are scalable, but the question of which scale the most, or with the best per-
formance, is still left unanswered. Nevertheless, we can conclude that popular choices
for highly scalable systems are Cassandra and HBase. One must also take notice that
scalability will be influenced by the particular choice of configuration parameters.

Stabilization Time and Recovery Time

Besides availability, there are other failover characteristics which determine the behav-
ior of a system and might impact system stability. In the study made in [27], which we
have already covered, the authors measure the time it takes for several NoSQL systems
to recover from a node failure - the recovery time -, as well as the time it takes for the
system to stabilize when that node rejoins the cluster -the stabilization time. They find
that MongoDB has the best recovery time, followed by Aerospike (when in synchronous
change propagation mode), with Couchbase having values an order of magnitude slower
and Cassandra two orders of magnitude slower that MongoDB. Regarding the time to sta-
bilize on node up, all systems perform well (< 1ms) with the exception of MongoDB and
Aerospike. The former takes a long 31 seconds to recover to stabilize on node reentry,

Lourenço et al. Journal of Big Data (2015) 2:18 Page 19 of 26

and Aerospike, in synchronous mode takes 3 seconds. These results tend to indicate that
MongoDB and Aerospike are good picks if one is looking for good recovery times, but
that these choices should be taken with care, such that when a node reenters the system,
it does not affect its stability.
Overall, the topic of failover is highly dependent of configuration and desired prop-

erties and should be studied more thoroughly (we note this as part of our future
work). The current literature is limited and does not allow for very general and broad
conclusions.

Results and discussion
By gathering all the information we presented in the previous sections, we tried to estab-
lish a comprehensive summary table that indicates which database best suits each quality
attribute. Each column in Table 2 represents a NoSQL database, and each row one of the
studied software engineering quality attributes. A 5-point scale ranging from “Great for
this quality attribute” (+) to “Bad for this quality attribute” (–) is presented. This allows
for a direct comparison among databases. For instance, Cassandra is write-performance
oriented, even more than Couchbase (hence their difference in label in the table). We
assigned worse grades when a database is not an ideal pick, according to our literature
revision. This doesn’t mean that the database renders a given quality attribute unattain-
able, but that, according to the current literature, it is not the best when compared to the
others. In cases where we were unsure what was the correct answer, we used the question
mark symbol (?).
We used the criteria described in each of the previous sections to quantify the

databases. Regarding availability, the downtime was used as a primary measure, together
with relevant studies [5, 27]. Consistency was graded according to two essential criteria:
1) how much the database can provide ACID-semantics consistency and 2) how much

Table 2 Summary table of different quality attributes studied for popular databases

Aerospike Cassandra Couchbase CouchDB HBase MongoDB Voldemort

Availability + + + + – – +

Consistency + + + + + +

Durability – + + – + + +

Maintainability + + + – –

Read-Performance + – + – + +

Recovery Time + – + ? ? + ?

Reliability – + – + + + ?

Robustness + + – ?

Scalability + + + – + – +

Stabilization Time – + + ? ? – ?

Write-Performance + + + – + – +

Legend:
+ Great
+ Good

Average
– Mediocre
– Bad

? Unknown/N.A.

Lourenço et al. Journal of Big Data (2015) 2:18 Page 20 of 26

can consistency be fine-tuned. Durability was measured according to the use of single or
multi version concurrency control schemes, the way that data are persisted to disk (e.g. if
data is always asynchronously persisted, this hinders durability), and studies that specif-
ically targeted durability [26]. Regarding maintainability, the criteria were the currently
available literature studies of real world experiments, the ease of setup and use, as well as
the accessibility of tools to interact with the database. For read and write performance,
we considered recent studies [27] and the fine-tuning of each database, as noted in the
previous sections. Reliability is graded according to the taxonomy presented in [49] and
by looking at synchronous propagation modes (databases which do not support them
tend to be less reliable, as Domaschka et. al note). Database robustness was assessed with
the real world experiments carried by researchers, as well as the available documentation
on possible tendency of databases to have problems dealing with crashes or attacks (e.g.
being subject to DoS attacks). With respect to scalability, we looked at each database’s
elasticity, its increase in performance due to horizontal scaling, and the ease of on-line
scalability (i.e. is the live addition of nodes supported?). For recovery time and stabiliza-
tion time, highly related to availability, we based our classification on the results shown
in [27] (implying that our grading of these attributes is mostly limited to their particular
study and should be taken with apprpriate care). We looked at the databases described in
Section ‘Evaluated NoSQL databases’.
By analyzing Table 2, we can see that Aerospike suffers from data loss issues, affecting

its durability, and it also has issues with stabilization time (in particular in synchronous
mode). Cassandra is a multi-purpose database (in particular due to its configurable
consistency properties) which mostly lacks read performance (since it is tuned for write-
heavy workloads). CouchDB provides similar technology to MongoDB, but is better
suited for situations where availability is needed. Couchbase provides good availability
capabilities (coupled with good recovery and stabilization times), making it a good can-
didate for situations where failover is bound to happen. HBase has similar capabilities to
Cassandra, but is unable to cope with high loads, limiting its availability in these scenar-
ios, and is also the worst database in terms of robustness (this is mostly due to research
seen in [77, 95]). MongoDB is the database that mostly resembles the classical relational
use case scenario - it is better suited for reliable, durable, consistent and read-oriented use
cases. It is somewhat lacking in terms of availability, scalability and write-performance,
and it is very hindered by its stabilization time (which is also one of the reasons for its
low availability). Furthermore, it is not as efficient during write operations. Lastly, we lack
some information on Voldemort, but find it to be a poor pick in terms of maintainability.
It is, however, a good pick for durable, write-heavy scenarios, and provides a good balance
between read and write performance (in line with [25]). We should highlight that there
are more quality attributes that should be focused on, which we intend to do in future
work, and, thus, that this table does not intend to show that “one database is better than
another”, but, rather, that some database is better for a particular use case scenario where
these attributes are needed.
Many software quality attributes are highly interdependent. For example, availability

and consistency, in the context of the CAP theorem, are often polarized. Similarly, avail-
ability, stabilization time and recovery time are highly related, since low stabilization
and recovery time are bound to hinder availability. With this in mind, there are several
interesting findings in the summary table we have presented.

Lourenço et al. Journal of Big Data (2015) 2:18 Page 21 of 26

Availability, stabilization time and recovery time, as mentioned, are highly related soft-
ware quality attributes. In this sense, it is interesting to note that polarizing results are
found for different databases. Software engineers looking at the availability software qual-
ity attribute should note that although Aerospike, Cassandra, Couchbase, CouchDB and
Voldemort all provide high availability, some of these databases are not ideal picks for sit-
uations where a fast recovery time is needed. Indeed, of these databases, only Aerospike
and MongoDB have a “Great” rating, with Cassandra having the worst possible grading.
On the other hand, Aerospike andMongoDB have poor stabilization times, but Cassandra
has a “Good” rating for this quality attribute. Couchbase, another highly available system,
although not having any “Great” rating in these two quality attributes, has a “Good” rat-
ing. Thus, for systems which desire high availability with a balance of stabilization and
recovery time, Couchbase is an ideal pick.
It is interesting to note that Aerospike and Cassandra achieve high availability and high

consistency ratings. A naive application of the CAP theorem to distributed systems and
NoSQL systems would tend to indicate that both of these quality attributes would have
to ultimately be traded off. Nevertheless, as other authors have pointed out [41, 44–46],
this is not the case, and our table reflects it. Systems such as Cassandra allow for these
properties to be traded off on a query basis. This, ultimately combined with the other
characteristics of each database, result in high ratings in both these quality attributes.
If inspecting only the availability and scalability quality attributes, it becomes clear that

they are highly correlated. Nearly all systems with high availability also have high scal-
ability. The only exception to this observation being CouchDB (this database does not
support native partitioning, hindering its scalability). In cases where availability is lim-
ited, results are somewhat polarized: HBase achieves high scalability, whereas MongoDB
is also hindered in terms of its scalability (this can easily be traced to MongoDB’s locking
mechanism; indeed, as we have mentioned, this database is the most similar one to the
typical relational use case scenario).
There are other highly correlated quality attributes which can be surprising. For

instance, there is a high correlation between scalability and write performance.When one
of these quality attributes is tending towards being “Great”, the other is too; similarly, when
one tends to be “Bad”, the other does too. This result provides insight into how scalability
is achieved in many NoSQL systems: write optimizations (particularly found in column-
store databases) help achieve scalability, and systems with poor write performance tend to
be fairly limited in its scalability. Contrasting with this positive correlation, it seems that
read performance is slightly negatively correlated with scalability: databases with high
scalability tend to have higher write performance than read performance. This could be
due to the fact that many of these databases rely on partitioning as an efficient way to
scale, and the fact that partitioning improves write performance (through parallel writes)
much more than it does read performance (nevertheless, this would be interesting to
study as future work). Consistency and recovery time are also quality attributes that share
a high degree of correlation. This result is also intuitive, since systems that react quickly to
the loss of a node will tend to have fewer conflicts and, thus, fewer consistency problems.
Still on the topic of consistency, it shares some similarity with robustness, in our table.
Indeed, robust systems tend to also be consistent ones (notable exceptions are HBase and
MongoDB). This relationship, however, is probably due to the nature of each database and
not to any particular reason (i.e. there is no intrinsic relationship between consistency

Lourenço et al. Journal of Big Data (2015) 2:18 Page 22 of 26

and robustness). Finally, reliability and write performance are often in polarized positions
(e.g., Aerospike has “Good” write performance but low reliability).
There are some quality attributes for which no “Great” rating has been attributed.

Indeed, in terms of durability, maintainability, robustness and stabilization time, no
NoSQL system was found to achieve optimal results. This indicates directions of future
work for NoSQL databases. Some of these ratings can be explained due to the infancy
of these systems – robustness and maintainability are properties that evolve with time,
as systems mature, bugs are found and new functionality is added. These two quality
attributes have the worst overall ratings and reveal weaknesses of NoSQL systems.
Another point of interest that becomes clear with the summary table is that while some

quality attributes do not have a “Great” rating, there are others for which no “Bad” rating
is given: availability, consistency, maintainability, reliability, scalability, read and write per-
formance. Some of these quality attributes, such as consistency and scalability, are actually
found to have generally high ratings. This implies that these quality attributes are among
the key attributes offered by NoSQL databases. It is no surprise, then, that availability,
consistency and scalability, some of the three major reasons for the initial development of
NoSQL databases [63], are among these attributes.
Although performance is often considered an isolated quality attribute, read and write

performance can be different. This difference is reflected in our table, and it is interest-
ing to analyse the performance quality attribute as a whole with the data presented in
the table. Most NoSQL databases polarize on performance characteristics, either having
high ratings on read or write performance (Cassandra, Couchbase, HBase and Mon-
goDB), but there are some exceptions. Aerospike provides a balance between write and
read performance without reaching the “Great” rating in either of these quality attributes.
On the other hand, Voldemort provides high write performance (“Great”) and good read
performance (“Good”), while Couchbase offers good write performance (“Good”), but
high read performance (“Great”). This implies that software engineers can look to Volde-
mort, Couchbase and Aerospike as “balanced” systems in terms of performance, with
Voldemort and Couchbase tending slightly towards more specific write or read scenarios,
respectively.
The only quality attributes where there are neither “Great” or “Bad” ratings are durabil-

ity and maintainability. Indeed, it would make little sense for a NoSQL system to have bad
durability, since this is a key attribute of most database solutions. On the other hand, the
trade-offs associated with NoSQL often mean that durability must be sacrificed, resulting
in no system achieving the best durability yet (this is a clear are for future work in NoSQL
systems).

Conclusions
In this article we described themain characteristics and types of NoSQL technology while
approaching different aspects that highly contribute to the use of those systems. We also
presented the state of the art of non-relational technology by describing some of the
most relevant studies and performance tests and their conclusions, after surveying a vast
number of publications since NoSQL’s birth. This state of the art also intended to give
a time-based perspective to the evolution of NoSQL research, highlighting four clearly
distinct periods: 1) Database type characterization (where NoSQL was in its infancy and
researchers tried to categorize databases into different sets); 2) Performance evaluations,

Lourenço et al. Journal of Big Data (2015) 2:18 Page 23 of 26

with the advent of YCSB and a surge in NoSQL popularity; 3) Real-world scenarios and
criticism to some interpretations of the CAP theorem; and 4) An even bigger focus on
applicability and a reinvigorated focus on the validation of benchmarking software.
We concluded that although there have been a variety of studies and evaluations of

NoSQL technology, there is still not enough information to verify how suited each non-
relational database is in a specific scenario or system. Moreover, each working system
differs from another and all the necessary functionality and mechanisms highly affect
the database choice. Sometimes there is no possibility of clearly stating the best database
solution. Furthermore, we tried to find the best databases on a quality attribute perspec-
tive, an approach still not found in current literature – this is our main contribution. In
the future, we expect that NoSQL databases will be more used in real enterprise systems,
allowing for more information and user experience available to conclude the most appro-
priate use of NoSQL according to each quality attribute and further improve this initial
approach.
As we have seen, NoSQL is still an in-development field, with many questions and a

shortage of definite answers. Its technology is ever-increasing and ever-changing, render-
ing even recent benchmarks and performance evaluations obsolete. There is also a lack
of studies which focus on use-case oriented scenarios or software engineering quality
attributes (we believe ours is the first work on this subject). All of these reasons make it
difficult to find the best pick for each of the quality attributes we chose in this work, as
well as others. The summary table we presented makes it clear that there is a current need
for a broad study of quality attributes in order to better understand the NoSQL ecosys-
tem, and it would be interesting to conduct research in this domain. When more studies
and with more consistent results have been performed, a more thorough survey of the
literature can be done, and with clearer, more concise results.
Software architects and engineer can look to the summary table presented in this

article if looking for help understanding the wide array of offerings in the NoSQL
world from a quality attribute based overview. This table also brings to light some hid-
den or unexpected relationships between quality attributes in the NoSQL world. For
instance, scalability is highly related to the write performance, but not necessarily the
read performance. Additionally, broad sets of quality attributes that are highly related (e.g.
availability, stabilization time and recovery time) can be individually studied, so that the
appropriate trade-offs can be selected for a candidate system architecture.
Our literature review allows us to establish future directions on research regarding a

quality-attribute based approach to NoSQL databases. It is our belief that the develop-
ment of a framework for assessing most of these quality attributes would greatly benefit
the lifes of software engineers and architects alike. In particular, research is currently lack-
ing in terms of Reliability, Robustness, Durability and Maintainability, with most work in
literature focusing on raw performance. Future work in this area, with the development of
such a framework for quality attribute evaluation, would undoubtedly benefit the NoSQL
research in the long term.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
JRL surveyed most of the literature. BC, JB and MV helped identifying and evaluating the quality attributes, as well as
finding the appropriate NoSQL databases to study, guiding the research and iteratively reviewing and revising the work.

Lourenço et al. Journal of Big Data (2015) 2:18 Page 24 of 26

PC provided an initial case study from which this work originally sprouted, and helped identifying the evaluated quality
attributes. All authors read and approved the final manuscript.

Acknowledgement
This research would not have been made possible without support and funding of the FEED - Free Energy Data and iCIS -
Intelligent Computing in the Internet Services (CENTRO-07 - ST24 - FEDER - 002003) projects, to which we are extremely
grateful.

Author details
1CISUC, Department of Informatics Engineering, University of Coimbra, Pólo II – Pinhal de Marrocos, 3030-290 Coimbra,
Portugal. 2Critical Software, Parque Industrial de Taveiro, lote 49, 3045-504 Coimbra, Portugal. 3ISEC – Superior Institute of
Engineering of Coimbra, Polytechnic Institute of Coimbra, 3030-190 Coimbra, Portugal.

Received: 2 June 2015 Accepted: 27 July 2015

References
1. Orend K (2010) Analysis and Classification of NoSQL Databases and Evaluation of their Ability to Replace an

Object-relational Persistence Layer. Dissertation, Technische Universität München
2. Leavitt N (2010) Will nosql databases live up to their promise? Computer 43(2):12–14
3. Chang F, Dean J, Ghemawat S, Hsieh WC, Wallach DA, Burrows M, Chandra T, Fikes A, Gruber RE (2008) Bigtable: A

distributed storage system for structured data. ACM Trans Comput Syst (TOCS) 26(2):4
4. Floratou A, Teletia N, DeWitt DJ, Patel JM, Zhang D (2012) Can the elephants handle the nosql onslaught? Proc VLDB

Endowment 5(12):1712–1723
5. Lith A, Mattson J (2013) Investigating storage solutions for large data: A comparison of well performing and scalable

data storage solutions for real time extraction and batch insertion of data. Dissertation, Chalmers University of
Technology

6. Sadalage PJ, Fowler M (2012) NoSQL Distilled: a Brief Guide to the Emerging World of Polyglot Persistence. Pearson
Education, Upper Saddle River, NJ

7. Schram A, Anderson KM (2012) Mysql to nosql: data modeling challenges in supporting scalability. In: Proceedings
of the 3rd Annual Conference on Systems, Programming, and Applications: Software for Humanity. ACM, Tucson,
Arizona, USA. pp 191–202

8. NoSQL. http://nosql-database.org/. Accessed June, 2015
9. Strauch C (2011) NoSQL Databases. Lecture: Selected Topics on Software-Technology Ultra-Large Scale Sites,

Stuttgart Media University
10. Kuznetsov S, Poskonin A (2014) Nosql data management systems. Program Comput Softw 40(6):323–332
11. Hecht R, Jablonski S (2011) Nosql evaluation. In: International Conference on Cloud and Service Computing. IEEE,

Hong Kong, China. pp 336–41
12. Cattell R (2011) Scalable sql and nosql data stores. ACM SIGMOD Record 39(4):12–27
13. Lourenço JR, Abramova V, Vieira M, Cabral B, Bernardino J (2015) Nosql databases: A software engineering

perspective. In: New Contributions in Information Systems and Technologies. Springer, São Miguel, Azores, Portugal.
pp 741–750

14. DeCandia G, Hastorun D, Jampani M, Kakulapati G, Lakshman A, Pilchin A, Sivasubramanian S, Vosshall P, Vogels W
(2007) Dynamo: amazon’s highly available key-value store. In: ACM SIGOPS Operating Systems Review. ACM,
Stevenson, Washington, USA. Vol. 41. pp 205–220

15. Stonebraker M (2010) Sql databases v. nosql databases. Commun ACM. 53(4):10–11
16. Stonebraker M (2011) Stonebraker on nosql and enterprises. Commun ACM. 54(8):10–11
17. Tudorica BG, Bucur C (2011) A comparison between several nosql databases with comments and notes. In:

Roedunet International Conference (RoEduNet), 2011 10th. IEEE, Iasi, Romania. pp 1–5
18. Dory T, Mejías B, Van Roy P, Tran NL (2011) Comparative elasticity and scalability measurements of cloud databases.

In: Proc of the 2nd ACM Symposium on Cloud Computing (SoCC). IEEE, Iasi, Romania Vol. 11
19. Konstantinou I, Angelou E, Boumpouka C, Tsoumakos D, Koziris N (2011) On the elasticity of nosql databases over

cloud management platforms. In: Proceedings of the 20th ACM international conference on Information and
knowledge management, Glasgow. pp 24–28

20. Han J, Haihong E, Le G, Du J (2011) Survey on nosql database. In: Pervasive Computing and Applications (ICPCA),
2011 6th International Conference On. IEEE, Port Elizabeth, South Africa. pp 363–366

21. Cooper BF, Silberstein A, Tam E, Ramakrishnan R, Sears R (2010) Benchmarking cloud serving systems with ycsb. In:
Proceedings of the 1st ACM Symposium on Cloud Computing. ACM, Indianapolis, Indiana, USA. pp 143–154

22. van der Veen JS, van der Waaij B, Meijer RJ (2012) Sensor data storage performance: Sql or nosql, physical or virtual.
In: Cloud Computing (CLOUD), 2012 IEEE 5th International Conference On. IEEE, Honolulu, HI, USA. pp 431–438

23. Parker Z, Poe S, Vrbsky SV (2013) Comparing nosql mongodb to an sql db. In: Proceedings of the 51st ACM
Southeast Conference. ACM, Savannah, Georgia, USA. p 5

24. Kashyap S, Zamwar S, Bhavsar T, Singh S (2013) Benchmarking and analysis of nosql technologies. Int J Emerg
Technol Adv Eng 3:422–426

25. Rabl T, Gómez-Villamor S, Sadoghi M, Muntés-Mulero V, Jacobsen HA, Mankovskii S (2012) Solving big data
challenges for enterprise application performance management. Proc VLDB Endowment 5(12):1724–1735

26. Nelubin D, Engber B (2013) Ultra-High Performance NoSQL Benchmarking: Analyzing Durability and Performance
Tradeoffs. Thumbtack Technology, Inc., White Paper

27. Nelubin D, Engber B (2013) Nosql failover characteristics: Aerospike, cassandra, couchbase, mongodb
28. Abramova V, Bernardino J (2013) Nosql databases: Mongodb vs cassandra. In: Proceedings of the International C*

Conference on Computer Science and Software Engineering. ACM, New York, USA. pp 14–22

http://nosql-database.org/

Lourenço et al. Journal of Big Data (2015) 2:18 Page 25 of 26

29. Cudré-Mauroux P, Enchev I, Fundatureanu S, Groth P, Haque A, Harth A, Keppmann FL, Miranker D, Sequeda JF,
Wylot M (2013) Nosql databases for rdf: an empirical evaluation. In: The Semantic Web–ISWC 2013. Springer, Berlin.
pp 310–325

30. Yang CT, Liu JC, Hsu WH, Lu HW, Chu WC-C (2013) Implementation of data transform method into nosql database
for healthcare data. In: Parallel and Distributed Computing, Applications and Technologies (PDCAT), 2013
International Conference On. IEEE, Taipei Taiwan. pp 198–205

31. Blanke T, Bryant M, Hedges M (2013) Back to our data-experiments with nosql technologies in the humanities. In: Big
Data, 2013 IEEE International Conference On. IEEE, Silicon Valley, CA, USA. pp 17–20

32. Fan C, Bai C, Zou J, Zhang X, Rao L (2013) A dynamic password authentication system based on nosql and rdbms
combination. In: LISS 2013. Springer, Berlin. pp 811–819

33. Silva LAB, Beroud L, Costa C, Oliveira JL (2014) Medical imaging archiving: A comparison between several nosql
solutions. In: Biomedical and Health Informatics (BHI), 2014 IEEE-EMBS International Conference On. IEEE, Valencia,
Spain. pp 65–68

34. Rith J, Lehmayr PS, Meyer-Wegener K (2014) Speaking in tongues: Sql access to nosql systems. In: Proceedings of the
29th Annual ACM Symposium on Applied Computing. ACM, Gyeongju, Korea. pp 855–857

35. Lourenço JR, Abramova V, Cabral B, Bernardino J, Carreiro P, Vieira M (2015) Nosql in practice: a write-heavy
enterprise application. In: IEEE BigData Congress 2015. New York, June 27-July 2, 2015

36. Wingerath W, Friedrich S, Gessert F, Ritter N (2015) Who Watches the Watchmen? On the Lack of Validation in
NoSQL Benchmarking. In: Seidl T, Ritter N, Schöning H, Sattler K-U, Härder T, Friedrich S, Wingerath W (eds).
Datenbanksysteme für Business, Technologie und Web (BTW 2015), Hamburg

37. George TB A proposed validation method for a benchmarking methodology. Int J Sustainable Econ Manag (IJSEM)
3(4):1–10

38. Chen Y, Raab F, Katz R (2014) From tpc-c to big data benchmarks: A functional workload model. In: Specifying Big
Data Benchmarks. Springer, Berlin. pp 28–43

39. Qin X, Zhou X (2013) A survey on benchmarks for big data and some more considerations. In: Intelligent Data
Engineering and Automated Learning–IDEAL 2013. Springer, Berlin. pp 619–627

40. Brewer EA (2000) Towards robust distributed systems. In: PODC. IEEE, Portland, Oregon, USA Vol. 7
41. Brewer E (2012) Cap twelve years later: How the “rules” have changed. Computer 45(2):23–29
42. Gilbert S, Lynch N (2002) Brewer’s conjecture and the feasibility of consistent, available, partition-tolerant web

services. ACM SIGACT News 33(2):51–59
43. Wada H, Fekete A, Zhao L, Lee K, Liu A (2011) Data consistency properties and the trade-offs in commercial cloud

storage: the consumers’ perspective. In: CIDR. ACM, Asilomar, California, USA Vol. 11. pp 134–143
44. Stonebraker M (2010) In search of database consistency. Commun ACM 53(10):8–9
45. Abadi D (2010) Problems with CAP, and Yahoo’s Little Known NoSQL System, DBMS Musings, blog, (2010); on-line

resource. http://dbmsmusings.blogspot.pt/2010/04/problems-with-cap-and-yahoos-little.html. Accessed June
2015

46. Hale C (2010) You can’t sacrifice partition tolerance. http://codahale.com/you-cant-sacrifice-partition-tolerance/.
Accessed July 2015

47. Clements P, Kazman R, Klein M (2003) Evaluating Software Architectures. Tsinghua University Press, Beijing
48. Offutt J (2002) Quality attributes of web software applications. IEEE Softw 2:25–32
49. Domaschka J, Hauser CB, Erb B (2014) Reliability and availability properties of distributed database systems. In:

Enterprise Distributed Object Computing Conference (EDOC), 2014 IEEE 18th International. IEEE, Ulm, Germany.
pp 226–233

50. Dzhakishev D (2014) Nosql databases in the enterprise. An experience with tomra s receipt validation system
51. Abramova V, Bernardino J, Furtado P (2014) Which nosql database? a performance overview. Open J Databases

(OJDB) 1(2):17–24
52. Gudivada VN, Rao D, Raghavan VV (2014) Nosql systems for big data management. In: Services (SERVICES), 2014 IEEE

World Congress On. IEEE, Anchorage, AK, USA. pp 190–197
53. DB-Engines Ranking: Knowledge Base of Relational and NoSQL Database Management Systems. http://db-engines.

com/en/ranking. Accessed July, 2015
54. Fonseca A, Vu A, Grman P (2013) Evaluation of NoSQL databases for large-scale decentralized microblogging,

Universitat Politècnica de Catalunya
55. Aerospike (2014) ACID Support in Aerospike. Aerospike, Mountain View, California
56. Haughian G (2014) Benchmarking replication in nosql data stores. Dissertation, Imperial College London
57. Nocuń Ł, Nieć M, Pikuła P, Mamla A, Turek W (2013) Car-finding system with couchdb-based sensor management

platform. Comput Sci 14(3):403–422
58. Apache Hbase ACID Semantics. http://hbase.apache.org/acid-semantics.html. Accessed July, 2015
59. Voldemort Project Github. https://github.com/voldemort/voldemort. Accessed July, 2015
60. Voldemort: Design – Voldemort. www.project-voldemort.com/voldemort/design.html. Accessed July, 2015
61. Karger D, Sherman A, Berkheimer A, Bogstad B, Dhanidina R, Iwamoto K, Kim B, Matkins L, Yerushalmi Y (1999) Web

caching with consistent hashing. Comput Netw 31(11):1203–1213
62. Voldemort Rebalancing (as Seen in the Wayback Time Machine Archive in 2012). http://web.archive.org/web/

20100923080327/http://github.com/voldemort/voldemort/wiki/Voldemort-Rebalancing. Accessed July, 2015
63. Pokorny J (2013) Nosql databases: a step to database scalability in web environment. Int J Web Inf Syst

9(1):69–82
64. Aerospike Clustering. https://www.aerospike.com/docs/architecture/clustering.html. Accessed July, 2015
65. MongoDB Concurrency FAQ. http://docs.mongodb.org/manual/faq/concurrency/. Accessed July, 2015
66. Couchbase Blog: Optimistic or Pessimistic Locking, Which One Should You Pick? http://blog.couchbase.com/

optimistic-or-pessimistic-locking-which-one-should-you-pick. Accessed July, 2015

http://dbmsmusings.blogspot.pt/2010/04/problems-with-cap-and-yahoos-little.html
http://codahale.com/you-cant-sacrifice- partition-tolerance/
http://db-engines.com/en/ranking
http://db-engines.com/en/ranking
http://hbase.apache.org/acid-semantics.html
https://github.com/voldemort/voldemort
www.project-voldemort.com/voldemort/design.html
http://web.archive.org/web/20100923080327/http://github.com/voldemort/voldemort/wiki/Voldemort-Rebalancing
http://web.archive.org/web/20100923080327/http://github.com/voldemort/voldemort/wiki/Voldemort-Rebalancing
https://www.aerospike.com/docs/architecture/clustering.html
http://docs.mongodb.org/manual/faq/concurrency/
http://blog.couchbase.com/optimistic-or-pessimistic-locking-which-one-sho uld-you-pick
http://blog.couchbase.com/optimistic-or-pessimistic-locking-which-one-sho uld-you-pick

Lourenço et al. Journal of Big Data (2015) 2:18 Page 26 of 26

67. 10 Things Developers Should Know About Couchbase. http://blog.couchbase.com/10-things-developers-should-
know-about-couchbase. Accessed July, 2015

68. Cassandra Concurrency Control. http://teddyma.gitbooks.io/learncassandra/content/concurrent/
concurrency_control.html. Accessed July, 2015

69. Apache HBase Reference Guide. https://hbase.apache.org/book.html. Accessed July, 2015
70. Apache HBase Durability Javadoc. https://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/Durability.

html. Accessed July, 2015
71. Sumbaly R, Kreps J, Gao L, Feinberg A, Soman C, Shah S (2012) Serving large-scale batch computed data with project

voldemort. In: Proceedings of the 10th USENIX Conference on File and Storage Technologies. USENIX Association,
San Jose, CA, USA. pp 18–18

72. Beyer F, Koschel A, Schulz C, Schäfer M, Astrova I, Grivas SG, Schaaf M, Reich A (2011) Testing the suitability of
cassandra for cloud computing environments. In: CLOUD COMPUTING 2011, The Second International Conference
on Cloud Computing, GRIDs, and Virtualization. IARIA XPS, Venice/Mestre, Italy. pp 86–91

73. Ports DR, Clements AT, Zhang I, Madden S, Liskov B (2010) Transactional consistency and automatic management in
an application data cache. In: OSDI. USENIX Association, Vancouver, BC, Canada Vol. 10. pp 1–15

74. Eswaran KP, Gray JN, Lorie RA, Traiger IL (1976) The notions of consistency and predicate locks in a database system.
Commun ACM 19(11):624–633

75. Haerder T, Reuter A (1983) Principles of transaction-oriented database recovery. ACM Comput Surv (CSUR)
15(4):287–317

76. Bermbach D, Zhao L, Sakr S (2014) Towards comprehensive measurement of consistency guarantees for
cloud-hosted data storage services. In: Performance Characterization and Benchmarking. Springer, Berlin. pp 32–47

77. Manoj V (2014) Comparative study of nosql document, column store databases and evaluation of cassandra. Int J
Database Manag Syst (IJDMS) 6:11–26

78. CouchDB Consistency. http://guide.couchdb.org/draft/consistency.html. Accessed July, 2015
79. Bermbach D, Tai S (2011) Eventual consistency: How soon is eventual? an evaluation of amazon s3’s consistency

behavior. In: Proceedings of the 6th Workshop on Middleware for Service Oriented Computing. ACM, Lisbon,
Portugal. p 1

80. Konishetty VK, Kumar KA, Voruganti K, Rao G (2012) Implementation and evaluation of scalable data structure over
hbase. In: Proceedings of the International Conference on Advances in Computing, Communications and
Informatics. USENIX Association, Chennai, India. pp 1010–1018

81. Harter T, Borthakur D, Dong S, Aiyer AS, Tang L, Arpaci-Dusseau AC, Arpaci-Dusseau RH (2014) Analysis of hdfs under
hbase: a facebook messages case study. In: FAST. USENIX Association, Santa Clara, CA, USA. Vol. 14. p 12

82. Konishetty VK, Kumar KA, Voruganti K, Rao GVP (2012) Implementation and evaluation of scalable data structure
over hbase. In: Proceedings of the International Conference on Advances in Computing, Communications and
Informatics. ICACCI ’12. ACM, New York, NY, USA. pp 1010–1018. doi:10.1145/2345396.2345559. http://doi.acm.org/
10.1145/2345396.2345559

83. Chandra DG, Prakash R, Lamdharia S (2012) A study on cloud database. In: Computational Intelligence and
Communication Networks (CICN), 2012 Fourth International Conference On. IEEE, Mathura, India. pp 513–519

84. Riaz M, Mendes E, Tempero E (2011) Towards predicting maintainability for relational database-driven software
applications: Extended evidence from software practitioners. Int J Softw Eng Appl 5(2):107–121

85. Roijackers J, Fletcher G (2012) Bridging sql and nosql. Master’s thesis, Eindhoven University of Technology
86. Fujimoto R, McLean T, Perumalla K, Tacic I (2000) Design of high performance rti software. In: Distributed Simulation

and Real-Time Applications, 2000.(DS-RT 2000). Proceedings. Fourth IEEE International Workshop On. IEEE, San
Francisco, CA, USA. pp 89–96

87. Škrabálek J, Kunc P, Nguyen F, Pitner T (2013) Towards effective social network system implementation. In: New
Trends in Databases and Information Systems. Springer, Berlin. pp 327–336

88. Han M (2015) The application of nosql database in air quality monitoring. In: 2015 International Conference on
Intelligent Systems Research and Mechatronics Engineering. Atlantis Press, Zhengzhou, China

89. Chodorow K (2013) MongoDB: the Definitive Guide. “O’Reilly Media, Inc.”, 103a Morris Street, Sebastopol, CA 95472,
USA

90. George L (2011) HBase: the Definitive Guide. “O’Reilly Media, Inc”, 103a Morris Street, Sebastopol, CA 95472, USA
91. Gajendran SK (1998) A Survey on NoSQL Databases. Department of Computer Science, Donetsk
92. Hammes D, Medero H, Mitchell H (2014) Comparison of NoSQL and SQL Databases in the Cloud. Proceedings of the

Southern Association for Information Systems (SAIS), Macon, GA, 21-22 March, 2014
93. Eager DL, Sevcik KC (1983) Achieving robustness in distributed database systems. ACM Trans Database Syst (TODS)

8(3):354–381
94. Feng H (2012) Benchmarking the suitability of key-value stores for distributed scientific data. Dissertation, The

University of Edinburgh
95. Ranjan R (2014) Modeling and simulation in performance optimization of big data processing frameworks. Cloud

Comput IEEE 1(4):14–19
96. Huang H, Dong Z (2013) Research on architecture and query performance based on distributed graph database

neo4j. In: Consumer Electronics, Communications and Networks (CECNet), 2013 3rd International Conference On.
IEEE, Xianning, China. pp 533–536

97. Schreiber A, Ney M, Wendel H (2012) The provenance store proost for the open provenance model. In: Provenance
and Annotation of Data and Processes. IEEE, Changsha, China. pp 240–242

98. Okman L, Gal-Oz N, Gonen Y, Gudes E, Abramov J (2011) Security issues in nosql databases. In: Trust, Security and
Privacy in Computing and Communications (TrustCom), 2011 IEEE 10th International Conference On, IEEE,
Changsha, China. pp 541–547

99. Kuhlenkamp J, Klems M, Röss O (2014) Benchmarking scalability and elasticity of distributed database systems. Proc
VLDB Endowment 7(13):1219–1230

http://blog.couchbase.com/10-things-developers-should-know-about-couchbase
http://blog.couchbase.com/10-things-developers-should-know-about-couchbase
http://teddyma.gitbooks.io/learncassandra/content/concurrent/concurrency_ control.html
http://teddyma.gitbooks.io/learncassandra/content/concurrent/concurrency_ control.html
https://hbase.apache.org/book.html
https://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/Durability.html
https://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/Durability.html
http://guide.couchdb.org/draft/consistency.html
http://dx.doi.org/10.1145/2345396.2345559
http://doi.acm.org/10.1145/2345396.2345559
http://doi.acm.org/10.1145/2345396.2345559

	Abstract
	Keywords

	Introduction
	Background and literature review
	Research design and methodology
	Evaluated NoSQL databases
	Aerospike
	Cassandra
	CouchDB
	Couchbase
	HBase
	MongoDB
	Voldemort
	Summary

	Software quality attributes
	Availability
	Consistency
	Durability
	Maintainability
	Performance
	Reliability
	Robustness
	Scalability
	Stabilization Time and Recovery Time

	Results and discussion
	Conclusions
	Competing interests
	Authors' contributions
	Acknowledgement
	Author details
	References

