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Chord-distribution functions of three-dimensional random media:

Approximate first-passage times of Gaussian processes

A. P. Roberts*
Princeton Materials Institute and Department of Civil Engineering and Operations Research, Princeton University,

Princeton, New Jersey 08544

S. Torquato†

School of Mathematics, Institute for Advanced Study, Princeton, New Jersey 08540

~Received 23 September 1998!

The main result of this paper is a semianalytic approximation for the chord-distribution functions of three-

dimensional models of microstructure derived from Gaussian random fields. In the simplest case the chord

functions are equivalent to a standard first-passage time problem, i.e., the probability density governing the

time taken by a Gaussian random process to first exceed a threshold. We obtain an approximation based on the

assumption that successive chords are independent. The result is a generalization of the independent interval

approximation recently used to determine the exponent of persistence time decay in coarsening. The approxi-

mation is easily extended to more general models based on the intersection and union sets of models generated

from the isosurfaces of random fields. The chord-distribution functions play an important role in the charac-

terization of random composite and porous materials. Our results are compared with experimental data ob-

tained from a three-dimensional image of a porous Fontainebleau sandstone and a two-dimensional image of a

tungsten-silver composite alloy. @S1063-651X~99!06005-5#

PACS number~s!: 02.50.2r, 05.40.2a, 81.05.Rm, 47.55.Mh

I. INTRODUCTION

The statistical characterization and modeling of two-phase

disordered microstructure is a central problem in many fun-

damental and applied sciences @1#. Predicting the properties

of disordered materials relies on the availability of accurate

microstructural models, which rely in turn on accurate statis-

tical characterization. After the volume fraction of each

phase, and interfacial surface area, the most important statis-

tical quantity is the two-point correlation function which is

obtained from cross-sectional micrographs, or small-angle

scattering experiments. Although the two-point correlation

function is very useful, there are a variety of important prob-

lems where more detailed statistical information is neces-

sary. Another useful characteristic of microstructure, which

has proved essential in theory and application, is the chord-

length distribution function @2#. The chord functions play an

important role in stereology @3#, mineralogy @4#, the interpre-

tation of small-angle x-ray scattering data @5#, and have been

incorporated in theories of mass transport in porous media

@6#. Recently the chord functions ~and the related ‘‘lineal-

path’’ function @7#! have been employed in the generation of

three-dimensional ~3D! microstructural models for predicting

macroscopic properties @8–10#. In this paper, we derive ap-
proximate forms of the chord functions for a relatively new
model of random media based on Gaussian random fields.

A useful model of two-phase random porous and compos-
ite media is obtained by modeling the internal interface of
the microstructure as the isosurface ~or level cut! of a corre-
lated Gaussian random field y(r) @11–15#. A region of space
can be divided into two phases ~e.g., pore and solid! accord-
ing to whether y(r) is less or greater than some threshold.
We define phase 1 to occupy the region where y(r)<b and
phase 2 to occupy the region where y(r).b . This is illus-
trated for two dimensions in Figs. 1~a! and 1~b!. The model,
and variants, have proved useful in describing the micro-
structure of many different materials @8,16,17#; and a more
thorough characterization of the microstructure is an impor-
tant goal. The two- and three-point correlation functions of
the model can be calculated, but the chord functions are pres-
ently measured from simulations @8,17#. There are advan-
tages ~for speed, accuracy, and interpretation! in obtaining
analytic expressions for the chord functions of the model. As
we show, the problem is equivalent to finding the probability
density governing the time it takes for a Gaussian random
process to first cross an arbitrary threshold. This is a conven-
tional first-passage time problem.

First-passage time problems arise in many branches of
physics @18#, information theory @19#, queuing theory @20#,
ocean science @21#, and reliability studies in the engineering
sciences @22# among others. For this reason the problem has
received a great deal of attention. Rice actually provided a
formal series solution to the problem for Gaussian processes
@23#. However, the series involves very difficult integrals of
which only the first is generally evaluated @18#; the results
being accurate for small time. There are many approaches to
finding useful approximations for first-passage times ~the
aforementioned references provide reviews of the literature
in each field!. Here we restrict attention to methods based on
the assumption that the lengths of successive chords are in-
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dependent. This idea can be traced back to Siegert @24# and
McFadden @25#. The approximation we use is most clearly
derived from the independent interval process @5,26# for
which the assumption of independent chords is true by defi-
nition. This approach was recently suggested for the calcu-
lation of persistence times in coarsening @27,28#. The method
can be extended to obtain the chord distributions, and actu-
ally provides an extremely useful way of viewing related
problems in different fields. In the following sections we
derive some properties of the chord function and the inde-
pendent interval process. The model is then applied to ap-
proximate the chord functions of level-cut Gaussian random
fields. Finally, we compare the theoretical results with ex-
perimental data.

II. CHORD-DISTRIBUTION FUNCTIONS

For a two-phase medium, there is a chord distribution
associated with each phase p i(z) (i51,2). The quantity
p i(z)dz is defined as the probability that a randomly chosen
chord in phase i ~a line segment with end points on the phase
interface! has length in the range @z ,z1dz# . In Fig. 1~b!, we
illustrate calculation of p1(z) and p2(z) for isotropic media:
An ‘‘infinite’’ line ~or many shorter ones with arbitrary ori-
entation! is drawn through the material, and the number of
chords in phase 1 @N1(z)# with length in the range @z ,z
1dz# is counted. If N is the total number of chords of phase
1, then p1(z)dz5N1(z)/N . The quantity p2 is defined in an
analogous manner. An important quantity is the number of
phase crossings per unit length nc52N/L . A fundamental
relation in stereology gives nc5

1
2 s

v
where s

v
is the specific

surface, i.e., the surface area to total volume ratio of a 3D
composite. Another useful relation follows from the fact that

total length of the chords is equal to that of the original line:

(zN1(z)z1(zN2(z)z5L . If we divide by N and convert the

sums to integrals we have *p1(z)zdz1*p1(z)zdz52/nc .
Similarly (zN i(z)z5f iL where f i is the volume fraction of
phase i. This gives the relation ^z i&5*p i(z)zdz52f i /nc .
These equalities are used extensively below. A useful statis-
tical quantity is the lineal-path function of each phase
L i(z) (i51,2), which represents the probability that a ran-
dom line segment of length z thrown into the material falls
completely within phase i and is related to p i(z) by L i(z)

5
1
2 nc* z

`p i(x)(x2z)dx @7#.
One reason for the usefulness of the chord function is that

p i(z) can be directly interpreted in terms of observable mi-
crostructure features. First, if p i(0)Þ0 then, at the resolution
at which it is measured, phase i contains sharp corners. Sec-
ond, the value at which p i(z) takes a maximum value pro-
vides an estimate of the length scale associated with phase i.
Another is provided by the average chord length ^z i& . Third,
if p i(z)Þ0 for large z, connected regions in phase i at scale
z exist. This ‘‘connectedness’’ information ~along a lineal
path! is clearly important if long-range phenomena ~like
macroscopic properties! are to be studied. The direct rela-
tionship between p i(z) and morphology shows that the chord
functions give a strong ‘‘signature’’ of microstructure and
are therefore an important tool in the characterization of po-
rous and composite media.

The chord and lineal-path functions are closely related to
first-passage times in the theory of stationary time-dependent
random processes. The analogy is shown in Fig. 1~c!. If the
values of a random field along a line are plotted against time
a one-dimensional random process y(t) is obtained. If a
down crossing of the threshold b occurs at t5td @so y(td)
5b#, the probability that the process first exceeds the thresh-
old in the interval @ td1t ,td1t1dt# is p1(t)dt . The corre-
sponding density for the first down crossing after an up
crossing ~sometimes called the second-passage time! is
p2(t). There are several other common first-passage times
which relate to our work. Suppose y(t) is a random process
representing the response of an electrical or mechanical com-
ponent which fails if y(t) exceeds some ~generally high!
threshold @y(t).b#. A key quantity is the probability of
failure F(t) in the interval @0,t# @29#. Since the safe region is
phase 1 the failure probability is just F(t)512L1(t)
@F(0)512L1(0)5f2 being the probability of instanta-
neous failure#. A related quantity is the probability distribu-
tion of failure times f 1(t) given that t50 is in the safe re-

gion @22#. This is given by f 1(t)52L18(t)/f1.

III. INDEPENDENT INTERVAL PROCESS

The independent interval process @5,26# is constructed by
taking the lengths of successive intervals to be independent
of one another and distributed according to the probability
~chord! distribution functions p1(z) and p2(z) for phase 1
and 2, respectively ~this implies a stationary process!. Since
this completely defines the process it is possible to derive all
other statistical properties ~such as the two-point correlation
function! from p1(z) and p2(z). The indicator function I(x)
~which is unity in phase 1 and zero in phase 2! is very useful
in this regard. From above we have

FIG. 1. Generation of a two-phase model ~b! by thresholding a

Gaussian random field ~a!. The chord length distribution functions

are calculated by counting the number of chords of a given length

~b!. In one dimension the chord lengths z1 and z2 are defined by up

and down crossings ~shown as u and d, respectively! of a threshold

b by a random process ~c!.
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nc5^uI8~x!u&5

2

^z1&1^z2&
, ~1!

f15^I~x!&5

1

2
nc^z1&, ~2!

f25^12I~x!&5

1

2
nc^z2&. ~3!

Note that the results are true irrespective of correlations be-
tween successive chords.

Now consider the two-point correlation function which is
defined as

S11~x !5^I~x1!I~x2!&. ~4!

Stationarity of the process ~and isotropy in more than one
dimension! implies that the average only depends on x

5ux22x1u. To express S11 as a function of p1 and p2 it is
necessary to derive some preliminary results. The method is
adapted from Ref. @27#. Although the model is independent
of any random field it is useful to describe the left-hand ends
of chords in phase 1 and 2 as down crossings and up cross-
ings, respectively ~see Fig. 1!. Consider the probability
Ru1(x) that a point at distance x to the right of an up crossing
~or right-hand end of a chord in phase 1! falls in phase 1.
Suppose the chord ~of phase 2! immediately to the right of
the down crossing has length z2. If z2.x then the point falls
in phase 2. If z2,x the chance that the point falls in phase 1
is Rd1(x2z2), where Rd1(y) is the probability that a point at
distance y to the right of a down crossing falls in phase 1.
Thus

Ru1~x !5E
0

x

dz2p2~z2!Rd1~x2z2!. ~5!

Now consider the converse problem for Rd1(x). Let z1 be the
length of the first chord ~of phase 1! to the right of a down
crossing. The probability that a point a distance x from the
down crossing falls in phase 1 is unity if z1.x and Ru1(x

2z1) if z1,x , giving

Rd1~x !5E
x

`

dz1p1~z1!1E
0

x

dz1p1~z1!Ru1~x2z1!. ~6!

Taking Laplace transforms of both equations and solving we
have

Ru1
̂5

p̂2~12 p̂1!

s~12 p̂1 p̂2!
, ~7!

Rd1
̂5

~12 p̂1!

s~12 p̂1 p̂2!
, ~8!

where f̂ 5 f̂ (s)5*0
`e2sx f (x)dx denotes the usual Laplace

transform.
Next we need the probability Q1(y)dy that an arbitrary

point will fall in phase 1 a distance @y ,y1dy # from the left
of the first down crossing on its right. The chance that the
point falls on a 1-chord of length @z1 ,z11dz1# is

1
2 ncp1(z1)z1dz1. The point will be uniformly distributed
along the chord, therefore if it falls on a chord of length z1

the probability that it lies a distance @y ,y1dy # from the left
end is just dy /z1. To obtain the total probability we must
sum over all chords with z.y , giving

Q1~y !dy5

nc

2
E

y

`

dz1p1~z1!z1

dy

z1

, ~9!

Q̂15

nc

2s
~12 p̂1!. ~10!

Note that Q1(0)5
1
2 nc , as it should, since the probability

that a point lies within a distance dy ~to the left! of a down
crossing must be 1

2 ncdy .
Recall that S11(x) is the probability that two points a dis-

tance x apart fall in phase 1. The chance that the second point
falls in phase 1 ~given that the first does! depends on whether
the distance to the first up crossing y is greater or less than
the distance x. If y.x then the right-hand point falls in phase
1 with unit probability. If y,x then the right-hand point falls
in phase 1 with probability Ru1(x2y). Thus we have

S11~x !5E
x

`

dyQ1~y !1E
0

x

dyQ1~y !Ru1~x2y !. ~11!

Note that S11(0)5f1 as it should since S11(0) is just the
probability that a single point falls in phase 1. Taking
Laplace transforms we obtain

Ŝ115
f1

s
2

nc

2s2

~12 p̂1!~12 p̂2!

12 p̂1 p̂2

. ~12!

Two other correlation functions of the independent inter-
val process are important for later discussions. The first,
Sc1(x)5^uI8(x1)uuI(x2)u&, is the 1D analog of the surface-
void correlation function which arises in the study of 3D
porous materials @1#. The second is the crossing-crossing
correlation function Scc(x)5^uI8(x1)uuI8(x2)u& analogous to
the surface-surface correlation function @1#. Again, stationar-
ity implies that Sc1 and Scc depend only on the distance x

5ux22x1u.
From the definition of Sc1 we have

eSc1~x !' K UIS x11

e

2
D2IS x12

e

2
D UI~x2!L , ~13!

where e is small. The expression on the right-hand side is the
probability that x1 lies within a distance e/2 ~which we call
an e interval! of a crossing and that x2 lies in phase 1. With-
out loss of generality, we consider the case x2.x1. Now
there is an equal chance of the first point landing in an e
interval of an up or down crossing ~probability 1

2 enc). The
probability that x2 falls in phase 1 is then either Ru1(x) or
Rd1(x). Hence, for e→0,

eSc1~x !5

1

2
enc@Ru1~x !1Rd1~x !# ~14!

or, using Laplace transforms,
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Ŝc15

nc

2s

~12 p̂1!~11 p̂2!

12 p̂1 p̂2

. ~15!

Similarly we write the crossing-crossing correlation func-
tion as

e2Scc~x !' K UIS x11

1

2
e D2IS x12

1

2
e D U

3UIS x21

1

2
e D2IS x22

1

2
e D UL , ~16!

where the expression on the right is clearly the probability
that both points lie within an e interval of a crossing. To
express this quantity in terms of the chord distributions sev-
eral additional functions are needed. Let Rud(x) be the prob-
ability that a point a distance x from an up crossing falls in
an e interval of a down crossing. This can occur in two ways;
either the first chord of phase 2 adjacent to the up crossing
has length z25x , or z2,x in which case the point falls near
a down crossing with probability Rdd(x2z2), where Rdd(y)
is the probability that a point at distance y to the right of a
down crossing is in an e interval of a down crossing. This is
expressed as

Rud~x !5ep2~x !1E
0

x

dz2p2~z2!Rdd~x2z2!. ~17!

The functions Ruu , Rdu are similarly defined and three addi-
tional relations among the four functions can be derived and
solved to give

R̂ud5e p̂2 /~12 p̂1 p̂2!, ~18!

R̂du5e p̂1 /~12 p̂1 p̂2!, ~19!

R̂dd5R̂uu5e p̂1 p̂2 /~12 p̂1 p̂2!. ~20!

Now from the definition of Scc it is clear that

e2Scc~x !5

1

2
enc@Ruu1Rud1Rdu1Rdd# ~21!

as e→0. After taking Laplace transforms this gives

Ŝcc5

nc

2

p̂11 p̂212 p̂1 p̂2

12 p̂1 p̂2

. ~22!

A final expression which is useful for relating this work to
prior approaches is

R1u~x !5e f 1~x !1E
0

x

dyRuu~x2y ! f 1~y !, ~23!

where R1u(x) is the probability that a point at distance x

from a point in phase 1 falls within an e interval of an up
crossing, and f 1(x) is the probability distribution of ‘‘failure
times’’ discussed earlier.

Although this analysis of the independent interval pro-
cess, and the results for Sc1 and Scc , appear new, variants of
Eq. ~12! for S11 have actually been derived in several quite

different contexts. It is useful to briefly demonstrate these
connections. The Poisson-Boolean model @2# of random two-
phase media has been widely studied and applied. In this
model, grains ~which may be of different shapes and sizes!
are placed at uncorrelated random points in space ~so the
grains may overlap!. For spherical inclusions this is just the
overlapping sphere ~or Swiss-cheese! model @1#. For convex
grains of any shape or size, the chord-distribution function of
the phase exterior to the grains is p1(z)5lexp(2lz) where
l5s

v
/4f1. Since the grains are uncorrelated in space and

convex it is clear that the length of successive chords along
any line through a realization of the model will be indepen-
dent. Therefore Eq. ~12! applies. Specializing to Boolean

models @ p̂15l/(l1s)# we recover the well known result
~e.g., Ref. @4#!

sŜ11

f1

5

12 p̂1

12 p̂1 p̂2

. ~24!

Since S11(x) is known for many Boolean models, this result
allows p2 to be calculated:

p̂2511s/l2f1 /l Ŝ11 . ~25!

Let us further specialize to the case of a 1D Boolean process
where the grains are rods with random lengths distributed
according to the cumulative distribution function C(z). For

this model S11(x)5f1exp$2l*0
x@12C(z)#dz% and the for-

mula for p̂2 becomes a well known result for the busy period
in an M /G/` queue @20,30#.

The independent interval process is useful in the interpre-
tation of small-angle x-ray scattering data. In Refs. @5,26# the
Fourier transform of d2S11 /dx2 was derived in terms of the
Fourier transforms of the chord functions. The result can be
shown to be equivalent to Eq. ~12!. Rice’s @23# formulas for
S11 for two different types of random telegraph signal can
also be rederived using Eq. ~12!. In the next section we show
how the independent interval process can be used to derive
useful approximations of the chord functions for the single
level-cut Gaussian random field ~GRF! model.

IV. CHORD FUNCTIONS OF LEVEL-CUT GAUSSIAN

RANDOM FIELDS

A Gaussian field is statistically specified in terms of a
field-field correlation function ^y(r1)y(r2)&5g(ur22r1u)
@23,31#. Here we consider isotropic stationary fields with
zero mean @^y(r)&50# and unit variance @^y2(r)&5g(0)
51#. Many methods exist for generating GRF’s with a given
g(r). For example, in 1D we have

y~x !5(
i51

N

a i cos k ix1b i sin k ix , k i5

2pi

T
, ~26!

where a i and b i are independent Gaussian random variables

with mean zero and ^a i
2&5^b i

2&5(2p/T)F(k i). In the limit

N ,T→` such that N/T→` the correlation function is g(x)

5*0
`F(k)cos(kx)dx. F(k) is called a spectral density. When

F(k) is a wide or narrow distribution, the process is, respec-
tively, said to be wide or narrow band. The 3D analog is
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y~r!5 (
l52N

N

(
m52N

N

(
n52N

N

c lmne iklmn•r, ~27!

where klmn5(2p/T)(li1mj1nk) and c l ,m ,n5a lmn

1ib lmn . For y real and ^y&50 we take c l ,m ,n5 c̄2l ,2m ,2n

and c0,0,050. As above, a lmn and b lmn have mean zero and

^a lmn
2 &5^b lmn

2 &5
1
2 (2p/T)3r(k lmn). In this case g(r)

54pr21*0
`4pkr(k) sin krdk. A two-dimensional random

field is shown in Fig. 1~a!.
A two-phase level-cut GRF model is specified by the mi-

crostructure indicator function I(r)5H„b2y(r)…, where H

is the Heaviside step function. There are two very useful
properties of the Gaussian model. First the random field is
ergodic ~ensemble averages equal spatial averages!, and sec-
ond the variables y(ri) i51,2,3 . . . and their spatial deriva-
tives @“y(ri), etc.# are correlated Gaussian random variables
with known joint probability distribution. This allows many
useful statistical properties of the thresholded model ~such as
S11) to be calculated.

In the preceding section we derived the properties of the
independent interval process in terms of p1 and p2. How-
ever, it is clear that if any two of the microstructure functions
(p1 , p2 , S11 , Sc1 , Scc) are known the remainder can be
determined by means of Eqs. ~12!, ~15!, and ~22!. Since S11 ,
Sc1, and Scc can be calculated for the level-cut GRF model,
this allows an approximation to be derived for the chord
functions. The accuracy of the results will then depend on
the validity of the hypothesis that successive chords of the
model are uncorrelated ~or nearly so!. For simplicity we con-
sider the case where S11 and Sc1 are known. Simultaneous
solutions of Eqs. ~12! and ~15! then give

p̂15

nc2s~ Ŝc12sŜ111f1!

nc2s~ Ŝc11sŜ112f1!
, ~28!

p̂25

Ŝc11sŜ112f1

Ŝc12sŜ111f1

. ~29!

This result can be considered a generalization of a recent
approximation developed independently by the authors of
Refs. @27# and @28#. In a study of the zero-threshold case
@where p(z)5p1(z)5p2(z)# they found

p̂5

nc1s~2 Ŝ1121 !

nc2s~2 Ŝ1121 !
, ~30!

where S11(x)5
1
4 1(1/2p)arcsin@g(x)#. This result is ob-

tained by substituting f15f25
1
2 and Sc15nc/2 ~which is

true for any symmetric medium! into Eqs. ~28! and ~29!. The
result provided an excellent approximation for the case
g(x)5@1/cosh(x/2)#d/2 (d51,2,3).

Clearly other approximations can be obtained using the
independent interval process, and several have been previ-
ously given. For example, Eq. ~17! was obtained by McFad-
den @25# and Rice @32#, and approximate forms of Eq. ~23!
have been used to obtain the distribution of failure times
@22#. If the chords are uncorrelated all the methods will give
identical results. An advantage of approximation ~30! and its
generalization @Eqs. ~28! and ~29!# is that S11 and Sc1 are

relatively simple to evaluate; the functions Ruu , Rdd , and
Rud appearing in the integral equations Eqs. ~17! and ~23! are
quite complex for a nonzero threshold @32#.

To evaluate the approximations for an arbitrary threshold
we have the following results:

f15

1

2
1

1

2
erf

b

A2
, nc5

g

p
e2~1/2!b2

, ~31!

S115f1
2
1

1

2p
E

0

g~x ! dt

A12t2
expS 2

b2

11t
D , ~32!

Sc15

nc

2
1

nc

2
erfFgb~12g !

A2uGu
G

2

g8exp@2b2/~11g !#

2pA12g2
erfF b

A2uGu
g8A12g

11gG ,

~33!

where g5A2g9(0) and uGu5g2@12g2(x)#2@g8(x)#2.
The results for nc @23# and S11 @13# are well known, and the
final expression for Sc1 can be evaluated using the method of
Rice as follows. For the level-cut Gaussian random field, we
have

Sc15^d„b2y~x1!…uy8~x1!uH„b2y~x2!…&. ~34!

The variables w5@w1 ,w2 ,w3#5@y(x1),y(x2),y8(x1)# have
Gaussian distributions with cross correlation matrix

g i j5^w iw j&⇒G5F 1 g~x ! 0

g~x ! 1 2g8~x !

0 2g8~x ! 2g9~0 !
G ~35!

for x5ux22x1u and x2.x1. If x2,x1 , ^y(x1)y8(x2)&
5g8(uxu) but this does not affect the final result. To find Sc1

we must therefore evaluate

E E E dwd~b2w1!H~b2w2!uw3u
e2~1/2!wTG21w

~2p !3/2uGu1/2
.

~36!

The integrals extend over all space and the final factor is just
the joint probability density function of w i . The result is
given in Eq. ~33!.

To obtain p i it is necessary to invert Eqs. ~28! and ~29!.
This can be done using a short and efficient algorithm @33#.

As previously noted, p̂ i needs to be known to around nine
significant figures to achieve four significant figure accuracy
in the result @30#. To minimize cancellation errors in the
numerators and save one integration, we rewrite Eqs. ~28!
and ~29! as

p̂15

S119̂ 2sSc1
T̂

nc2S119̂ 2sSc1
T̂

, ~37!
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p̂25

S119̂ 1sSc1
T̂

nc2S119̂ 1sSc1
T̂

, ~38!

where Sc1
T (x)5Sc1(x)2

1
2 nc . The Laplace transforms S119̂ (s)

and Sc1
T̂ (s) on the right-hand side of Eqs. ~37! and ~38! can

be evaluated using numerical quadrature.
To check the validity of the independent interval approxi-

mation, we measure the chord distribution directly from re-
alizations of the thresholded model. This is simpler ~and
minimizes finite-size effects! in one dimension. A 1D ran-
dom process y1(x) can be obtained from a 3D GRF y3(r) by

taking y1(x)5y3(r01n̂x) where r0 is an arbitrary origin and

n̂ is a unit vector with arbitrary orientation. Now y1(x) can
be generated independently of y3(r) by using the 1D defini-
tion for y(x) given in Eq. ~26!. To ensure that y(x) and
y1(x) are statistically identical they must share g(x). This is

true if F(k)54p*k
`sr(s)ds , where F and r are, respec-

tively, the spectral densities of the 1D and 3D random fields.
This shows that F(k) must be a nondecreasing function for
1D random processes obtained from 3D random fields.

In the modeling of random media, the following Fourier
transform pairs @g(x) and r(k)52F8(k)/(4pk)# have
proved useful:

ga5e2x/jS 11

x

j
D , ~39!

Fa5

4j

p~11j2k2!2
, ~40!

gb5e2x2/l0
2

, ~41!

Fb5

l0

Ap
e2~1/4!k2l0

2

, ~42!

gc5e2x/j~11x/j !
sin 2px/d

2px/d
, ~43!

Fc5

d

2p2 S tan21c21tan21c11

c1

11c
1

2
1

c2

11c
2

2 D ,

c65zS 2p

d
6k D . ~44!

For a finite number of crossings per unit length ~or specific
surface in three dimensions! it is necessary that g8(0)50
@23#. For simplicity we restrict attention to the following

parameters which give g5A2g9(0)51 mm21: ~a! j
51 mm; ~b! l05A2 mm; and ~c! j5A2 mm, d

54p/A6 mm. A cross section of the two-phase medium
generated in each of the three cases is shown in Figs. 2~a!–
2~c!. We have checked the approximation in the volume
fraction range f1P@0.1,0.9#; results for f150.2 are shown
in Fig. 2 ~and are typical of those at other volume fractions!.
The independent interval approximation is seen to provide
remarkably accurate estimates of the measured chord distri-
butions.

The largest deviations between simulation and the ap-
proximation are seen for the oscillatory correlation function
gc(x). We can investigate this ‘‘narrow-band’’ limit by tak-
ing j→` in gc(x), which gives

gd~x !5

sin 2px/d

2px/d
, ~45!

Fd5

d

2p
HS 2p

d
2k D . ~46!

The results for p1 at volume fractions f150.2, 0.5, and 0.8
are shown in Fig. 3, and S11(x) is shown in Fig. 4. At f1

50.5 the approximation is equivalent to that of Refs. @27,28#.
The approximation breaks down after one wavelength d and
actually falls below zero ~which is not inconsistent with the
derivation!. This is because the process @see Fig. 3~a!# has
approximately periodic regions, extending over several
wavelengths, which implies some level of correlation be-
tween adjacent chords. For example, at f150.5, a chord of
length ' 1

2 d is more likely to be followed by another of
approximately the same length than if it were randomly cho-
sen according to the probability distribution p2(z). This con-
tradicts the assumptions of the independent interval approxi-
mation. The oscillations in the autocorrelation function ~Fig.
4! clearly reflect appreciable order in the system.

Note that gd(x) represents the worst-case ~or most
narrow-band! process corresponding to a 3D field since
rd(k)}d(2p/d2k) ~i.e., an infinitely narrow band pass fil-
ter!. However, the related 1D process corresponds to a low
pass filter ~i.e., it is not strongly narrow band!. This shows

FIG. 2. Chord functions of single-cut Gaussian random fields at

volume fraction f150.2. The symbols are directly measured from

simulations, and the lines correspond to the independent interval

approximation. The models @see Eqs. ~39!–~44!# are shown in the

top row with side length 40 mm: ~a! ga(x), s; ~b! gb(x), h; ~c!

gc(x), n . The chord functions correspond to the first-passage time

problem considered by Rice.
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that approximations valid for medium- and wide-band
Gaussian random processes are sufficient to reproduce the
chord functions of 3D models based on random fields. The
failure of the independent interval approximation in this
narrow-band limit is not critical for two reasons. First, the
model gc(x) ~with j.0, for which the approximation is rea-
sonable! has been found more relevant to physical materials
than model gd(x) ~e.g., see Sec. VI!. Second, even in the
worst case, the approximation remains useful out to one
wavelength. This may prove adequate for material character-
ization.

V. EXTENSION TO MORE COMPLEX MODELS

So far our results have been concerned with the conven-
tional first-time distributions associated with an arbitrary
threshold (b) of a Gaussian random process. However, the

single-cut random field model is not sufficiently general to
model the microstructure of many interesting materials. To
model the bicontinuous structure of microemulsions, Berk
@13# suggested that phase 1 be defined as the region in space
where a,y(r),b , this is the so-called two-cut model @Fig.
5~a!#. The two-cut model has also proven useful in interpret-
ing conductivity and percolation behavior in polymer blends
@34#. Open cell foams ~e.g., aerogels! and the porous network
of sandstones have been modeled by the intersection sets of
two statistically identical ~but independent! two-cut fields
@Fig. 5~b!#, and closed cell foams may be modeled by the
union of two such structures @Fig. 5~c!# @8#. Our method can
be simply extended to these problems.

For Berk’s @13# two-cut model, we have

f15

1

2
erf

b

A2
2

1

2
erf

a

A2
, ~47!

nc5

Ag

p
~e2~1/2!b2

1e2~1/2!a2
!, ~48!

S115f1
2
1

1

2p
E

0

g~x ! dt

A12t2
3F expS 2a2

11t
D

22expS 2abt2a2
2b2

2~12t2!
D 1expS 2b2

11t
D G , ~49!

Sc15 f bb1 f ba2 f ab2 f aa , ~50!

where

FIG. 3. The phase 1 chord function of a level-cut GRF with

g(x)5sin(kx)/(kx) (k5A3 mm) at three different volume frac-

tions. The inset shows the microstructure at f150.2 ~side length

40 mm). A 1D transect ~length 150 mm) of the random field is

shown in ~a!. The horizontal lines correspond to the threshold at

each volume fraction. The independent interval assumption breaks

down because the process is nearly periodic in some regions.

FIG. 4. The normalized two-point correlation function @Eq.

~32!# of the random model shown in Fig. 3. The strong oscillations

in S11(x) correspond to periodic correlations in the microstructure.

FIG. 5. The independent interval approximation compared with

simulations of the chord functions for three distinct models based

on level-cut Gaussian random fields: ~a! Berk’s two-cut model, s;

~b! the intersection set of two two-cut models, h; ~c! the union set

of two two-cut models, n . The side length of the images is 15 mm.
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f ab5^H„a2y~x1!…d„b2y~x2!…uy8~x2!u&

5

Age2 ~1/2 ! b2

2p
S 11erfFA g

2uGu
~a2bg !G D ~51!

2

g8

2pA12g2
expS 2

1

2

a2
22abg1b2

12g2 D
3erfFa2bg

A2uGu

g8

A12g2G . ~52!

Using these results we can directly apply the approximation
for the chord distributions. We use the field-field function

gb(x) with l05A2 mm and consider a ‘‘centered’’ two-cut
field (a52b) at volume fraction f50.2. The results are
shown as circles in Fig. 5 and show very good agreement
with simulations.

To evaluate the chord functions of the intersection and
union sets we first derive their statistical properties. Suppose
V(x) and C(x) are the indicator functions of two indepen-
dent, but statistically identical, models of random media with
properties f1 , nc , S11 , and Sc1. A new model is obtained by
forming the intersection set of V and C which has indicator

function I(x)5V(x)3C(x). Clearly f1
I
5^I&5^V&^C&

5f1
2 and nc

I
5^uI8u&5^uV8C1VC8u&5^uV8uC1VuC8u&

52^V&^uV8u&52f1nc . The relation uV8C1VC8u
5uV8uC1VuC8u is true everywhere except where the inter-
face of C and V intersects. The contribution of this error to
the final result is negligible. A similar reasoning can be ap-

plied to find S11
I and Sc1

I , as well as corresponding results for

an analogously defined union set with indicator function
I(x)5V(x)1C(x)2V(x)3C(x). In summary the results
needed to apply the approximation for the chord-distribution
function are

f1
I
5~f1!2, ~53!

nc
I
52f1nc , ~54!

S11
I

5~S11!
2, ~55!

Sc1
I

52S11Sc1 , ~56!

f1
U

5f1~22f1!, ~57!

nc
U

52~12f1!nc , ~58!

S11
U

52~f1!2
12S11~122f1!1~S11!

2, ~59!

Sc1
U

52Sc1~122f11S11!12nc~f12S11!. ~60!

Here the unsuperscripted microstructure properties corre-
spond to the primary models V and C and the superscripted
(I or U) functions are to be used in Eqs. ~28! and ~29!.

Although Eqs. ~53!–~60! are true for any independent ran-
dom models, we restrict attention to the case where the pri-
mary sets are obtained from Berk’s model @see Eqs. ~47!–
~50! and Fig. 5~a!#. As above we consider centered models
(a52b) at volume fraction f150.2 obtained from random

fields with correlation function gb(x) (l05A2 mm). The

results of the independent interval approximation are com-
pared with simulations in Fig. 5. In general the approxima-
tion is excellent. For r,3 mm significant deviations ~up to
10%! are seen between the calculated and simulated values
of the chord distribution of phase 2 (p2).

VI. APPLICATION TO POROUS AND COMPOSITE

MATERIALS

To study the properties of a random medium it is impor-
tant to have an accurate model of the microstructure. If the
physical mechanisms responsible for the evolution of the mi-
crostructure are not well known ~or difficult to simulate! an
empirically based statistical model may be useful
@8–10,12,16#. The level-cut GRF model is well suited to this
approach because of its generality: the morphology of the
model may be ‘‘tuned’’ to some degree to match that of the
random medium. The simplest and most common morpho-
logical quantities are the density ~or porosity! and the two-
point correlation function, which can both be measured from
a cross-sectional image. It is possible to generate a GRF
model with approximately the same statistical properties by
an appropriate choice of parameters @8,12,16#.

As an example we show a binarized image of a tungsten-
silver composite @35# along side a single-cut GRF model in
Fig. 6. The parameters of the model were derived in Ref.
@36# as follows. The level-cut parameter is taken as b
520.84 so that the silver volume fraction f150.2 is ex-
actly that of the composite @Eq. ~31!#. The random field is
generated using rc(k) @Eq. ~44!#. The length scales of the
random field j52.15 mm and d513.0 mm are chosen ~by
a nonlinear least squares method! so that the two-point cor-
relation function of the model matches that of the composite.
The theoretical and experimental values of S11(r) ~which are
practically indistinguishable! are shown in the inset of Fig 7.
Since the volume fraction and two-point function do not
uniquely specify a random microstructure ~i.e., many differ-
ent models may reproduce these morphological quantities
@8#!, it is necessary to test the results. The chord functions
are ideal in this regard as they provide a strong signature of
microstructure and can be measured from a cross-sectional
image. The independent interval approximation and experi-
mental data are compared in Fig. 7. The reasonable agree-
ment between theory and experiment indicates that the
model is capturing important features of the tungsten-silver
composite.

FIG. 6. A binarized image of a silver-tungsten composite @35#

~a! compared with a model @36# based on a level-cut Gaussian ran-

dom field ~b!. The side length is 99.4 mm. The parameters and the

model are chosen to reproduce the experimental two-point function

and chord-distribution function ~see Fig. 7!.
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A second example is provided by a digitized image of
Fontainebleau sandstone obtained by x-ray tomography
@37,38#. To mimic the granular character of the sandstone
@Fig. 8~a!# we use a model based on the intersection set of
n(55) single-cut Gaussian random fields. The result is
shown in Fig. 8~b!. To match the porosity of the model with
that of the sandstone (f50.154), we take b50.48 for each
of the five primary random field models. This corresponds to
f15(0.154)1/5. The experimental two-point function is re-
produced by choosing j551.9 mm and d5272 mm in
model gc(r) ~by a least squares method!. The independent
interval approximation for the chord functions is calculated

using the relations S11
I

5(S11)
n and Sc1

I
5n(S11)

n21Sc1

@which are a straightforward extension of Eqs. ~55! and
~56!#. The results are shown in Fig. 9. The model is able to
mimic the two-point function extremely well, and the chord
functions with good accuracy. This provides evidence that
the model is reasonable. 3D images of the model and sand-
stone microstructures are shown in Figs. 10 and 11. The
sandstone appears more well connected than the model, the
model showing more isolated pores. This is actually an arti-
fact of the method used to plot the pore-solid interface. An

algorithm was used to determine that 98.8% of the pore
space in the model is connected to the outer faces, which
compares well with 99.6% for the sandstone. Therefore the
model is also able to capture the interconnections of the
sandstone pores.

VII. CONCLUSION

We have derived a semianalytic approximation for the
chord-distribution functions (p1 and p2) of 3D random me-
dia. The approximation is based on the assumption that suc-
cessive chord lengths are uncorrelated. The result can be
applied to models for which the two-point (S11) and 1D
‘‘surface-void’’ (Sc1) correlation functions can be evaluated.
The calculation of S11 and Sc1 is generally much easier than
calculation of p1 and p2. The result is exact for Boolean

FIG. 7. The main graph shows a comparison between the chord

functions of a silver-tungsten composite ~symbols! and the results

of the independent interval approximation for a level-cut Gaussian

random field model. The composite and model are shown in Fig. 6.

The inset compares the experimental and model autocorrelation

function g(x)5@S11(x)2f1
2#/(f12f1

2).

FIG. 8. A cross section of Fontainebleau sandstone ~a! com-

pared with a model @36# based on the intersection set of five level-

cut Gaussian random fields ~b!. The side length is 2.18 mm. The

statistical properties of the sandstone and model are compared in

Fig. 9.

FIG. 9. The chord functions measured from a 3D image of Fon-

tainebleau sandstone ~symbols! compare well with the results of the

independent interval approximation ~main graph! for a Gaussian

random field model. The inset shows the autocorrelation function

g(x)5@S11(x)2f1
2#/(f12f1

2). Three-dimensional realizations of

the sandstone and the model are shown in Figs. 10 and 11, respec-

tively.

FIG. 10. 3D representation of Fontainebleau sandstone sample

obtained by x-ray tomography @37,38#. The pore space is shown as

solid to aid visualization. The side length of the image is 960 mm.
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models with convex grains since the assumption of indepen-
dent intervals is true. We have applied the approximation to
the single level-cut Gaussian random field model of random
materials. In this case the chord functions correspond to
Rice’s first-passage time distribution for random noise. The
approximation is very accurate for wide-band random fields,
but loses accuracy after one ‘‘wavelength’’ of the field for
extremely narrow-band ~approximately periodic! fields. Note
that a narrow-band field corresponds to a low pass ~rather
than a narrow pass! filtered process in 1D.

The result also gives accurate results for Berk’s two-cut
GRF model and other models based on the intersection and
union sets of level-cut GRF’s. This is important for generat-
ing 3D models of random media using empirical information

measured from cross-sectional images; the two-point corre-
lation function does not necessarily provide sufficient infor-
mation, and good approximations for the chord functions are
very useful. In this context it is possible to apply the approxi-
mation confidently if the two-point correlation function ex-
hibits no ~or weak! oscillations. To demonstrate the applica-
tion of our results we have compared the approximation to
experimental data obtained from images of a tungsten-silver
composite and a porous sandstone.

In order to derive the chord function approximation we
studied the independent interval process in detail. We have
shown that the process underlies the derivation, and provides
useful links between, important results in many different
fields. The general treatment of the process makes clear the
relation between various approximations for different first-
passage times made in signal theory, the analysis of compo-
nent failure and persistence times in coarsening. From the

expressions for p̂ i @Eqs. ~28! and ~29!# it is simple to obtain
the lineal-path functions as L i5L

21$f i /s2nc@1

1 p̂ i(s)#/2s2%. For i51 this is just the ‘‘survival probabil-
ity’’ in the context of random processes. Similarly the prob-
ability density of ‘‘time to failure’’ given that t50 falls in a

safe region is f 15L
21$nc@12 p̂1(s)#/2f1s%. These expres-

sions can be inverted in the same way as p i . Due to its
apparent generality it would be useful to explore the proper-
ties of the process further. Extensions to include correlation
between the chord lengths and the development of a 3D ana-
log would be useful future studies.
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