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Abstract—Recent years have seen an increasing attention to
social aspects of software engineering, including studies of emo-
tions and sentiments experienced and expressed by the software
developers. Most of these studies reuse existing sentiment analysis
tools such as SentiStrength and NLTK. However, these tools
have been trained on product reviews and movie reviews and,
therefore, their results might not be applicable in the software
engineering domain.

In this paper we study whether the sentiment analysis tools
agree with the sentiment recognized by human evaluators (as
reported in an earlier study) as well as with each other. Fur-
thermore, we evaluate the impact of the choice of a sentiment
analysis tool on software engineering studies by conducting a
simple study of differences in issue resolution times for positive,
negative and neutral texts. We repeat the study for seven datasets
(issue trackers and STACK OVERFLOW questions) and different
sentiment analysis tools and observe that the disagreement
between the tools can lead to contradictory conclusions.

I. INTRODUCTION

Sentiment analysis is “the task of identifying positive and
negative opinions, emotions, and evaluations” [1]. Since its
inception sentiment analysis has been subject of an intensive
research effort and has been successfully applied e.g., to assist
users in their development by providing them with interesting
and supportive content [2], predict the outcome of an elec-
tion [3] or movie sales [4]. The spectrum of sentiment analysis
techniques ranges from identifying polarity (positive or neg-
ative) to a complex computational treatment of subjectivity,
opinion and sentiment [5]. In particular, the research on senti-
ment polarity analysis has resulted in a number of mature and
publicly available tools such as SentiStrength [6], Alchemy1,
Stanford NLP sentiment analyser [7] and NLTK [8].

Sentiment polarity analysis has been recently applied in
the software engineering context to study commit comments
in GitHub [9], GitHub discussions related to security [10],
productivity in Jira issue resolution [11], activity of contrib-
utors in Gentoo [12] and evolution of developers’ sentiments
in the openSUSE Factory [13]. It has also been suggested
when assessing technical candidates on the social web [14].
Not surprisingly, all the aforementioned software engineer-
ing studies reuse the existing sentiment polarity tools, e.g.,
Guzman et al. [15], [9] and Rousinopoulos et al. [13] use

1http://www.alchemyapi.com/products/alchemylanguage/
sentiment-analysis/

NLTK, while Garcia et al. [12], Pletea et al. [10] and Ortu
et al. [11] opted for SentiStrength. While the reuse of the
existing tools facilitated the application of the sentiment po-
larity analysis techniques in the software engineering domain,
it also introduced a commonly recognized threat to validity
of the results obtained: those tools have been trained on non-
software engineering related texts such as movie reviews or
product reviews and might misidentify (or fail to identify)
polarity of a sentiment in a software engineering artefact such
as a commit comment [9], [10].

Therefore, in this paper we focus on sentiment polarity
analysis [1] and investigate to what extent are the software
engineering results obtained from sentiment analysis depend
on the choice of the sentiment analysis tool. For the sake of
simplicity, from here on, instead of “existing sentiment polar-
ity analysis tools” we talk about the “sentiment analysis tools”.
Specifically, we aim at answering the following questions:

• RQ1: To what extent do different sentiment analysis tools
agree with emotions of software developers?

• RQ2: To what extent do different sentiment analysis tools
agree with each other?

We have observed disagreement between sentiment analysis
tools and the emotions of software developers but also between
different sentiment tools themselves. However, disagreement
between the tools does not a priori mean that sentiment
analysis tools might lead to contradictory results in software
engineering studies making use of these tools. Thus, we ask

• RQ3: Do different sentiment analysis tools lead to con-
tradictory results in a software engineering study?

The remainder of this paper is organized as follows. In
Section II we study agreement between the tools and the
results of manual labeling, and between the tools themselves,
i.e., RQ1 and RQ2. In Section III we conduct a series of
experiments based on the results of different sentiment analysis
tools. We observe that conclusions one might derive using
different tools diverge, casting doubt on their validity (RQ3). In
Section IV we discuss related work and conclude in Section V.

Source code used to obtain the results of this paper has been
made available on GitHub2.

2https://github.com/RobbertJongeling/ICSME2015ERA
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II. AGREEMENT BETWEEN SENTIMENT ANALYSIS TOOLS

In this section we address RQ1 and RQ2, i.e., to what extent
do different sentiment analysis tools agree with emotions of
software developers and to what extent do different sentiment
analysis tools agree with each other. To perform the evaluation
we use the manually labeled emotions dataset [16].

A. Methodology

1) Sentiment Analysis Tools: We have considered four sen-
timent analysis tools SentiStrength, Alchemy, Stanford NLP
sentiment analyser and NLTK. SentiStrength and NLTK have
been used in earlier software engineering studies. Moreover,
SentiStrength had the highest average accuracy among fifteen
Twitter sentiment analysis tools [17]. The Stanford NLP parses
the text into sentences and performs a more advanced gram-
matical analysis as opposed to a simpler bag of words model
used in NLTK. Alchemy provides several text processing APIs,
including a sentiment analysis API which promises to work on
very short texts (e.g., tweets) as well as relatively long texts
(e.g., news articles).

SentiStrength assigns an integer value between 1 and 5 for
the positivity of a text, p and similarly, a value between −1
and −5 for the negativity, n. In order to map these scores to
a document-level sentiment (positive, neutral or negative) for
an entire text fragment, we follow the approach by Thelwall
et al. [18] A text is considered positive when p + n > 0,
negative when p + n < 0, and neutral if p = −n and p < 4.
Texts with a score of p = −n and p ≥ 4 are considered having
an undetermined sentiment and are removed from the datasets.

Alchemy API returns for a text fragment a status, a language,
a score and a type. The score is in the range (−1, 1), the type is
the sentiment of the text and is based on the score. For negative
scores, the type is negative, conversely for positive scores, the
type is positive. For a score of 0, the type is neutral. We ignore
texts with status “ERROR” or a non-English language.

NLTK returns for each text a probability of it being negative,
one of it being neutral and one of it being positive. If the
probability score for neutral is greater than 0.5, the text is
considered neutral. Otherwise, it is considered to be the other
sentiment with the highest probability [10]. To call NLTK, we
use the API provided at text-processing.com.3

Stanford NLP breaks down the text into sentences and
assigns each a sentiment score in the range [0, 4], where 0
is very negative, 2 is neutral and 4 is very positive. We
note that the tool may have difficulty breaking the text into
sentences as comments sometimes include pieces of code or
e.g. URLs. The tool does not provide a document-level score,
to determine such a document-level sentiment we compute
−2∗#0−#1+#3+2∗#4, where #0 denotes the number of
sentences with score 0, etc.. If this score is negative, neutral
or positive, we consider the text to be negative, neutral or
positive, respectively.

3API docs for NLTK sentiment analysis: http://text-processing.com/docs/
sentiment.html

2) Manually-Labeled Software Engineering Data: As the
“golden set” we use the data from a developer emotions study
by Murgia et al. [16]. In this study, four evaluators manually
labeled 392 comments with emotions “joy”, “love”, “surprise”,
“anger”, “sadness” or “fear”. Emotions “joy”, “love” and
“surprise” are taken as indicators of positive sentiments and
“anger”, “sadness” and “fear”—of negative sentiment.

We focus on consistently labeled comments. We consider
the comment as positive if at least three evaluators have
indicated a positive sentiment and no evaluators have indicated
negative sentiments. Similarly, we consider the comment as
negative if at least three evaluators have indicated a negative
sentiment and no evaluators have indicated positive sentiments.
We consider an evaluation neutral when an evaluator indicates
no emotions. A text is then considered as neutral when three
or more evaluators have evaluated it as neutral. Using these
rules we can conclude that 295 comments have been labeled
consistently: 24 negative, 54 positive and 217 neutral. The
remaining 392 − 24 − 54 − 217 = 97 comments from the
study Murgia et al. [16] have been labeled with contradictory
labels e.g. “fear” by one evaluator and “surprise” by another.

3) Evaluation Metrics: Since more than 73% of the com-
ments have been manually labeled as neutral, i.e., the dataset
is unbalanced, traditional metrics such as accuracy might be
misleading [19]: indeed, accuracy of the straw man sentiment
analysis predicting “neutral” for any comment can be easily
higher than of any of the four tools. Therefore, we use the
Adjusted Rand Index (ARI) [20].ARI measures the correspon-
dence between two partitions of the same data: to answer the
first research question we look for correspondence between the
partition of the comments into positive, neutral and negative
groups provided by the tool and the partition based on the
manual labeling. Similarly, to answer the second research
question we look for correspondence between partition of the
comments into positive, neutral and negative groups provided
by different tools. The expected value of ARI ranges for
independent partitions is 0. The maximal value, obtained e.g.,
for identical partitions is 1, the closer the value of ARI to 1
the better the correspondence between the partitions.

B. Results and Discussion

None of the 295 consistently labeled comments produce
SentiStrength results with p = −n and p ≥ 4. Hence, no
comments are excluded from the evaluation of SentiStrength.
Five comments produce the “ERROR” status with Alchemy;
those comments have been excluded from consideration, i.e.,
Alchemy has been evaluated on 290 comments.

When comparing the partitions induced by the sentiment
analysis tools with the partition based on the manual labeling,
the highest ARI has been obtained for NLTK (0.239), followed
by SentiStrength (0.113), Stanford NLP (0.108) and Alchemy
(0.079). When comparing the partitions induced by the senti-
ment analysis tools with each other we obtain low values of
ARI: Alchemy API and NLTK have the highest ARI (0.104),
followed by SentiStrength and NLTK (0.090).
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TABLE I
AGREEMENT BETWEEN THE MANUAL LABELING, NLTK [8] AND

SENTISTRENGTH [6] ON 295 COMMENTS

Manual
neg neu pos

N
LT

K neg 19 51 11
neu 0 138 7
pos 5 28 36

SentiStrength
neg neu pos

N
LT

K neg 17 39 25
neu 15 96 34
pos 6 20 43

Based on this evaluation we select SentiStrength and NLTK
for further evaluation: these tools show the highest (albeit still
low) degrees of correspondence with the golden set. Moreover,
these two sentiment analysis tools have one of the higher
(albeit also low) agreements with each other, and, thus, we
would expect the results obtained using those tools to be more
consistent with each other than for pairs of tools with even
lower agreement. Further details on the agreement between
NLTK, SentiStrength and the manual labeling are shown in
Table I.

C. Threats to Validity

As any empirical evaluation, the study presented in this
section is subject to threats to validity. On top of the threats to
validity inherent to the choice of the dataset used for evaluation
and its construction [16] validity of our evaluation might have
been affected by our decision to interpret emotions “joy”,
“love” and “surprise” as indicators of a positive sentiment
and “anger”, “sadness” and “fear”—as indicators of a negative
sentiment. For instance, one might argue that not all surprises
are positive. Therefore, we consider replication of this study on
a manually labeled dataset as an important sent in the follow-
up research.

Furthermore, the exact ways tools have been applied and
the sentiment has been determined based on the tools’ output,
e.g., calculation of a document-level sentiment as −2 ∗#0−
#1 + #3 + 2 ∗ #4 for Stanford NLP, might have affected
validity of the conclusions.

III. IMPACT OF THE CHOICE OF SENTIMENT ANALYSIS
TOOL

In Section II we have seen that not only is the agreement of
the sentiment analysis tools with the manual labeling limited,
but also that different tools do not necessarily agree with each
other. However, this disagreement does not necessarily mean
that conclusions based on application of these tools in the
software engineering domain are affected by the choice of the
tool. Therefore, next we address RQ3 and discuss a simple set-
up of a study aiming at understanding differences in response
times for positive, neutral and negative texts. While we do
not aim at replicating an existing study, we note that similar
questions have been considered in the literature [11], [12].

A. Methodology

We study whether differences can be observed between
response times (issue resolution times or question answering
times) for positive, neutral and negative texts. We do not

claim that the type of comment (positive, neutral or negative)
is the main factor influencing response time: indeed, certain
topics might be more popular than others and questions asked
during the weekend might lead to higher resolution times.
However, if different conclusions are derived for the same
dataset when different sentiment analysis tools are used, then
we can conclude that the disagreement between sentiment
analysis tools affects validity of conclusions in the software
engineering domain.

We repeat the study for seven different datasets: titles of
issues of the ANDROID issue tracker, descriptions of issues of
the ANDROID issue tracker, titles of issues of the Apache Soft-
ware Foundation (ASF) issue tracker, descriptions of issues of
the ASF issue tracker, descriptions of issues of the GNOME
issue tracker, titles of the GNOME-related STACK OVERFLOW
questions and bodies of the GNOME-related STACK OVER-
FLOW questions. As opposed to the ANDROID dataset, GNOME
issues do not have titles. For each dataset we determine
the sentiment using NLTK and SentiStrength. Moreover, we
repeat each study on the subset of texts where NLTK and
SentiStrength agree.

1) Datasets:
a) ANDROID Issue Tracker: A dataset of 20,169 issues

from the ANDROID issue tracker was part of the mining
challenge of MSR 2012 [21]. Excluding issues without a
closing date, as well as those with bug status “duplicate”,
“spam” or “usererror”, results in the dataset with 5,216 issues.

We analyze the sentiment of the issue titles and descriptions.
Five issues have an undetermined description sentiment. We
remove these issues from further analysis on the titles and the
descriptions. To measure the response time, we calculate the
time difference in seconds between the opening (openedDate)
and closing time (closedOn) of an issue.

b) GNOME Issue Tracker: The GNOME project issue
tracker dataset containing 431,863 issues was part of the 2009
MSR mining challenge. Similarly to the ANDROID dataset, we
have looked only at issues with a value for field bug status
of resolved. In total 367,877 have been resolved. We
analyze the sentiment of the short descriptions of the issues
(short desc) and calculate the time difference in seconds
between the creation and closure of each issue. Recall that
as opposed to the ANDROID dataset, GNOME issues do not
have titles.

c) GNOME-Related STACK OVERFLOW Discussions: We
use the StackExchange online data explorer4 to obtain all
STACK OVERFLOW posts created before May 20, 2015, tagged
gnome and having an accepted answer. For all 410 collected
posts, we calculate the time difference in seconds between the
creation of the post and the creation of the accepted answer.
Before applying a sentiment analysis tool we remove HTML
formatting from the titles and bodies of posts. In the results,
we refer to the body of a post as its description.

d) ASF Issue Tracker: We use a dataset containing data
from the ASF issue tracking system JIRA. This dataset was

4http://data.stackexchange.com/
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collected by Ortu et al. [11] and contains 701,002 issue reports.
We analyze the sentiments of the titles and the descriptions
of 95,667 issue reports that have a non-null resolved date, a
resolved status and the resolution value being Fixed.

2) Statistical Analysis: To answer our research questions
we need to compare distributions of response times cor-
responding to issues/questions bearing positive, neutral and
negative sentiments. Traditionally, a comparison of multiple
groups follows a two-step approach: first, a global null hy-
pothesis is tested, then multiple comparisons are used to test
sub-hypotheses pertaining to each pair of groups. The first
step is commonly carried out by means of ANOVA or its non-
parametric counterpart, the Kruskal-Wallis one-way analysis of
variance by ranks. The second step uses the t-test or the rank-
based Wilcoxon-Mann-Whitney test, with correction for mul-
tiple comparisons, e.g., Bonferroni correction. Unfortunately,
the global test null hypothesis may be rejected while none of
the sub-hypotheses are rejected, or vice versa [22]. Moreover,
simulation studies suggest that the Wilcoxon-Mann-Whitney
test is not robust to unequal population variances, especially
in the case of unequal sample sizes [23]. Therefore, one-step
approaches are preferred: these should produce confidence
intervals which always lead to the same test decisions as
the multiple comparisons. We use the T̃-procedure [24] for
Tukey-type contrasts [25], the probit transformation and the
traditional 5% family error rate (cf. [26], [27]).

The results of the T̃-procedure are series of probability
estimates p(a, b) with the corresponding p-values, where a
and b are selected from “positive”, “neutral” or “negative”.
The probability estimate p(a, b) is interpreted as follows: if
the corresponding p-value exceeds 5% then no evidence has
been found for difference in response times corresponding to
categories a and b. If, however, the corresponding p-value
does not exceed 5% and p(a, b) > 0.5 then response times
in category b tends to be larger than those in category a.
Finally, if the corresponding p-value does not exceed 5% and
p(a, b) < 0.5 then response times in category a tends to be
larger than those in category b.

We opt for comparison of distributions rather than a more
elaborate statistical modeling (cf. [11]) since it allows for an
easy comparison of the results obtained for different tools.

B. Results

Results of our study are summarized in Table II. For the
sake of readability the relations found are aligned horizontally.
Relations found for NLTK, SentiStrength and the intersec-
tion are typeset in boldface. We also report the number of
issues/questions recognized as negative, neutral or positive.

We observe that NLTK and SentiStrength agree only on
one relation for the ANDROID, i.e., that issues with the

5t denotes titles, d denotes descriptions
6Sentiment of 5 issues was “undetermined”.
7The tool reported an error for 4 issues
89,620 empty descriptions where not included in this analysis
9The tool reported an error for 39 issues
10Sentiment of 12 issues was “undetermined”.

TABLE II
COMPARISON OF NLTK AND SENTISTRENGTH (SS). THRESHOLDS FOR

STATISTICAL SIGNIFICANCE: 0.05 (∗), 0.01 (∗∗), 0.001 (∗∗∗).

NLTK SS NLTK ∩ SS
neg-neu-pos neg-neu-pos neg-neu-pos

ANDROID
t5 1,230-3,588-398 1,417-3,415-384 396-2,381-36

∅ ∅ ∅

d 2,690-1,657-869 1,684-2,435-1,1826 893-712-299
neu > neg∗∗∗ neu > neg∗
neu > pos∗∗ neu > pos∗∗ neu > pos∗∗∗

neg > pos∗∗∗ neg > pos∗

GNOME
d 54,032-291,906-20,380 58,585-293,226-14,507 16,829-24,2780-1,785

neg > neu∗∗∗ neg > neu∗∗∗ neg > neu∗∗∗

pos > neu∗∗∗ pos > neu∗∗∗ pos > neu∗∗∗

pos > neg∗∗∗
neg > pos∗∗∗

STACK OVERFLOW
t 84-285-41 53-330-27 16-240-8

∅ ∅ ∅

d 249-71-90 90-183-137 62-35-42
∅ neg > pos∗ ∅

ASF
t 19,367-67,948-8,3487 24,141-62,016-9,510 6,450-44,818-1,106

neg > neu∗∗
pos > neu∗∗∗ pos > neu∗∗

pos > neg∗ pos > neg∗∗∗

d8 30,339-42,540-13,1299 29,021-41,043-15,97110 10,989-20,940-3,814
neg > neu∗∗∗ neg > neu∗∗∗
pos > neu∗∗∗ pos > neu∗∗∗ pos > neu∗∗∗

pos > neg∗∗∗ pos > neg∗∗∗

neutral sentiment tend to be resolved more slowly than issues
formulated in a more positive way. We also observe that
for GNOME and ASF the tools agree that the issues with
the neutral sentiment are resolved faster than issues with the
positive sentiment, i.e., the results for GNOME and ASF are
opposite from those for ANDROID.

Further inspection reveals that differences between NLTK
and SentiStrength led to relations “neu > neg” and “neg >
pos” to be discovered in ANDROID issue descriptions only
by one of the tools and not by the other. In the same way,
“pos > neg” on the ASF descriptions data can be found
only by SentiStrength. It is also surprising that while “pos
> neg” has been found for the ASF titles data both by NLTK
and by SentiStrength, it cannot be found when one restricts
the attention to the issues where the tools agree. Finally,
contradictory results have been obtained for GNOME issue
descriptions: while the NLTK-based analysis suggests that the
positive issues are resolved more slowly than the negative
ones, the SentiStrength-based analysis suggests the opposite.

C. Discussion

Our results suggest the choice of the sentiment analysis
tool affects the conclusions one might derive when analysing
differences in the response times, casting doubt on the validity
of those conclusions. We conjecture that the same might be
observed for any kind of software engineering studies depen-
dent on off-the-shelf sentiment analysis tools. A more careful
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sentiment analysis for software engineering texts is therefore
needed: e.g., one might consider training more general purpose
machine learning tools such as Weka [28] or RapidMiner on
software engineering data. Indeed, the need for text-analysis
tools specifically targeting texts related to software engineering
has been recognized in the past and led to creation of e.g.,
software-engineering-specific dictionary of synonyms [29].

IV. RELATED WORK

The existence of multiple sentiment analysis tools has lead
to a number of comparison studies [17], [30]. However, to the
best of our knowledge these studies have always used general
social media data rather than software engineering data.

Observations similar to those we made for sentiment anal-
ysis tools, have been made in the past for software metric
calculators [31] and code smell detection tools [32]. Similarly
to our findings, disagreement between the tools was observed.

V. CONCLUSIONS

In this paper we have studied the impact of the choice of a
sentiment analysis tool when conducting software engineering
studies. We have observed that not only do the tools considered
not agree with the manual labeling, but also they do not
agree with each other, and that this disagreement can lead
to contradictory conclusions.

Our results suggest a need for sentiment analysis tools
specially targeting the software engineering domain.
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