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Abstract

Wavelet methods are widely used to decompose fMRI, EEG, or MEG signals into time

series representing neurophysiological activity in fixed frequency bands. Using these time

series, one can estimate frequency-band specific functional connectivity between sensors

or regions of interest, and thereby construct functional brain networks that can be exam-

ined from a graph theoretic perspective. Despite their common use, however, practical

guidelines for the choice of wavelet method, filter, and length have remained largely unde-

lineated. Here, we explicitly explore the effects of wavelet method (MODWT vs. DWT),

wavelet filter (Daubechies Extremal Phase, Daubechies Least Asymmetric, and Coiflet

families), and wavelet length (2 to 24)—each essential parameters in wavelet-based

methods—on the estimated values of graph metrics and in their sensitivity to alterations in

psychiatric disease. We observe that the MODWT method produces less variable esti-

mates than the DWT method. We also observe that the length of the wavelet filter chosen

has a greater impact on the estimated values of graph metrics than the type of wavelet

chosen. Furthermore, wavelet length impacts the sensitivity of the method to detect differ-

ences between health and disease and tunes classification accuracy. Collectively, our

results suggest that the choice of wavelet method and length significantly alters the reli-

ability and sensitivity of these methods in estimating values of metrics drawn from graph

theory. They furthermore demonstrate the importance of reporting the choices utilized in

neuroimaging studies and support the utility of exploring wavelet parameters to maximize

classification accuracy in the development of biomarkers of psychiatric disease and neu-

rological disorders.
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Introduction

The use of functional neuroimaging has gained considerable popularity over the last two

decades as it provides a noninvasive approach for studying the brain [1]. Although a relatively

recent addition to the methods available for analyzing neuroimaging data, network science has

enhanced our understanding of the brain as a complex system. Rooted in techniques derived

from graph theory, brain network analysis has been used to study neural diseases [2], aging [3],

and cognitive function [4]. The graph theory formalism defines a network by nodes (brain

regions) and edges (connections between brain regions). In neuroimaging studies, nodes can

describe atlas-based regions [5] or voxels [6, 7], and edges can define physical connections, in

the case of anatomical networks [8–10], or functional connections, which describe a statistical

relationship between the activity time series of two nodes [11, 12].

The goal of generating a brain network is straightforward: to use network science to under-

stand the structure and function of the brain. Most studies report basic graph metrics, which

include features of individual nodes (e.g., node centralities), features of groups of nodes (e.g.,

community structure or modularity), or features of the whole brain (e.g., global efficiency).

Network analysis can also be used to explore fundamental principles of brain network organi-

zation, including small-world architecture [13], cost-efficiency [14], and reconfiguration

dynamics [15, 16]. Across these studies, the main focus is to understand the organization of

nodes and edges in the network. However, what has received less attention is the methodology

used to define the functional relationships between nodes. In the context of functional brain

networks, popular methods to define statistical relationships between regional activity time

series include Pearson’s correlation coefficient [17], coherence [18], wavelet correlation [19],

and wavelet coherence [4, 15, 20–23]; a less common method is the cross-sample entropy [24].

Wavelet-based methods have significant advantages in terms of denoising [25], robustness

to outliers [19], and utility in null model construction [26]. Moreover, wavelet-based methods

facilitate the examination of neurocognitive processes at different temporal scales without the

edge effects in frequency space that accompany traditional band pass filters [27]. But perhaps

the most compelling argument in support of wavelets [28] derives from the fact that cortical

fMRI time series display slowly decaying positive autocorrelation functions (also known as

long memory) [29, 30]. This feature undermines the utility of measuring functional connectiv-

ity between a pair of regional time series using a correlation (time domain) or coherence (fre-

quency domain), because both time- and frequency-domain measures of association are not

properly estimable for long memory processes [31]. In contrast, wavelet-based methods pro-

vide reliable estimates of correlation between long memory time series [32, 33] derived from

fMRI data [28, 34, 35]. Based on these advantages, wavelet-based estimates of functional con-

nectivity have provided extensive insights into brain network organization in health [36],

development [37], aging [38], neurological disorders [39], psychiatric disease [40], sleep [41],

and cognitive performance [42–44].

Despite the utility of wavelet-based approaches for estimating functional connectivity, fun-

damental principles to guide the performance of wavelet-based methods remain largely unde-

fined. This lack of guidelines is apparent in the wide range of wavelet methods, filters, and

lengths utilized in graph theoretical neuroimaging studies, which hampers comparability and

reproducibility of subsequent findings. Here we explore the use of different wavelet methods

(MODWT vs. DWT), filters (Daubechies Extremal Phase, Daubechies Least Asymmetric, and

Coiflet families), and lengths (2–24) to determine their implications for the estimated values of

graph metrics. We quantify graph metric variability, sensitivity, and utility in classifying resting

state functional connectivity patterns extracted from people with schizophrenia and healthy

controls using a previously-published fMRI data set [45]. Our results demonstrate that wavelet
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method and length impact subsequent graph metrics, but wavelet type has little effect. Based

on our findings, we suggest that researchers use MODWTmethods with a wavelet length of 8

or greater, and carefully report their choices to enhance comparability of results across studies.

Materials and Methods

Ethics Statement

All human subjects provided written informed consent for the study approved by the Institu-

tional Review Board at the University of Minnesota.

fMRI data acquisition and preprocessing

Resting-state fMRI data from 29 healthy controls (11 females; age 41.1 ± 10.6 (SD)) and 29 par-

ticipants with chronic schizophrenia (11 females; age 41.3 ± 9.3 (SD)) were included in this

analysis (See [46] for detailed characteristics of participants and imaging data). A Siemens Trio

3T scanner was used to collect the imaging data, including a 6-min (TR = 2 secs; 180 volumes)

resting-state fMRI scan, in which participants were asked to remain awake with their eyes

closed, a field map scan, and a T1 MPRAGE whole brain volumetric scan. The fMRI data were

preprocessed using FEAT (FMRIB’s Software Library in FSL) with the following pipeline: dele-

tion of the first 3 volumes to account for magnetization stabilization; motion correction using

MCFLIRT; B0 fieldmap unwarping to correct for geometric distortion using acquired field

map and PRELUDE+FUGUE52; slice-timing correction using Fourier-space time-series

phase-shifting; non-brain removal using BET; regression against the 6 motion parameter time

courses; registration of fMRI to standard space (Montreal Neurological Institute-152 brain);

registration of fMRI to high resolution anatomical MRI; registration of high resolution ana-

tomical MRI to standard space. Importantly, the two groups had similar mean RMS motion

parameters: Two-sample t-tests of mean RMS translational and angular movement were both

not significant (p = 0.14 and p = 0.12, respectively).

Statistical analysis

All calculations were done in MATLAB R2013b (The MathWorks Inc.). We used the WMTSA

Wavelet Toolkit for MATLAB (http://www.atmos.washington.edu/~wmtsa/) to perform the

wavelet decompositions, and we used the Brain Connectivity Toolbox (https://sites.google.

com/site/bctnet/) to estimate values for graph metrics.

Network construction

We extracted average time series for each participant from 90 of the 116 anatomical regions of

interest (ROIs) defined by the AAL atlas [47] covering the whole brain and including cortical

and subcortical regions but excluding the cerebellar regions and vermis. We performed a bat-

tery of wavelet decompositions on each regional mean time series by varying wavelet method

(DWT vs. MODWT), wavelet filter (Daubechies Extremal Phase, Daubechies Least Asymmet-

ric, and Coiflet families), and wavelet length (from a minimum of 2 to a maximum of 24). In

prior literature, both the discrete wavelet transform (DWT) and the maximal overlap discrete

wavelet transform (MODWT) methods have been used to create functional connectivity matri-

ces (see [48] and [49] respectively for examples). DWT is an orthogonal transform, just as the

discrete Fourier transform (DFT); MODWT adds redundancy to DWT, and can be thought as

a non-downsampled version of it [27].

Wavelet filter and length alter the symmetry and shape of the wavelet (see Fig 1 for illustra-

tions of how wavelet filters differ from one another, and how the same filter of different lengths
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display very distinct shapes). To examine the effect of wavelet filter, we apply Daubechies

Extremal Phase, Daubechies Least Asymmetric, and Coiflet families [27], which together con-

stitute the most widely used orthogonal and compactly supported types of wavelet filters. We

abbreviate these three filters types as D (Daubechies Extremal Phase), LA (Daubechies Least

Asymmetric), and C (Coiflet). To examine the effect of wavelet length, we vary the length of

the filter from a minimum of 2 to a maximum of 24. Note that the Daubechies Least Asymmet-

ric family is only defined for lengths greater than or equal to 8, and the Coiflet family is only

defined for lengths that are multiples of 6. The exact range of wavelet lengths for each family is

also prespecified by the software package we utilized, namely the WMTSAWavelet Toolkit for

MATLAB. We refer to each wavelet type and length together; for example, D4 refers to the

Daubechies Extremal Phase filter that has a length of 4.

Consistent with prior work [19, 50], we apply this battery of wavelet decompositions to each

regional mean time series and extract wavelet coefficients for the first four wavelet scales,

Fig 1. ExampleWavelet Functions of Filters From Each Filter Type. (A–D)Daubechies Extremal Phase filter. (A) Filter with length 2. (B) Filter with
length 4. (C) Filter with length 6. (D) Filter with length 8. (E)Daubechies Least Asymmetric filter with length 8. (F) Coiflet filter with length 6.

doi:10.1371/journal.pone.0157243.g001
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which in this case correspond to the frequency ranges 0.125*0.25 Hz (Scale 1), 0.06*0.125

Hz (Scale 2), 0.03*0.06 Hz (Scale 3), and 0.015*0.03 Hz (Scale 4). For each subject, wavelet

method (DWT vs. MODWT), wavelet filter (Daubechies Extremal Phase, Daubechies Least

Asymmetric, and Coiflet families), and wavelet length (2–24), we constructed a correlation

matrix whose ijth elements were given by the estimated wavelet correlation between the wavelet

coefficients of brain region i and the wavelet coefficients of brain region j.

Graph metrics

We characterized the organization of each functional connectivity matrix using both weighted

and binary graph metrics. Note that we use the term “metric” due to its prevalence in the litera-

ture, but that these summary statistics do not necessarily have the properties of a metric as

defined formally in the field of mathematics. To examine simple properties of the correlation

matrix itself, we followed [45, 51] and calculated (i) the mean correlation coefficient of the

matrix as the average of the upper triangular elements of the matrix, and (ii) the variance of the

correlation coefficients of the matrix as the variance of the upper triangular elements of the

matrix.

To examine the topological properties of each functional connectivity matrix, we performed

a cumulative thresholding approach [45] by which we thresholded each matrix to maintain the

strongest edges, giving a binary undirected network that has a density of 30% (see the SI for

examination of other thresholds). The choice of this threshold is based on a large and growing

literature demonstrating small-world attributes of neuroimaging-based brain networks thre-

sholded to retain this density [19, 28, 48, 51]. On this thresholded binary matrix, we calculated

several graph metrics, including the clustering coefficient, characteristic path length, global effi-

ciency, local efficiency, modularity, and number of communities. See the Appendix for mathe-

matical definitions of these graph metrics.

The maximization of modularity requires the investigator to make several methodological

choices [52]. Due to the heuristic nature of the Louvain algorithm [53] used in maximizing the

modularity quality function [54] and the degeneracy of the modularity landscape [55], we per-

formed 20 optimizations of Q for each functional connectivity matrix. The modularity values

that we report are the mean values over these 20 optimizations. We also constructed a consen-

sus partition [56] from these optimizations using a method that compares the consistency of

community assignments to that expected in a null model [52].

Classification between healthy controls and schizophrenia patients

To inform the utility of various wavelet methods, filters, and lengths in neuroimaging studies

of functional brain network architecture, we performed a classification analysis in which we

sought to classify functional connectivity matrices extracted from 29 healthy subjects from

those extracted from 29 people with schizophrenia [45]. This particular data set is well-suited

to this study because it has been difficult to classify these two groups of subjects using binary

networks constructed from traditional methods; the data set therefore offers a reasonable

testbed for optimization of classification accuracy as a function of methodological variation. To

perform this classification, we gathered all graph metrics obtained in scale 2 (corresponding to

the most commonly utilized frequency band for resting state network analyses [45, 51]), and

used a classification algorithm referred to as the C5.0 algorithm (http://www.rulequest.com/

see5-info.html) to generate decision trees to classify data from healthy controls versus people

with schizophrenia. The C5.0 algorithm supports boosting, and is faster and more memory

efficient than the previous C4.5 algorithm [57], which in turn is an extension of the earlier ID3

algorithm [58]. We generated decision trees with 10-trial boosting and 6-fold cross validation.
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The boosting method, AdaBoost, allows us to generate multiple decision trees for a given set of

training data and combine them for better classification while avoiding overfitting [59]. Utiliz-

ing the cross validation procedure, we randomly divided all of the subjects into 6 groups, and

for each group, we trained a set of boosting decision trees on 5 groups and tested the decision

trees on the remaining group. The results we report are the cumulative results across these 6

groups.

Results

In this section, we examine the effects of wavelet method (DWT vs. MODWT), wavelet filter

(Daubechies Extremal Phase, Daubechies Least Asymmetric, and Coiflet families), and wavelet

length (2–24) on (i) the estimated values of graph metrics in healthy subjects, and (ii) the classi-

fication accuracy in distinguishing between functional connectivity matrices extracted from

people with schizophrenia and healthy controls.

The Effect of Wavelet Method: DWT vs. MODWT

Both the DWT and the MODWT have previously been utilized to obtain wavelet coefficients

for regional time series, prior to the construction of functional connectivity matrices represent-

ing graphs or networks (see [48] and [49] for recent examples). Here we performed a direct

comparison between DWT and MODWT in terms of their effects on estimated network orga-

nization. In Fig 2, we show the mean and variance of the correlation coefficients of the func-

tional connectivity matrices of healthy controls for all 3 wavelet filters, all 4 wavelet scales, and

all wavelet lengths. In general, the shapes of the graph metric versus wavelet length curves for

both methods show qualitative similarities. We also observe that both DWT and MODWT

give similar standard errors across subjects in the mean correlation coefficient and the variance

of correlation coefficients.

Despite these gross qualitative similarities, we observe that the two methods differ in terms

of (i) the variation of graph metric values over wavelet lengths, and (ii) the magnitude of vari-

ance of correlation coefficients. Diagnostic values obtained using MODWT show a smooth

change with increasing wavelet length, for all 3 wavelet filters and all 4 wavelet scales corre-

sponding to different frequency bands (see Fig 2 panels A and C). In contrast, graph metric val-

ues obtained from DWT do not show smooth changes with increasing wavelet length (see Fig 2

panels B and D). To quantify these observations, we calculated the sum of the absolute value of

differences between graph metrics at consecutive lengths. For each scale and wavelet filter, we

performed a paired t-test to test for differences in the mean. We found that—indeed—the vari-

ation of graph metric values over wavelet lengths is significantly greater when using DWT than

when using MODWT for all scales and all filters except scale 1 Coiflet; see Table 1.

Furthermore, the variance of correlation coefficients extracted using the MODWTmethod

are smaller in magnitude than the variance of the correlation coefficients extracted using the

DWTmethod (compare Fig 2 panels C and D). To quantify this observation, we averaged the

variance of the correlation coefficients over all wavelet lengths and filter types, separately for

each scale. We performed a paired two-sided t-test to measure the difference between the aver-

age variance of correlation coefficients obtained using the DWTmethod versus those obtained

using the MODWTmethod. We found that the average variance of the correlation coefficients

was larger in the DWT case than in the MODWT case for all 4 wavelet scales: t = 5.87 and

p< 0.0001 (Scale 1), t = 8.89 and p< 0.0001 (Scale 2), t = 14.64 and p< 0.0001 (Scale 3), and

t = 9.44 and p< 0.0001 (Scale 4). Together these results are consistent with the theoretical

notion that DWT provides more noisy estimates of structure than MODWT, and support the

common preference in neuroimaging studies to use MODWT over DWT [19].

Wavelet Methods for Brain Network Construction
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Based on its reliable variation with wavelet length, we restrict ourselves to the study of graph

metrics extracted using the MODWTmethod for the remainder of this paper.

The Effect of Wavelet Filter Type

In prior literature, many wavelet filters have been applied to the extraction of regional time

series prior to functional brain network construction, including Daubechies [48], and Least

Asymmetric families [60]. Moreover, Coiflet wavelets have been shown to provide superior

compression performance in magnetic resonance images [61]. Here we performed a direct

comparison between Daubechies Extremal Phase, Daubechies Least Asymmetric, and Coiflet

families in terms of their effects on estimated network organization. To isolate the effect of

wavelet filter, we examine graph metrics obtained using each filter family and a fixed wavelet

length. In Fig 3, we show representative results from a comparison of D6 and C6, and a com-

parison of D8 and LA8 in wavelet scale 2. Qualitatively, we observe no significant differences in

Fig 2. Effect of Wavelet Method on Mean and Variance of Correlation Coefficients. (A, B)Mean correlation coefficients as a function of wavelet filter
(Daubechies Extremal Phase, Daubechies Least Asymmetric, and Coiflet families) and wavelet length (2–24) observed when applying the (A)MODWT and
(B)DWT. (C, D) Variance of correlation coefficients as a function of wavelet filter (Daubechies Extremal Phase, Daubechies Least Asymmetric, and Coiflet
families) and wavelet length (2–24) observed when applying the (C)MODWT and (D) DWT.Wavelet scales are indicated by the color of the lines: scale 1
(approximately 0.125–0.25 Hz) is shown in blue, scale 2 (approximately 0.06–0.125 Hz) in green, scale 3 (approximately 0.03–0.06 Hz) in red, and scale 4
(approximately 0.015–0.03 Hz) in purple. Error bars indicate standard errors of the mean across 29 healthy subjects.

doi:10.1371/journal.pone.0157243.g002
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graph metrics estimated from different wavelet filters of the same wavelet length. To confirm

this observation quantitatively, we use a sign test (due to the skewed distribution of the data) to

test the hypothesis that the difference median is zero between the distributions of graph metrics

for D6 and C6, and between the distributions of graph metrics for D8 and LA8. Consistent

with our qualitative observations, we find no significant differences (as defined as p< 0.05 cor-

rected for multiple comparisons using a conservative family-wise error correction). Note that

we observe qualitatively similar results for other wavelet scales and other graph densities (see

S1 File).

The Effect of Wavelet Filter Length

In prior literature, many wavelet lengths have been applied to the extraction of regional time

series prior to functional brain network construction (for example see [48] and [60]). Here we

performed a direct comparison between wavelet lengths 2 through 20 (Daubechies Extremal

Phase), 8 to 20 (Daubechies Least Asymmetric), and 6 to 24 (Coiflet). Note these length choices

were dictated by those available in the WMTSA toolbox (see Methods). Consistent with effects

shown in Fig 2, we observe that the length of the wavelet filter affects graph metrics differently;

some graph metrics are affected significantly (such as the modularity index), and other graph

metrics are affected very little (such as the characteristic path length); see Fig 4.

To quantify the differential sensitivity of graph metrics to wavelet length, we performed a

set of repeated measures ANOVA, for each graph metric and each type of wavelet filter. Here,

wavelet filter length was treated as a categorical factor, and graph metric type was treated as a

repeated measure. For complete results for each of these ANOVAs, see Table 2. We observe

that the mean and variance of correlation coefficients are significantly affected by wavelet

length in all 3 wavelet filters. The characteristic path length and global efficiency are not signifi-

cantly affected by wavelet length in any of the 3 wavelet filters. The clustering coefficient, local

efficiency, modularity, and number of communities are affected by wavelet length in some but

not all of the wavelet filters. These results demonstrate that graph metrics are differentially

Table 1. Variation of Diagnostic Values Over Wavelet Lengths t-values and p-values for two-sample t-tests measuring the differences in the sum of
the absolute value of differences between graphmetrics at consecutive lengths obtained from the MODWT approach as opposed to the DWT
approach (df = 28 over the 29 healthy control subjects). Paired t-tests were performed separately for each filter type (“D” = Daubechies Extremal Phase,
“LA” = Daubechies Least Asymmetric, and “C” = Coiflet) for each wavelet scale separately.

Scale Filter type Mean correlation coefficient Variance of correlation coefficients

t p t p

D −6.00 <1 × 10−4 −3.93 0.0005

1 LA −5.38 < 1 × 10−4 −5.97 < 1 × 10−4

C 0.94 0.3561 0.70 0.4920

D −9.45 < 1 × 10−4 −9.98 < 1 × 10−4

2 LA −7.55 < 1 × 10−4 −7.64 < 1 × 10−4

C −3.32 0.0025 −2.47 0.0200

D −6.98 < 1 × 10−4 −7.36 < 1 × 10−4

3 LA −10.01 < 1 × 10−4 −8.52 < 1 × 10−4

C −6.57 < 1 × 10−4 −5.51 < 1 × 10−4

D −8.83 < 1 × 10−4 −9.89 < 1 × 10−4

4 LA −10.21 < 1 × 10−4 −8.44 < 1 × 10−4

C −9.99 < 1 × 10−4 −5.32 < 1 × 10−4

doi:10.1371/journal.pone.0157243.t001
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sensitive to wavelet length, challenging the potential performance of meta-analyses that incor-

porate results obtained using different wavelet length and filters.

Note that we observe qualitatively similar results for other wavelet scales (see S1 File).

Classification in Psychiatric Disease

Finally, we asked whether different wavelet filters provide different degrees of statistical sensi-

tivity or classification accuracy when seeking to distinguish between functional connectivity

matrices extracted from healthy controls versus those extracted from people with

schizophrenia.

Fig 3. Effect of Wavelet Filter on Graph Metrics in wavelet scale 2 between pairs of wavelet filters with the same length. (A, B)Weighted graph
metrics including (A)mean correlation coefficient and (B) variance of correlation coefficients. (C–F) Binary graph metrics calculated at a graph density of 30%
obtained through a cumulative thresholding procedure, including (C) the clustering coefficient, (D) characteristic path length, (E) global efficiency, (F) local
efficiency, (G)modularity indexQ, and (H) the number of communities. Boxplots indicate the median and quartiles of the data acquired from 29 health
subjects. See S1 File for qualitatively similar results obtained at different scales and graph densities.

doi:10.1371/journal.pone.0157243.g003
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To determine whether different wavelet filters provide different degrees of statistical sensi-

tivity for group comparisons, we first visually inspect graph metric values in wavelet scale 2 as

a function of filter type and length (compare dark and light lines in Fig 4). We observe that

group differences in mean correlation coefficient, variance of correlation coefficients, clustering

coefficient, modularity, and number of communities appear to be larger for longer wavelet

lengths, across all three filter types. To quantify these observations, we performed a two-sample

t-test between graph metric values extracted from the two groups (patients vs. controls) for

each filter type and length (see Fig 5). In general, we observe that the p-values decreased with

increasing wavelet length (as demonstrated by the increase in the minus log p-values in Fig 5),

suggesting that longer wavelets display greater statistical sensitivity to group differences in

these data. This finding was particularly salient for the mean correlation coefficient, variance of

the correlation coefficients, clustering coefficient, modularity and number of communities,

consistent with our visual inspection of Fig 4.

In the SI, we explore the dependence of these results on methodological choices in network

construction including the measure of functional connectivity (partial correlation, wavelet

coherence, and the wavelet correlation used in the main manuscript), strength of edges (stron-

gest versus weakest [45, 62]), and time series (wavelet details vs. wavelet coefficients). We

observe that the effect of wavelet length is more salient (i) when using wavelet correlation than

when using wavelet coherence or partial correlation, and (ii) when using the strongest 30%

connections or 10% weakest connections than when using the 30% or 1% weakest connections.

Results are consistent across the use of both wavelet details and wavelet coefficients. Based on

prior work [45], we speculate that the networks constructed from the 1% weakest connections

display significant spatial localization and the networks that constructed from the 30% weakest

Fig 4. Effect of Wavelet Length on GraphMetrics in wavelet scale 2 for all wavelet filters. (A, B)Weighted graph metrics including (A)mean
correlation coefficient and (B) variance of correlation coefficients. (C–F) Binary graph metrics calculated at a graph density of 30% obtained through a
cumulative thresholding procedure, including (C) the clustering coefficient, (D) characteristic path length, (E) global efficiency, (F) local efficiency, (G)

modularity indexQ, and (H) the number of communities. The more saturated curves represent data from the 29 healthy controls, while the less saturated
curves represent data from 29 people with schizophrenia. Error bars depict standard errors of the mean across subjects. Note that the range of lengths
examined for each wavelet family is sufficient to observe significant trends in graph metrics. See S1 File for qualitatively similar results obtained at
different wavelet scales.

doi:10.1371/journal.pone.0157243.g004

Table 2. Effect of Wavelet Length.Results of Repeated Measures ANOVAs for graph metrics extracted from 29 healthy controls at scale 2 and a graph den-
sity of 30%; wavelet length is treated as a factor and graph metric is treated as a repeated measure, separately for each wavelet filter type. Effects that are sig-
nificant at p < 0.05, uncorrected, are shown in red.

Daubechies Extremal Phase
(dF = 9,252)

Daubechies Least Asymmetric
(dF = 6,168)

Coiflet (dF = 3,84)

F p F p F p

Mean correlation coefficient 14.63 < 1 × 10−4 16.12 < 1 × 10−4 16.29 < 1 × 10−4

Variance of correlation coefficients 4.57 < 1 × 10−4 13.28 < 1 × 10−4 8.62 < 1 × 10−4

Clustering coefficient 1.54 0.1333 4.47 0.0003 1.61 0.1937

Characteristic path length 0.37 0.9506 0.70 0.6503 0.53 0.6599

Global efficiency 0.95 0.4837 0.39 0.8852 1.18 0.3224

Local efficiency 1.60 0.1168 4.46 0.0003 1.32 0.2747

Modularity 6.88 < 1 × 10−4 1.20 0.3089 5.07 0.0028

Number of communities 3.98 0.0001 3.41 0.0033 1.02 0.3898

doi:10.1371/journal.pone.0157243.t002
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connections display significant random structure, together overshadowing the potential effects

of wavelet length on group differences.

We build on the above results drawn from parametric t-tests by applying non-parametric

machine learning techniques to determine whether different wavelet filters provide different

degrees of classification accuracy. Specifically, we generated decision trees (see Methods) to

classify healthy controls and people with schizophrenia based on graph metrics extracted from

functional brain networks constructed from correlations in scale 2 wavelet coefficients (see S1

File for results across all 4 wavelet scales). We observe that the classification accuracy ranged

from approximately 63.8% to approximately 82.8%, the classification sensitivity ranged from

approximately 65.5% to approximately 96.6%, and the classification specificity ranged from

Fig 5. Effect of Wavelet Filter Type and Length on Statistical Sensitivity in Group Comparisons. Negative common logarithm of the p-values
obtained from two-sample t-tests between graph metric values extracted from healthy control networks versus those extracted from schizophrenia patient
networks. Higher values indicate greater group differences and lower values indicate weaker group differences. Graph metrics are calculated for wavelet
scale 2; for results in wavelet scale 1, see the SI.

doi:10.1371/journal.pone.0157243.g005
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approximately 51.7% to 79.3% (see Fig 6). The poorest classification accuracy and specificity

occurred in short wavelets using the Daubechies Extremal Phase filter, and the best classifica-

tion results occurred for relatively long wavelets using the Daubechies Least Asymmetric filter

(LA14), which gave 82.8% accuracy and 96.6% sensitivity. These results support those obtained

from the parametric t-test analysis, that larger wavelet lengths display greater statistical sensi-

tivity to group differences in these data.

Discussion

Wavelet-based methods offer extensive benefits in time series analysis and functional brain

network construction. These include denoising capabilities [25], robustness to outliers [19],

utility in null model construction [26], frequency-specificity without edge effects [27], and

Fig 6. Effect of Wavelet Filter Type and Length on Classification. Classification accuracy, sensitivity, and specificity as a function of wavelet filter type
and length. Results are based on decision trees (see Methods) and distinguish between healthy controls and people with schizophrenia based on graph
metrics computed in wavelet scale 2. Note that we have regarded schizophrenia as positive, which clarifies the direction of the sensitivity and specificity
estimates.

doi:10.1371/journal.pone.0157243.g006
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accurate estimates of functional connectivity in long memory processes [32, 33], such as those

observed in fMRI time series [28–30, 34, 35]. Yet despite their utility, fundamental principles

to guide the performance of wavelet-based methods remain largely undefined, hampering com-

parability and reproducibility of wavelet-based functional connectivity studies. Here we explic-

itly fill this gap by exploring the use of different wavelet methods (MODWT vs. DWT), filters

(Daubechies Extremal Phase, Daubechies Least Asymmetric, and Coiflet families), and lengths

(2–24) and by determining their implications for the estimated values of functional graph met-

rics and the sensitivity to group differences. We found that the MODWT produces less variable

estimates than the DWTmethod, and that wavelet length significantly impacts graph metric

values and sensitivity to group differences. Collectively, our results underscore the importance

of reporting the choices utilized in neuroimaging studies and provide concrete recommenda-

tions for these choices in wavelet-based analyses.

Wavelet Filtering versus Band Pass Filtering Before embarking on a thorough discussion

of our results, it is worth briefly mentioning the differences—including advantages and disad-

vantages—of wavelet filtering [63] versus band pass filtering. Importantly, the differences

between the two methods have been extensively described and quantified in the mathematics

and signal processing literature, but unfortunately have rarely been discussed in the neuroim-

aging literature. Perhaps the two most salient differences between the two methods lie in the

preservation of signal shape [64] and in the ability to denoise signal content [65]. Simple band-

pass filters traditionally used in time series analysis have the benefits of being easy and fast to

compute [66] but because they are implemented in the frequency domain, they have the unfor-

tunate side effect of distorting the time domain, which in turn can alter the shape of transient

waveforms, such as those characteristic of neural signals [64]. Wavelet decomposition methods

by contrast work simultaneously in the frequency and time domains by fitting “little waves” or

wavelets directly to the data, which offers greater veracity in representing neural signals [64].

Moreover, wavelets offer simple denoising properties not offered by bandpass filtering [64, 67,

68]. This is specifically because bandpass filters can only clean data in which the signal and the

noise occupy different frequency bands. Unfortunately, in many neurophysiological time

series, noise and desired signal occupy overlapping frequency bands, which is where wavelets

can be used to some advantage. Specifically, wavelet methods can be used to decompose a

noisy signal into different scales and remove the noise while preserving the signal, regardless of

the frequency content. These denoising properties have demonstrated particular utility in the

study of fMRI time series [67, 69, 70], such as those used in this study, but also in the context of

ASL [71] and PET [72]. Together, the capabilities for signal preservation and cleaning make

wavelet methods often preferable to bandpass methods.

Discrete versus Continuous Wavelet Transforms Once one has chosen to apply a wave-

let filtering method, one is faced with the choice of using a discrete wavelet transform (DWT;

or its close cousin the maximum overlap discrete wavelet transform, MODWT), or using a

continuous wavelet transform (CWT) [73]. Indeed, the CWT implemented with a Morlet

wavelet [74] has been used successfully in the study of fMRI time series [75]. CWT works by

computing the inner products of a continuous signal with a set of continuous wavelets [73].

While an interesting and worthwhile approach, CWT has specific mathematical disadvan-

tages that motivated us (and others [19, 25, 26, 32, 33], particularly in the context of fMRI

time series [28–30, 34, 35]) to focus our exposition on MODWT and DWT. These include

the fact that (i) the CWT is inherently redundant and therefore computationally intensive,

(ii) it does not provide information regarding signal phase, and (iii) one cannot reconstruct

the original signal from the CWT coefficients (again, due to the redundancy) [73]. However,

CWT also has some benefits, particularly in enabling an assessment of frequency bands that

are not necessarily different by powers of 2. To capitalize on the major advantages of both
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the DWT and CWT approaches, it could be interesting in future to use the notions of wavelet

packet trees to study hierarchical structure in fMRI BOLD time series and its impact on

observed functional graph architecture [76].

In the remainder of this section, we translate the results of our paper into concrete recom-

mendations for the field, and we close with a brief discussion of important future directions.

The Choice of Wavelet Method The superior performance of MODWT in the context of

the numerical experiments performed here is consistent with features of its theoretical con-

struction [77]. First, and perhaps most importantly, MODWT is well defined for any signal

length, making it statistically appropriate for the processing of arbitrary signals. In contrast,

strictly speaking a DWT of level J0 can be applied only to signals whose length is a multiple of

2
J0 , significantly limiting its application to signals of arbitrary lengths. In practice when apply-

ing the DWT to signals of arbitrary lengths, one can choose to avoid this issue—as we did in

this study—by preserving at most one extra scaling coefficient at each level of wavelet decom-

position. Second, while DWT is an orthogonal transform, MODWT is not. In fact, MODWT is

highly redundant and invariant under ‘circular shift’ [27, 77]. This feature of MODWT pre-

serves the smooth time-varying structure in regional time series that is otherwise lost during

the application of DWT. In the context of human neuroimaging, analyses based on MODWT

therefore more accurately reflect the dynamics of brain activity.

The Choice of Wavelet Filter Type and LengthWavelet filter types offer differently shaped

wavelets that can be applied to empirical time series in a wavelet decomposition. While there is

a generally well-accepted notion that one should choose a wavelet that displays similar time-

varying features to the time series at hand, we observed that wavelet filter type had very little

influence on graph metrics extracted from resting state fMRI signals. The much larger factor

impacting graph metrics was the wavelet length, which tunes the fine-scale detail of the wavelet

shape: larger wavelet length provides smoother wavelets. In general, graph metrics obtained

using the Daubechies Extremal Phase wavelets changed more from wavelet lengths 2 to 6 than

from lengths 6 to 20. These results are intuitive: the changes in wavelet smoothness are more

apparent at shorter wavelet lengths than at larger wavelet lengths, and their impact on esti-

mated wavelet coefficients should follow. From a reliability perspective, we would argue that

one would wish to choose a wavelet of a relatively larger length, to ensure that one’s results are

(i) not sensitive to artifacts of jagged edges in the wavelet and (ii) are relatively robust to small

perturbations in wavelet length. Yet, it is important to keep in mind that very large wavelet

lengths may suffer from the following limitations: (i) more coefficients may be influenced by

boundary conditions, (ii) a decrease in the degree of localization of the wavelet coefficients, (iii)

an increase in computational burden [27]. The ideal choice may therefore be a moderate length

that retains the advantages of long wavelets without gaining any associated disadvantages.

Wavelets for Classification In our methodological recommendations thus far, we have

called on arguments of reliability, insensitivity to artifact, and decreased variability to support

specific choices in wavelet-based functional network analysis. In a final analysis we further

asked whether one can support these choices based on differential sensitivity to group differ-

ences in functional network architecture. In analyses based on scale 2 wavelet coefficients (cor-

responding to 0.06–0.125 Hz), the answer is clear: longer wavelet lengths provide increased

sensitivity to group differences as measured both by parametric t-tests and non-parametric

machine learning algorithms based on decision trees. Using these longer wavelets, we observe

significantly greater classification accuracy, sensitivity, and specificity values than those previ-

ously observed in this same data set [45], complementing prior work demonstrating differences

in spontaneous low-frequency (<0.1 Hz) fluctuations in BOLD signal [78, 79] and functional

or structural network architecture [80–83] between schizophrenia patients and healthy
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controls. Thus, in addition to their benefits in terms of sensitivity and robustness, longer wave-

lets offer greater sensitivity to group differences in this data set, supporting their choice in the

performance of wavelet-based analyses of resting state fMRI data more broadly. We speculate

that there might be some underlying structural difference between the two groups of subjects

that is consistent among individuals, and that the longer wavelet lengths smooth small differ-

ences between individuals so that large-scale differences are clearer. More generally, we specu-

late that larger wavelet lengths are better able to distinguish group-level features, while shorter

wavelets may better distinguish individual-level features.

Longer Wavelets and Vanishing Moments As mentioned earlier, wavelet methods offer

significant advantages over bandpass filtering in terms of signal preservation and denoising.

These capabilities are supported by the fact that wavelets have vanishing moments [84], the

number of which is the maximum degree of the polynomials the scaling function can repro-

duce. Both Daubechies and Coiflet wavelets have p vanishing moments for lengths 2p [85]. For

denoising purposes, it has been suggested that the number of vanishing moments should be

greater than 2H + 1 where H is the Hurst exponent [86]. Preliminary evidence suggests that the

Hurst exponent for fMRI noise lies below 1, suggesting that one might wish to use wavelets

with at least 4 vanishing moments [86]. In the Daubechies family, this would correspond to a

wavelet of length 8, which is a length that our results also support as demonstrating particularly

high reliability, decreased sensitivity to artifact, and decreased variability. However, in the con-

text of other clinical or task data, these choices might be quite different [87]. While these heu-

ristics suggest a minimal number of vanishing moments, it is not as simple to define a maximal

number of vanishing moments that should be considered. Evidence suggests that very large

numbers of vanishing moments can lead to computational artifacts in the decomposed signal

[86]. However, the point at which these artifacts occur is difficult to predict for different data

types. Our work therefore offers a numerical approach to identifying wavelet lengths that maxi-

mize a statistic of interest such as the classification accuracy in a diagnostic test.

Methodological Considerations In general, our results point to the optimality of longer

wavelets for functional network construction from spontaneous fluctuations of the BOLD sig-

nal in the low frequency band of 0.06–0.12 Hz (corresponding to wavelet scale 2 in these data).

However, this scale covers only a portion of the larger frequency range often interpreted in

resting fMRI: 0.008–0.15Hz. This larger frequency range actually encompasses several wavelet

scales at a TR of 2 s: scale 1 corresponding to 0.12–0.25 Hz, scale 2 corresponding to 0.06–0.12

Hz, scale 3 corresponding to 0.03–0.06 Hz, and scale 4 corresponding to 0.015–0.03 Hz. While

here in the main text we focus on scale 2, in the SI we provide a detailed account of the struc-

ture of graphs constructed from scales 1, 3, and 4. The inclusion of these scales is supported by

previous literature demonstrating their neurophysiological relevance in terms of graph con-

struction and functional connectivity profiles. For example, there is extensive precedent for

examining functional connectivity patterns in frequency ranges including but not limited to

scale 2 (0.06–0.12 Hz), in particular dating back to some of the very earliest work roughly 10

years ago [19]. In their very influential paper, Achard and colleagues demonstrated that func-

tional networks obtained at rest displayed significant small-world structure in scales 1 through

6, in their data representing frequency bands covering 0.007—0.45 Hz [19]. Since that seminal

paper, others have demonstrated that graphs constructed from frequencies above the tradition-

ally studied bands (e.g., 0.09–0.18 Hz) demonstrate greater heritability than graphs constructed

from frequency bands below 0.09 Hz [50]. However, while heritability of graph statistics might

be greatest in high frequency bands, sensitivity to disease may be greatest in other bands. For

example, Wang and colleagues demonstrate that resting state functional connectivity graphs in

people with amnestic mild cognitive impairment are most different from healthy controls in

the low frequency band 0.031–0.063 Hz [88]. Together, these data argue that a thorough
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assessment across several wavelet scales may be warranted depending on the scientific question

at hand.

In light of these prior studies, it is interesting to note that for higher frequencies such as

those probed by scale 1 coefficients (corresponding to 0.125–0.25 Hz), shorter wavelet lengths

appear to provide better sensitivity to group differences; see the SI. These results suggest that

the optimal methodological choice for wavelet length might depend on the frequency band of

interest, and therefore the properties of the signal being studied, an observation that might be

particularly relevant in the assessment of functional networks in EEG and MEG data [89].

Such a conclusion is supported by work identifying a variety of wavelet lengths and types as

optimal for classification schemes in EEG signals [90] and other complex systems [91, 92].

More work is therefore necessary to determine rules of thumb for wavelet analysis that are gen-

eralizable across frequency bands and imaging modalities.

We have exercised these methods on functional networks constructed using the AAL atlas

applied to resting state fMRI data, which represent common choices in functional network

analysis in both health and disease. It will be interesting in future to assess the utility of these

methods in other parcellation schemes and in task-based data.

Finally, we have utilized orthogonal wavelet filters in this work, largely based on their com-

mon application in fMRI time series analysis [29, 30, 34], and the prior precedent using these

filters in the construction of functional brain networks in health and disease [15, 23, 28, 35, 39,

41, 42]. However, it is important to note that bi-orthogonal wavelet filters, and symmetric

wavelet functions are interesting alternatives [73], and have offered some utility in MR and

other image processing [93, 94]. Future work could determine the utility of these other filters

in the context of functional brain network construction and sensitivity to connectomic disrup-

tions in psychiatric disease [95, 96].

Conclusion

As a final note, it is worth pointing out that the wavelet decompositions utilized here build on

procedures currently employed in the literature on functional brain network construction in

an effort to provide the field with a few useful rules of thumb. However, other wavelet-based

analysis techniques do exist—including wavelet packets, dual-tree complex wavelet transforms,

and double-density DWT—that have not yet been applied to this problem, and it is not yet

known whether these alternative techniques might provide complementary insights into

whole-brain patterns of functional connectivity. It will be interesting in future to assess the util-

ity of these alternative methods in reliably quantifying brain network organization and its alter-

ation in disease states.

Appendices

Appendix 1: Relationship Between Sampling Frequency andWavelet
Scales

The frequency ranges extracted by a wavelet decomposition directly depend on the sampling

frequency of the data. It is therefore important to delineate which features of our results are

generalizable across data sets acquired with different sampling frequencies. The data used here

was acquired with a TR of 2 s (a common choice), and therefore contains information up

through the frequency 0.25 Hz. A wavelet decomposition of this signal affects consecutive

scales in which the observed signal is repeatedly convolved with a wavelet filter (which behaves

as a high-pass filter) and a related scaling filter (which behaves as a low-pass filter). The first

four scales therefore correspond to the frequency ranges of approximately 0.125−0.25 Hz, 0.06
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−0.125 Hz, 0.03−0.06 Hz, and 0.015−0.03 Hz, respectively. We note that different sampling fre-

quencies may be used in other experiments, and the applicability of our specific results will

depend on the degree of overlap in the frequency ranges of wavelet scales. However, our

approach and conclusions regarding (i) the benefits of MODWT, (ii) the utility of moderate

wavelet lengths, and (iii) the relatively small effect of wavelet filter are expected to be more gen-

erally applicable.

Appendix 2: Definitions of Graph Metrics

1. Clustering coefficient C: The clustering coefficient is used to quantify the local clustering

properties of the network. First, the local clustering coefficient Ci of a node i can be defined

as the fraction of actual edges between its neighbors [97]:

Ci ¼
Sj 6¼hAijAihAjh

kiðki � 1Þ
;

where A refers to the adjacency matrix, and ki refers to the degree of node i. Then, the clus-

tering coefficient of the network is defined as the mean of Ci over all nodes.

2. Characteristic path length L: The characteristic path length is defined as the length of the

geodesic path between two vertices, averaged over all pairs of connected vertices:

L ¼
SmSij2Vm

dij

Smn
2

m

;

where Vm refers to the set of vertices in connected componentm, dij refers to the geodesic

distance between node i and j, and nm refers to the number of nodes in connected compo-

nentm.

3. Global efficiency Eglob [98]: The global efficiency has been interpreted as a measure of how

effectively information can be exchanged through the network. It is defined as follows:

Eglob ¼
1

nðn� 1Þ
Si 6¼jd

�1

ij ;

where n is the number of nodes in the network.

4. Local efficiency Eloc [98]: The local efficiency of node i assesses the efficiency of the sub-

graph formed by the neighbors of i:

Eloc;i ¼
Sj6¼hAijAihd

�1

jh

kiðki � 1Þ
:

The local efficiency of the entire network is taken as the mean of Eloc,i over all nodes in the

network.

5. ModularityQ [99–101]: The modularity of a network under a specific partitioning paradigm

measures how well the network is divided into non-overlapping groups (or communities) of

nodes such that the number of within-group edges is larger than expected in some null

model [99–103]. The modularity index is defined as:

Q ¼ Sij Aij �
kikj

2l

� �

dðci; cjÞ;
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where l is the number of edges in the network, ci and cj are the communities containing

nodes i and j, respectively, and δ(ci, cj) is the Kronecker delta. In this study, we presented the

maximum modularity value obtained with the Louvain algorithm [53] over 100 nearly

degenerate solutions [55].

Supporting Information

S1 File. Supplementary Material for “Choosing Wavelet Methods, Filters, and Lengths for
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