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Figure 1: Chopper partitions a given 3D model into parts that are small enough to be 3D-printed and assembled into the original model.
Left to right: the input chair model, Chopper’s partition (with a printing volume shown as a reference), printed parts, and assembled chair.

Abstract

3D printing technology is rapidly maturing and becoming ubiqui-
tous. One of the remaining obstacles to wide-scale adoption is that
the object to be printed must fit into the working volume of the 3D
printer. We propose a framework, called Chopper, to decompose a
large 3D object into smaller parts so that each part fits into the print-
ing volume. These parts can then be assembled to form the original
object. We formulate a number of desirable criteria for the partition,
including assemblability, having few components, unobtrusiveness
of the seams, and structural soundness. Chopper optimizes these
criteria and generates a partition either automatically or with user
guidance. Our prototype outputs the final decomposed parts with
customized connectors on the interfaces. We demonstrate the effec-
tiveness of Chopper on a variety of non-trivial real-world objects.
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1 Introduction

As 3D printing technology matures, becoming cheaper and sim-
pler to use, printing ever-larger objects becomes feasible. At the
same time, the maximum size of an object that a 3D printer can
produce in one pass (the printing volume) is limited by practical
considerations. Larger objects must therefore be printed as separate

parts and assembled. Existing commercial systems rely on manual
partitioning, but this can be tedious if many parts are needed.

Recent work in the field of computer graphics, however, has inves-
tigated computation-assisted fabrication approaches in which the
user specifies the desired visual or physical properties of an object
to be manufactured, and an optimization is used to determine the
precise way in which fabrication devices should be driven to pro-
duce an object as close as possible to the goal. The optimization
may be formulated to consider visual properties such as scatter-
ing [Hašan et al. 2010] or physical properties such as deforma-
tion [Bickel et al. 2010], but in this paper we focus purely on 3D
shape. We propose that this kind of optimization approach may
be applied to the problem of decomposition into print volumes,
yielding an automated method that is quicker, easier, and in many
instances better than can be accomplished by hand.

This work presents a framework, called Chopper, for partitioning
objects for 3D printing. Because the number of ways in which an
object may be partitioned is large, we seek to find a decomposition
that optimizes a number of (sometimes conflicting) objectives:

• Printability: the parts must fit inside the working volume.

• Assemblability: it must be possible to put parts together (with-
out interference) into a finished model.

• Efficiency: the partition should avoid small parts and, in gen-
eral, minimize the number of required sub-volumes.

• Connector feasibility: each interface must be large enough to
admit connectors, protrusions, or other aids to assembly.

• Structural soundness: parts should not have thin slivers, and
seams should be away from areas of high mechanical stress.

• Aesthetics: seams should be unobtrusive, detracting from ap-
pearance as little as possible, and should follow the natural sym-
metries of the model.

Formalizing these objectives is not easy, since different use cases
have different requirements. Moreover, it is easy to propose defini-
tions for the objective functions that lead to sub-optimal partitions
or interact in unwanted ways. We propose specific definitions (Sec-
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tion 3.2) and weightings between different objectives (Section 4)
that, based on our testing, typically lead to high-quality results.

Designing a Framework for Optimization: A natural approach
to creating printable partitions is to treat this as a covering prob-
lem: the object must be completely covered by print volumes. This,
however, quickly leads to problems with efficiency and solvability.
For example, consider just minimizing the number of parts, under
extremely restrictive assumptions: in 2D, if the printing volume is
a unit square, it is an open problem whether a square of side length
2.01 can be printed as 6 parts, or if 7 are necessary [Soifer 2006;
Januszewski 2009]. Even given a feasible covering, it is difficult to
go from this to a concrete set of cuts, which we must do to evaluate
some of the objective functions (such as connector feasibility and
seam aesthetics). Finding a set of cuts leading to an assemblable
partition is difficult (since these cuts may have to be non-planar)
and impractical to do every time we evaluate a covering’s quality.

Chopper is therefore built upon an alternative approach: searching
top-down for a binary tree representing the assembly sequence in
which two parts are joined at each step. More specifically, we re-
strict ourselves to planar cuts between any two joined parts, yield-
ing a Binary Space Partitioning or BSP tree [Fuchs et al. 1980].
This is an important design decision, since by giving up the flexibil-
ity of arbitrary cuts we gain efficiency. Also BSPs provide a natural
recursive framework for optimizing over the objectives, and in fact
satisfy two objectives by construction (printability — by recursing
down until each part fits inside the working volume — and assem-
blability — by reversing the order of the cutting recursion and the
convexity of each BSP partition).

The search for the best BSP tree can proceed greedily, with the
best single plane chosen at each level of recursion, or may consider
alternatives that are not necessarily locally optimal in the hope that
they lead to a better overall solution. Because of the size of the
search space, it is impossible to enumerate all possible partitions
exhaustively. We therefore adopt beam search [Lowerre 1976],
which maintains a set of the b best partitions at each stage of the
algorithm. Each step of the search considers all ways of augmenting
each existing partition with an additional cut, evaluates the objec-
tive functions, and keeps the b best resulting partitions. The search
terminates once all parts fit within the working volume. We show
that even a relatively small beam width results in modest improve-
ments over greedy search, at the cost of increased running time (by
a factor of b). In constrast, we find that depth-first search with
backtracking did not lead to better results than greedy search.

2 Related Work

Partitioning models has been studied in different contexts out-
side rapid prototyping, therefore ignoring the concerns specific to
3D printing (part size, assemblability, etc.) on which we focus.
For example, decomposing polyhedra into convex parts [Chazelle
1981] — even approximately [Lien and Amato 2007] — is a well-
known challenging problem in computational geometry. Gener-
ating a volumetric mesh of limited-size tetrahedra (e.g., via con-
strained Delaunay tetrahedralization [Shewchuk 1998]) is a vital
preprocess for physical simulation. Mesh segmentation [Shamir
2008; Chen et al. 2009; Attene et al. 2006] typically focuses on
decomposing the surface of an object into semantically meaningful
parts, using heuristics based on geometric properties such as cur-
vature and shape diameter. Our work shares a few objectives with
these techniques (e.g., minimizing seam length).

A number of design tools focus on creating physical objects using
a variety of fabrication techniques. These objects include plush
toys [Mori and Igarashi 2007], chairs [Saul et al. 2011], furniture

Figure 2: An illustration of a 3D object partitioned by a BSP tree
into six parts. Left: the partitioned parts and the BSP tree. Planes
are denoted as squares and parts as circles with corresponding col-
ors. Middle: planes in the BSP tree, with colors corresponding to
interior nodes (squares) in the tree at left. Right: cross sections of
the planes and the object. Note that the cross-sections may have
multiple connected components, e.g., on the red plane.

in general [Lau et al. 2011], buildings [Whiting et al. 2009], gar-
ments [Umetani et al. 2011], Burr puzzles [Xin et al. 2011], planar
sections [McCrae et al. 2011; Hildebrand et al. 2012], etc. Recently,
Stava et al. [2012] proposed a tool that performs a structural anal-
ysis on a 3D model and then corrects the model using hollowing,
thickening, and strut insertion. Our work falls broadly into this
category of research, and uses a similar constrained optimization
framework to many of these approaches, though the details are spe-
cific to our application. The assembly of objects from parts has also
been investigated [Agrawala et al. 2003].

Several methods focus on determining the optimal 3D orientation
at which a single part should be printed [Alexander et al. 1998;
Thrimurthulu et al. 2004], considering factors such as support ma-
terial cost, printing time, and surface roughness. Research has also
focused on techniques for packing multiple parts into the printing
volume [Ikonen et al. 1998; Dickinson and Knopf 1998; Egeblad
et al. 2009].

An automatic curvature-based method for partitioning models for
3D printing has been recently proposed [Hao et al. 2011]. This
method makes strong assumptions that make it suitable for only a
small class of models. Among its limitations are:

• It assumes that potential cuts are restricted to planar sharp or
filleted features in the model.

• To detect these features, it relies on properties of the triangu-
lation such as dihedral angles and perimeter ratios of adjacent
triangles.

• Because the method may choose a partial planar cut, there is no
guarantee that the resulting parts can be assembled or even that
the cut actually partitions the model into two.

• The method does not consider printing parts in different orien-
tations to make better use of the print volume.

In our dataset, only the bearing model has the properties needed to
be successfully processed by the algorithm of Hao et al.

To our knowledge, the only other automatic methods for partition-
ing models for 3D printing are based on partitions on a regular
grid [Medellin et al. 2007]. This is a greatly reduced space of pos-
sible partitions that are likely to use too many cuts, ignore object
features, and make poor use of the printing volume.

3 Approach

For a user-provided model, Chopper employs beam search (Section
3.1) to find a BSP tree that partitions the model into a number of



parts, guided by the objective functions that evaluate various as-
pects of the BSP, e.g., the number of parts, seam length, symmetry
(Section 3.2). Each plane of the BSP tree forms a cut. (Note that
each part is not necessarily a single connected component.) The
cross-section of a cut is the polygon set that is the intersection of
the object interior and the portion of the cut plane inside its BSP
region. This polygon set may comprise multiple disjoint polygons,
which may contain holes, and defines the connected components of
the cut. Figure 2 illustrates these concepts.

Each part partitioned by the output BSP tree should fit into the
printing volume of the target 3D printing device. Low-cost print-
ers may have a printing volume as small as 10 cm×10 cm×10 cm,
while higher-end devices may go up to 50 cm× 40 cm×20 cm.

Chopper places connectors, according to a user-provided pattern,
on every cross-section (Section 3.3). Depending on their design,
the connectors may provide sufficient structural strength to hold
parts together, or may merely serve as guides for assembly, with
glue used to permanently attach parts. In our experiments we use
connectors in the shape of pentagonal prisms, providing a sturdy
connection that prevents parts from rotating.

3.1 Search Framework

Algorithm 1: Chopper search

input : O is the object, b is beam width
output : T is the BSP tree that partitions the object

function T = BEAMSEARCH(O, b)
currentBSPs← ∅

while not ALLATGOAL(currentBSPs)
newBSPs← ∅

foreach T ∈ NOTATGOALSET (currentBSPs)
currentBSPs −= T

P← LARGESTPART(O, T )
newBSPs += EVALCUTS(T , P)

while |currentBSPs| < b
currentBSPs += HIGHESTRANKED(newBSPs)

return HIGHESTRANKED(currentBSPs)

function ResultSet = EVALCUTS (T ,P)
N ← UNIFORMNORMALS()
N ′ ← AUXILIARYNORMALS(P)
parallel foreach ni ∈ N ∪ N ′

foreach objective function fk

foreach plane πi j = (ni, d j) intersecting P
T ′ ← ADDTOBSP(T , πi j)
f (T ′) += αk fk(T

′)

ResultSet← ∅

foreach T sorted by f (T )
if SUFFICIENTLYDIFFERENT(T , ResultSet)

ResultSet += T

return ResultSet

Chopper uses beam search to partition the model (Algorithm 1).
The algorithm begins with an empty BSP, and at each step it selects
the most promising BSPs from the previous step to extend with an
additional cut. The maximum number of BSPs selected at each
step is the beam width: it determines the breadth that the algorithm
explores into the combinatorial search space. All results in this
paper use a beam width of b = 4, unless otherwise stated.

Evaluating Candidate Cuts: Given a partial BSP, we consider
all ways of augmenting it by cutting the largest part — i.e., the part
with the largest number-of-subvolumes estimate (Section 3.2.1). In
addition to making progress towards the ultimate goal, we find that
evaluating the largest parts first improves our estimate of the quality
of a BSP tree: the biggest parts are usually the ones with the greatest
overestimations in the objective functions.

We consider cutting the part with all possible planes πi j = (ni, d j),
where ni and d j are plane normals and offsets, respectively (and
the plane is defined by ni · x − d j = 0). To ensure uniform sam-
pling, we take our set of plane normals N = {ni} to be the ver-
tices of a thrice-subdivided regular octahedron. This results in 129
uniformly distributed directions and proves to be a good tradeoff
between result quality and running time. (Only one of each pair
of opposite directions is taken.) We augment the set of candidate
normals with N ′, the axes of each part’s minimum oriented bound-
ing box, in order to provide additional opportunities for selecting
an aesthetically-pleasing cut. The plane offsets {d j} are sampled
uniformly (at intervals of 0.5 cm in our examples) over the range
for which the planes intersect the object, for each ni.

We observe that evaluating the objective functions for each can-
didate cut is naturally organized as a set of nested loops (per-cut-
plane-orientation, per-cut-plane-position, per-objective). In order
to minimize computation time, Chopper pushes as much compu-
tation as possible into the outer loops. In addition, we exchange
the two innermost loops relative to their natural order, evaluating
each objective on a batch of parallel planar cuts (i.e., looping over
objectives outside the loop over plane positions). This batching
provides optimization opportunities for most objectives. For exam-
ple, computing the cross-sections for k single planes independently
takes O(kn + c) time (where n is the number of mesh vertices and c
is the total size of all the cross-sections), but doing this computation
batched takes O(k + n + c) time.

Selecting Cuts: After evaluating all the candidate augmented
BSPs, we would ideally like to retain the b best ones. However,
for relatively small (hence practical) values of b, there is a danger of
degrading the diversity of the selection if too many similar BSPs are
selected. Therefore, the new BSPs resulting from each parent are
first pruned by sorting the planes according to their objective scores,
then walking along this list from lowest to highest. BSP trees that
are sufficiently close (in RMS distance) to already-selected ones are
discarded — a typical value for the threshold is 0.1 of the diagonal
of the printing volume. The surviving trees resulting from all par-
ents are combined, and the b best ones are kept.

Termination: The search terminates when all BSPs in the beam
reach their goal states, which are decompositions in which all parts
fit into the target printing volume. The best BSP, as evaluated by
the objective functions, is returned as the final solution. As a post-
process, Chopper places connectors on the cross-sections so that
they do not interfere with each other (Section 3.3).

3.2 Objective Functions

Given a set of candidate BSPs, we evaluate a set of objective func-
tions that rank these BSPs in terms of the number of resulting parts,
connector feasibility, structural soundness, and seam unobtrusive-
ness. The final score is computed as a linear combination of the
separate scores of all objective functions of a BSP T :

f (T ) = ∑
k

αk fk(T ). (1)

The details of the objective functions will be discussed in the fol-
lowing subsections. We motivate each objective by demonstrating
a result obtained when that objective is not used. The objectives



are all unitless so that a single set of weights can work with a large
range of objects.

Note that due to the nature of the beam search algorithm (Section
3.1), the BSPs being evaluated are all extended from existing ones,
which enables fast accumulative computation of most of the objec-
tive functions from the previous results.

An objective function may return infinity if the cut is completely
infeasible according to that objective. In that case, subsequent ob-
jective function evaluations are skipped for that cut.

3.2.1 Number of Parts

Estimating the minimum number of boxes (assuming that a print
volume is a box) to cover an arbitrary object is NP-hard even in 2D
and disallowing rotations [Aupperle et al. 1988]. We do not attempt
to find the minimum number, but we do need to guarantee that
eventually the algorithm will terminate. To this end, we estimate an
upper bound, Θ(P), on the number of parts for P neglecting all other
objectives. As this bound, we use the number of print volumes that
(in a regular grid) tile the minimum Oriented Bounding Box (OBB)
of P. The minimum OBB is computed approximately by iteratively
optimizing two axes at a time using rotating calipers [Toussaint
1983] or gets its orientation from the parent part, whichever leads
to a smaller Θ (breaking ties by volume).

Given a BSP T , we would like to minimize Θ(P) on all parts P in
T : (Figure 3):

fpart(T ) =
1

Θ0
∑

P∈T

Θ(P), (2)

where Θ0 is the upper bound estimate of the initial input model.

Because the granularity of fpart is entire working volumes, we wish
to add a finer-level distinction to penalize parts that do not use the
print volume efficiently (Figure 4). Let VP be the volume of a part
P in T and let V be the printing volume. Then we compute a uti-
lization objective:

futil(T ) = max
P∈T

(

1− VP

Θ(P)V

)

. (3)

3.2.2 Connector Feasibility

We force each connected component of the cross-section of each
cut to have one or more connectors to ensure the object does not
fall apart. While this condition is not strictly necessary (a donut cut
in half needs only one connector for the two connected components
of the cross-section), we found that it helps the structural soundness
of the part without being overly restrictive. A single connector on
a large cross-section, however, may not be desirable: allowing for
several connectors results in a more robust connection. Moreover,
several connectors in a straight line are not as robust as the same
number of connectors spread out in 2D. Therefore, we formulate an
objective that seeks to find cuts maximizing the potential quality of
connector placement (Figure 5).

Figure 3: Without the number-of-parts objective, Chopper chooses
a partition (left) with more cuts than necessary (right).

Figure 4: Without the utilization objective (left), Chopper produces
a small part for this rocker arm (yellow). The utilization objective
forces larger parts and results in one fewer cut (right).

During the execution of Algorithm 1, we maintain a point set of
potential (female) connector locations on both sides of every cut,
initially sampled from the cross-section with a uniform grid (see
Figure 13, left). When choosing a new cut, we must consider the
quality of both the connector locations on the new cut and connec-
tors on previously chosen cuts, some of which may intersect the
new cut (Figure 6).

Evaluating the robustness of a potential connector placement is in-
tractable for the large number of candidates we wish to process,
so we approach the problem analogously to computing a support
polygon in rigid-body mechanics. We use the convex hull of the
potential connector locations as a measure of the quality of a poten-
tial connector placement on a connected component G of a cross-
section C. Intuitively, a large convex hull makes it less likely that a
large torque will be applied.

We compute the area aG of this convex hull, offset outwards by the
connector radius. We also compute the area AG of the relevant con-
nected component of the cross-section. The connector feasibility
objective is then defined as

fconnector(T ) = max

(

max
G∈C∈T

AG/aG − Tc, 0

)

, (4)

which is appropriately infinity if some connected component has
no feasible connector locations and therefore aG = 0. We clamp
AG/aG to Tc = 10 from below to avoid this objective’s having an
undesirably large influence on cuts with sufficiently good connector
placement potential.

To determine if the female connector fits at a location in the volume,
we approximate its geometry conservatively as a union of a few
spheres. We also maintain a distance field inside the object. We
sample the distance field at the locations of potential sphere centers
and compare the distances to the sphere radii to determine if the
connector fits. In this phase, we ignore the possibility that two
female connectors from different cross-sections may overlap; we

Figure 5: Without considering connector feasibility (left), Chopper
selects a cutting plane that results in cross-sections too small to
install connectors (between the hands and heads). The connector
feasibility objective ensures each connected component of the cross
sections is sufficient for connector placement (right).
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Figure 6: Left: An object with three cuts and potential female con-
nector locations (green) on the cross-sections. Right: when a new
cut is introduced, some of the connector locations become invali-
dated (red) due to intersection.

resolve such conflicts when we actually place the connectors (after
the BSP tree has been completely generated — see Section 3.3).

Chopper can support a number of possible connector designs. We
have considered connectors that snap together, require screws, or
even glue. For our experiments, we simply use pentagonal prisms,
with a male prism extruding from the surface of one part and fit-
ting into a female prism on another part. Supporting glue would be
strictly easier, requiring no modifications to geometry.

3.2.3 Structural Soundness

We use two methods for evaluating the structural soundness of a
proposed BSP. The first attempts to avoid cuts through high-stress
areas of the model, given a user-specified upright orientation (or
gravity direction). Because this method requires a comparatively
slow finite-elements structural analysis, as well as user input about
the intended orientation of the object, it is not always desirable.
Therefore, we also include a second fragility heuristic that avoids
creating thin “fins” and “bridges” in the parts.

Structural Analysis: Our structural analysis begins by voxeliz-
ing the model on a regular grid, and forming a tetrahedral mesh with
six tetrahedra per voxel. We then apply a positional constraint to the
lowest 5 percent of exterior tetrahedral vertices (with a minimum
of 20 vertices), according to the user-supplied gravity direction.
Finally, we apply gravity as an external force, with user-specified
density and modulus.

Using a standard finite-elements structural analysis, we compute
the stress tensor σ throughout the volume. Then, at run time, we
evaluate each cut in T for soundness by integrating the tension
Tt and shear Ts computed from σ and the normal of that plane
(compression is ignored, since the resistance of most 3D-printing
materials to compression is high):

fstructure(T ) = ∑
C∈T

1
AC

∫

C

(

αt Tt(x) + αs Ts(x)
)

dA, (5)

where AC is the area of the cut. The weights applied to this objective
depends on the material’s tensile and shear strength.

Figure 7: A naive partition may place cuts in structurally unsound
areas (left). A structural analysis reveals portions of the model
under high tension (middle), leading Chopper to select cuts away
from the highest-stress areas (right).

Fragility: Even if cuts do not pass through high-stress areas of
the original model, the resulting parts may still be fragile due to
thin fins or bridges that connect two larger parts (Figure 8). We
assume that the initial object is structurally sound and try to avoid
creating structures that introduce fragility. The necessary condition
for this structure to result from a cut is the existence of one point
on the structure whose tangential plane is nearly parallel to the cut
plane π and whose distance to π is sufficiently small. To eliminate
these cases, we identify the set S of vertices on the part surface
that satisfy at least one of two conditions. The first condition is
that the vertex normal np is sufficiently parallel to the cut plane’s
normal n: i.e., np · n > Tn, where we use Tn = 0.95. To evaluate the
second condition (primarily for parts with bad normals), we check
which one-ring edges point away from the normal and which point
towards the normal. If either set of edges is not contiguous, or is
empty, we add the vertex to S .

Then we identify a subset of points Sfragility ⊂ S that lead to high
fragility. From each point in S , we shoot a ray towards the plane.
If it does not intersect the mesh before hitting the plane and if the
distance to the plane is below a manually chosen threshold τfragility,
then we add the point to Sfragility. We use 1.5 times the connector di-
ameter as the threshold for all test cases. Tying the threshold to the
connector diameter ensures that there is enough room in subsequent
cross sections to place a connector as a side effect of the fragility
objective. Note that S only needs to be computed once per plane
direction instead of once per plane. The final fragility objective is:

ffragility(T ) =

{

0 if Sfragility = ∅,
∞ otherwise.

(6)

3.2.4 Aesthetics

Seam Unobtrusiveness: We would like seams to run through
parts of the surface where they are least likely to be visible or dis-
tracting. For every point on the part surface, we compute a penalty
p for running the seam through that point. This penalty is by de-
fault based on ambient occlusion (we want seams in self-occluded
areas — see Figure 10), but we can also use texture edges if the part
is textured, or user input painted onto the model (Figure 11). In all
cases, we compute the cost ε(C) of the seam S on a cut C as the
normalized integral of p along the seam:

ε(C) =
1
d0

∫

∂C

p dx, (7)

where d0 is the diagonal length of the input model’s OBB. The seam
objective is defined as the sum of the the seam costs of each existing
C in T plus the estimated seam costs for each unfinished part P
whose Θ(P) > 1:

fseam =
1

Θ0

(

∑
C∈T

ε(C) + ∑
P∈T

(

Θ(P)− 1
)

ε̂(P)

)

, (8)

where ε̂(P) is the estimated seam cost for each future cut on P. We
found that the ε of the most recent seam on P is a good estimate of
ε̂(P) in practice.

P1 P2
P3

P4

Figure 8: Fins (e.g., P1) and bridges (e.g., P2) are locations of
potential structural weakness. Our objective distinguishes P1 and
P2 from locations such as P3, which is excluded from consideration
because it hits P4 before it hits the cutting plane.



Figure 9: Without taking part fragility into account, the yellow part
has a thin fin near the tail (left). The fragility objective shifts the
cutting plane so that the tail is solidly attached (right).

One danger with this seam objective is that it favors planes that cut
off only tiny parts. Thus, it is important that its weight be balanced
against the utilization objective (Equation 3), which bears the re-
sponsibility of preventing such small cuts.

Symmetry: To encourage symmetric cuts (Figure 12), we first
detect the model’s dominant reflective symmetry by computing the
Hausdorff distances between the model and its reflections with re-
spect to uniformly sampled planes (500 directions) passing through
the model’s center of mass. To improve robustness to tessellation,
the distance measure is based on a uniform sampling of 10,000
points on the model’s surface. The plane resulting in the smallest
symmetry distance is considered the symmetry plane πsymm, as long
as that distance is below 0.1 times the bounding box diagonal.

The symmetry objective is computed by sampling a set of points P

on all the planes of a candidate BSP tree, and computing the root-
mean-square (RMS) distance between each point and the closest
point under reflection about the symmetry plane. This is normalized
by the diagonal of the initial bounding box d0:

fsymmetry =
1
d0

RMS
p∈P

(

min
q∈P

∥

∥p− reflect(q, πsymm)
∥

∥

)

. (9)

3.3 Connector Placement

After the beam search, we are left with a number of potential con-
nector locations on each cross-section. Some of them may interfere
with each other and not all are necessary: having too many connec-
tors can make the part hard to clean (e.g., of support material used
in manufacturing). We use simulated annealing [Kirkpatrick et al.
1983] to place the connectors, minimizing the following objective:

wI ∑
i, j

Ii, j + ∑
i

Ci

ε + max(0, ci)
, (10)

where wI = 1010 and Ii, j is 1 if connectors i and j interfere and 0
otherwise. Ci is the area of the cross-section connected component
i and ci is the area “covered” by the connectors on that connected
component, computed as follows: each connector covers a certain
area πr2

C. For large cross-sections, we use rC equal to 20 times the
connector radius, but to place more connectors on smaller cross-
sections, we clamp rC to be at most 0.5

√
Ci. For any two connec-

Figure 10: If seam cost is not penalized, Chopper prefers larger cut
cross-sections due to the connector objective (left). With the seam
cost penalty, less obtrusive cuts are chosen (right).

Figure 11: Without user guidance, Chopper may cut through
salient areas (left). The user may indicate an area that should not
be cut (middle), and fseam encourages partitions to avoid it (right).

Figure 12: Taking into account the dominant reflective symmetry
of a model discourages off-center cuts (left) and results in a more
pleasing partition (right).

Figure 13: Left: sampled potential connector locations on a cross-
section. Right: final optimized connector placement.

tors at distance d from each other with d < 2rC of each other, we
subtract 2π(rC − d/2)2 from ci. This ensures that connectors are
spaced roughly rC apart. We set ε to 10−5 to have a high penalty
when a cross-section connected component has no connectors. For
some i, ci can be below zero, and for each such ci we add −ci/Ci to
the objective, to guide the optimization towards a better solution.

A state during simulated annealing is simply a subset of all possi-
ble connectors. A random mutation performs one of the following
actions (with equal probability): (1) picks a connector from among
all possible ones and toggles its presence in the state, or (2) re-
moves a random existing connector and adds a different one. We
run 15,000 iterations at zero temperature to initialize, and then use
a linear cooling schedule and 300,000 iterations for the annealing
to improve the placement. A sample result is shown in Figure 13.

4 Results

We have evaluated Chopper on a number of models, including me-
chanical parts, man-made art objects, and organic forms. Figures 1
and 14 show results printed on different 3D printers, ranging from
commercial to hobbyist-grade. The chair and kitten were printed
on a Fortus 400mc, the helmet and fertility models on an Objet
Connex500, and the armadillo on a Bits from Bytes BFB-3000.

We found that the commercial printers were able to produce parts
that fit together reasonably well, but the Bits from Bytes printer
produced significant distortion in the printed parts, due to uneven
cooling during printing and deformation of parts under their own



Figure 14: 4 Models partitioned by Chopper, then 3D-printed and assembled.

weight. This required the use of a smaller effective working vol-
ume than the maximum of which the device was capable, further
motivating the need for a tool such as Chopper. We also attempted
to produce results using an extremely low-cost printer (Makerbot
Thing-O-Matic), but found that the printed parts had sufficient de-
formation to be unusable. We expect that changes to the driver
software of such printers could result in more usable prints.

Figure 18 shows decompositions and statistics for 16 models. We
report wall-clock timings for an Intel Core i7-920 (2.66 GHz). Par-
allelism is achieved by evaluating batches of cuts with different
normals simultaneously (see Algorithm 1); this yields an average
speedup of 5.9 across eight hardware threads (four cores). All re-
sults in this table were produced with the following weights:

αpart = 1 αutil = 0.05 αconnector = 1
αfragility = 1 αseam = 0.1 αsymmetry = 0.25

Note that only αutil, αseam, and αsymmetry need to be carefully ad-
justed relative to αpart = 1 for the application: ffragility is either 0 or
∞ and fconnector primarily influences the result when it is ∞. There
are a few other constants, such as Tn for the fragility objective that
can be tuned independently (although we found no need to do this)
and others, such as the number of planes that control the trade-
off between the result quality and performance. For our tests, we
have manually selected an appropriate scale for each model, though
Chopper can of course be applied for any ratio of model size to
working volume (Figure 15).

Figure 16 shows running time and the resulting objective value, as
a function of beam width. The running time is roughly linear in
beam width, as confirmed by the slope near 1 in this log/log plot
(red line). The objective value typically decreases little in absolute
terms (black line), but even this modest numerical improvement
results in noticeably better partitions.

5 User Study

To test the plausibility of the partitions produced by Chopper, we
have compared its output to the partitions produced by humans. The
users were constrained to BSP-tree partitions, as is Chopper, and
were given a tool allowing them to add or remove cuts, as well as
see information about the current partition. The information pro-
vided to the users included the values of all the objective functions
used by Chopper, though we observed that in practice users only
referred to the number-of-parts estimates. Users were not given any
explicit instructions about what kinds of partitions were to be pre-
ferred: they were only instructed to partition the model into pieces
that fit within the provided printing volume.

There were 6 participants in our user study. Each was given 2 mod-
els on which to practice, then partitioned a further 4 or 5 models
(kitten, armadillo, chair, fertility, ant). Figure 17 shows results on
one model, and full results are provided as supplemental material.

Chopper was consistently able to produce partitions with equal or
lower numbers of parts than did humans, always achieving lower
total values of its objective functions. This suggests that the op-
timization itself (as opposed to the design of objective functions)

is achieving its goals: matching any “better” cuts produced by hu-
mans would likely require changing the objective functions, not the
beam-search optimization. Though we have not conducted a formal
evaluation of whether Chopper’s partitions are generally preferred
to the users’, or vice versa, informally we observe that there are
few cases in which the users’ results are obviously better, and those
cases require significantly more parts (e.g., compare User #4’s 7-
part armadillo to Chopper’s 5-part result).

6 Conclusion, Limitations, and Future Work

We have explored an automatic and practical method capable of
partitioning a wide range of models for 3D printing. Experimental
results confirm that the partitions Chopper produces can be printed
on a variety of 3D printers and assembled.

Our investigation opens up many avenues for future exploration.
For example, Chopper currently does handle connectors of different
types and sizes for a single object. In our results, the connector size
for a few models with thin features was reduced from the default,
but Chopper could be extended to automatically consider multiple
connector types and sizes and pick the best ones based on the cross-
section, surrounding geometry, and structural considerations.

A more challenging problem is to relax the restriction that our par-
titions be BSP trees. While any partition can be represented as a
tree, our restriction that cuts must be planar can prevent desirable
partitions. The user study indicated that some users feel hampered
by this restriction in placing their cuts: for example, they want to
cut the kitten’s head off independently from its tail, or to place more
natural-looking cuts that follow curved surface features.

Any algorithm accommodating non-planar cuts will have to satisfy
the same objectives we have identified, in particular guaranteeing
printability and assemblability. It is possible to test for these prop-
erties during the search, though in some cases the check is more
complex than for BSP trees (e.g., testing for assemblability requires
checking that all normals of the cutting surface lie within in a hemi-
sphere, rather than being guaranteed by construction). A more seri-
ous problem is organizing the search over possible cutting surfaces
in an efficient way. There are many more possibilities to explore
if cutting surfaces may be non-planar, and enumerating plausible
candidates is a challenging avenue for future work.

Although partitioning models is necessary for objects larger than
the printing volume, it can be beneficial for smaller objects as well,
even if they could in principle be printed as a single part. For ex-
ample printing a hollow object as a single part is impossible on
most printers because support material cannot be removed. Using
partitioning to allow hollow printing, minimizing support material
and other objectives are intriguing directions for future research.

In our experience with Chopper, it has produced many good parti-
tions, but some have room for improvement. Because the precise
desires of a user are difficult to express as objective weights, a rea-
sonable solution would be to put the user in the loop in a more
fundamental way. In our prototype, the user can provide guid-
ance by marking rough desirable partition regions on the surface,
but Chopper makes the final decisions. Instead, the algorithms in



Figure 15: Reducing the working vol-
ume causes this hand model to be parti-
tioned into 10 and 18 parts (cf. original
in Figure 18, with 7 parts).
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Figure 16: Increasing beam width results in decreased objective values, and hence better
partitions, at the cost of increased running time.

Chopper User #1 User #2 User #3 User #4 User #5 User #6

5 parts, 139 s 8 parts, 504 s 8 parts, 728 s 6 parts, 346 s 7 parts, 267 s 9 parts, 540 s 7 parts, 252 s

Figure 17: Sample results from a user study comparing Chopper to humans. Full results are provided as supplemental material.

Chopper could interactively provide suggestions for cutting planes
and feedback (such as min-cover or printing time estimates), but
the user would be responsible for the final cutting plane. Which
solution is ultimately superior is a subject for future investigation.
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