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Abstract— Traditional wireless broadcast protocols rely heavily
on the 802.11-based CSMA/CA model, which avoids interference
and collision by conservatively scheduling transmissions. While
CSMA/CA is amenable to multiple concurrent unicasts, it tends
to degrade broadcast performance, especially when there are a
large number of nodes and links are lossy. In this paper, we
propose a new, drastically different protocol called Chorus that
improves the efficiency and scalability of broadcast service with a
MAC layer that allows packet collisions. Chorus is built upon the
observation that packets carrying the same data can be effectively
detected and decoded, even when they overlap in time and have
comparable signal strength. It performs collision resolution using
symbol-level iterative decoding, and then combines the resolved
symbols to reconstruct the packet. This collision-tolerant mecha-
nism significantly improves the transmission diversity and spatial
reuse in wireless broadcast, providing an asymptotic broadcast
delay that is proportional to the network radius. This advantage
is exploited further by Chorus’s MAC-layer cognitive sensing
and scheduling scheme. We evaluate Chorus with symbol-level
simulation, and validate its network-level performance via ns-2,
in comparison with a typical CSMA/CA broadcast protocol.

I. INTRODUCTION

Network-wide broadcasting is a fundamental communication
primitive that serves as a building block for many other pro-
tocols in multi-hop wireless networks, such as route discovery
and information dissemination. An efficient broadcast protocol
needs to deliver a packet (or a continuous stream of packets)
from the source node to all other nodes in the network, with
high packet-delivery ratio (PDR) and low latency. To improve
PDR when links are lossy, multiple relay nodes can forward and
retransmit the packet, thereby creating retransmission diversity.
To reduce latency and resource usage, however, the number of
transmissions must be kept to minimum, since redundant re-
transmissions take up channel time, slowing down the packet’s
propagation to the edge of the network. Therefore, a delicate
balance needs to be maintained between PDR and delay.

To date, efficient broadcast support, either theoretical analy-
sis [1]–[3] or practical protocol design [4], has mostly focused
on the CSMA/CA MAC-layer scheduling model. CSMA/CA
has proven to be an effective distributed scheduling scheme,
especially via the 802.11 family of MAC standards. The
limitation of CSMA/CA, however, has not been examined
carefully in broadcast protocols. While its fine-tuned sensing
and scheduling scheme reduces collision, CSMA/CA inevitably
loses transmission opportunities, lowering channel usage and
spatial reuse. This problem is especially critical for network-
wide broadcast with latency constraints.

Fig. 1(a) illustrates a typical scenario where CSMA/CA
limits the broadcast efficiency. With CSMA/CA, at least three
time slots are necessary to deliver one packet from source S
to all other nodes. A and B cannot transmit concurrently, even
if they have to forward the same packet. In a lossy network,
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Fig. 1. Broadcast with traditional CSMA/CA in 802.11, in comparison with
Chorus’s CSMA/CR (CSMA with collision resolution). The shaded tags
denote the order of transmissions.

suppose node D had already received the packet, while C
and E await the retransmission from A and B, respectively.
In an optimal scheduling protocol, A and B are allowed to
transmit the packet concurrently, oblivious of the collision at
D. However, this is not possible in CSMA/CA, as one of them
will back off immediately upon sensing the other’s activity.

In this paper, we introduce a new broadcast protocol, called
Chorus, based on a MAC layer that adopts CSMA with
collision resolution (CSMA/CR). Chorus is built upon the key
insight that packets carrying the same data can be detected

and decoded, even when they overlap at the receiver with

comparable strength. With Chorus, collision of the same
packets from different relays can be effectively resolved. The
advantage of such a collision-tolerant protocol is obvious, as
shown in Fig. 1(b). With collision resolution, A and B can now
transmit packets immediately and independently after receiving
them from the source. Node D exploits Chorus’s collision
resolution to decode the two collided packets from A and B.
Therefore, only 2 time slots are required to deliver 1 packet
over the entire network, due to the improved spatial reuse.
Moreover, when links are unreliable, the two decoded packets
from A and B create transmit diversity for the common receiver
D, without consuming any additional channel time.

Both the spatial reuse and transmit diversity gain in Chorus
are realized via its collision resolution scheme. Unlike tra-
ditional transmit diversity schemes such as beamforming [5],
Chorus does not require symbol time synchronization nor in-
stantaneous channel state information. In reality, it is infeasible
to synchronize the independent transmitters A and B at symbol
level [5]. Chorus exploits the asynchrony between them to
identify collision-free symbols in the overlapping packets. It
then initiates an iterative decoding process that subtracts clean
and known symbols from collided ones, and obtains estimations
of unknown symbols. The decoding succeeds as long as one
packet has sufficient SNR, hence realizing the diversity offered
by multiple transmitters.

At the MAC layer, Chorus adds a cognitive sensing and

scheduling module to the 802.11 CSMA mechanism. Specifi-
cally, senders back off only when they sense a packet on the air
that has a different identity from what they intend to transmit.



Such a cognitive MAC allows Chorus to fully exploit the
advantage of collision resolution, while maintaining friendli-
ness to background traffic. In addition, the collision-resolution
capability enables anonymous broadcast at the network layer,
without any topology or neighborhood information.

To quantify the effectiveness of Chorus, we establish an
analytical framework for its achievable SNR and bit error rate
(BER), which takes into account the error-propagation effects
in iterative collision resolution. We further analyze its network-
level performance in terms of latency and throughput. With a
joint design of CSMA/CR and broadcast, Chorus achieves
Θ(r) latency (r is the network radius), which is asymptotically
lower than existing practical schemes.

To verify the feasibility of Chorus’s collision resolution,
we implement the iterative decoding and packet combination in
a symbol-level simulator. To evaluate Chorus’s performance
in large networks, we feed the above fine-grained analytical
and simulation results into the PHY layer of ns-2, implement
the CSMA/CR MAC and broadcast protocol, and compare
Chorus with a CSMA/CA based protocol. In a large set of
randomly-chosen topologies, Chorus shows several-fold per-
formance improvement in latency and PDR. The performance
gain is relatively insensitive to network size, source rate and
link quality, and is observed in both single- and multi-source
broadcast scenarios. These properties are especially valuable
for information dissemination in large-scale wireless networks,
and signify the importance of exploiting PHY-layer signal
processing to improve application performance.

The remainder of this paper is organized as follows. In
Sec. II, we review existing work in contrast with Chorus.
We introduce the collision resolution mechanism in Sec. III,
and then the cognitive sensing, scheduling and network-layer
broadcast scheme in Sec. IV. In Sec. V, we derive Chorus’s
achievable SNR and BER, and analyze its asymptotic broadcast
performance. We evaluate Chorus’s performance via simula-
tion in Sec. VI, and conclude the paper in Sec. VII.

II. RELATED WORK

Efficient broadcast in multihop wireless networks has been
studied extensively, from both theoretical and practical perspec-
tives. From the theoretical perspective, it is well-known that
scheduling a minimum latency broadcast is NP-hard, either in a
general undirected graph [3] or in a unit disk graph (UDG) [1].
Without the minimum latency constraint, analytical solutions
demonstrated the feasibility of scheduling with time complexity
Ω(r log n) [6] in a distributed anonymous broadcast, and r +
O(log r) [2] in centralized broadcast with known topology,
where r and n denote the network radius and number of nodes.
More recent work has improved the efficiency, and adopted
more realistic models such as the interference graph [7].

Practical broadcast protocols have mostly adopted the 802.11
CSMA/CA and extended it to multi-hop networks. A main
mechanism is to prune the topology, leaving only a backbone
that covers the entire topology. The double-coverage broadcast
[4], for example, reduces redundant transmissions by selecting
nodes that cover more neighbors, while ensuring each node is
covered at least twice, such that retransmission can be exploited
to improve delivery ratio. The fundamental difference between
Chorus and such existing protocols lies in its MAC layer
scheduling protocol. With a joint design of CSMA/CR and

network level broadcast, Chorus can achieve the Θ(r) latency
bound, hence it has both theoretical and practical relevance.

The advent of high-performance software radios has been
inspiring wireless protocols beyond the CSMA/CA paradigm.
For instance, interference cancellation [8] can be used to
resolve two collided packets with disparate strength. The main
challenge in applying interference cancellation to multi-hop
wireless networks is that the transmitters need delicate power
control to ensure decodability. In Chorus, even two packets
with similar strength can be effectively decoded, because each
sees the other as a complement, rather than interferer. If the
RSS of one packet is significantly lower than the other, such
that it cannot be detected, then Chorus automatically resorts
to the capture effect to decode the strong packet.

Chorus is partly inspired by the ZigZag protocol [9], which
exploits the signal processing capability of software radios
to solve the hidden terminal problem in WLANs. ZigZag
extracts symbols from collided packets by identifying repeated
collisions of two hidden terminals. It treats each collided packet
as a sum over two packets. The two original packets are
recovered from two known sums, similar to solving a linear
system of equations. In the PHY layer, Chorus uses simi-
lar collision resolution mechanism as ZigZag, but it resolves
multiple packets from a single collision, given that the packets
are the same. In addition, Chorus aims at improving broadcast
efficiency in wireless mesh networks, where it exploits transmit
diversity and spatial reuse, using MAC layer cognitive sensing
and broadcast scheduling.

The feasibility of allowing concurrent transmissions to create
diversity has also been explored in communications. Con-
current cooperative communication [10], for example, allows
co-located wireless nodes to transmit at the same time, thus
forming a virtual antenna array that increases signal strength at
the common receiver. Beamforming protocols [5] synchronize
the transmitters, such that their signals can combine coherently
at the receiver. These techniques require strict frequency, phase,
and time synchronization at the symbol level, among distributed
transmitters. Such fined-grained synchronization remains an
open challenge [5], due to the limited time resolution at the
wireless nodes, and the variation of the wireless channels.

III. COLLISION RESOLUTION IN CHORUS

In this section, we introduce the physical-layer collision
resolution in Chorus. For clarity, we start with a simple case
of two-packet collision, focusing on how to detect, decode,
and combine the collided packets to achieve the diversity gain.
Then, we deal with the general case of resolving more than
two packets’ collision. Note that we have adopted a similar
PHY layer in a separate paper [11] which presents a more
comprehensive introduction to the implementation of collision
resolution in software radios. Its objective is to realize non-
orthogonal cooperative communications without tight synchro-
nization among relays.

A. Detecting Collided Packets

In Chorus, a transmitter attaches a known random sequence
to the beginning of each packet as a preamble. The receiver
then uses a matched filter to detect the exact arrival time of
this preamble. A matched filter is an optimal linear correlator
that maximizes the SNR when correlating unknown signals with
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Fig. 2. Iteratively decoding two collided packets carrying the same data.

a known sequence [12]. It outputs a peak value whenever the
packet preamble is detected, even if the preamble is hidden in a
strong noise. It operates continuously, so that those preambles
overlapping with other packets can still be identified. The
number of preambles detected in a run indicates the number
of overlapping packets at the receiver.

The peak output grows linearly with the number of bits in the
preamble, and with the RSS of the packet [12]. Therefore, the
detection threshold is also a linear function of these two factors
[9]. In has been observed that using a 32-bit pseudo-random
preamble, the collision detection probability is higher than
98% under practical wireless settings [9]. Hence, the preamble
introduces negligible overhead to the packet.

B. Iterative Collision Resolution

Since a packet usually consists of thousands of symbols, the
probability of two collided packets being aligned perfectly is
close to zero. In practice, the higher-layer operations at trans-
mitters introduce further randomness, resulting in asynchronous
arrival time. We identify the natural offset between the two
packets by detecting their preambles. Within the offset region,
no collision occurs. We first decode the clean symbols therein,
and then iteratively subtract such known symbols from the
collided ones, thereby obtaining the desired symbol.

For instance, in Fig. 2, two packets (head packet P1 and
tail packet P2) from different transmitters collide. We first
decode the two clean symbols A and B in P1. Symbol C is
corrupted as it collides with A′ in P2, resulting in a combined
symbol S. To recover C, note that symbols A′ and A carry the
same bit, but the analog forms are different because of channel
distortion. Therefore, we need to reconstruct an image of A′

by emulating the channel distortion over the corresponding bit
that is already known via A. The channel distortion effects,
including amplitude attenuation, phase shift, frequency offset,
and timing offset, can be accurately estimated using standard
communication techniques, as demonstrated in realistic exper-
imental work [9].

After reconstruction, we subtract the emulated A′ from S,
obtaining a decision symbol for C. Then, the decision symbol
is normalized using the channel estimation for P1, and a slicer
decides if the bit in C is 0 or 1. For BPSK, the slicer outputs 0
if the normalized decision symbol has negative real part, and 1
otherwise. The decoded bit in C is then used to reconstruct C ′

and decode E. This process iterates until the end of the packet
is reached. The iteration for other collided symbols proceeds
similarly. The estimation, reconstruction and cancellation for
higher-order modulation schemes, such as M-PSK (M=4, 8,
16, 64), can be realized in a similar way, except that the signal
constellation is mapped to different complex numbers [9]. Also
note that the above procedure has linear complexity with respect
to packet length, which is similar to ZigZag [9] and interference
cancellation [8].

Beside the iterative decoding in the forward direction,
Chorus can also work backward, starting from the clean
symbols in P2 (i.e, symbol Y ′ and Z ′), until reaching its

A

A'

B CHead packet  

P1

Tail packet  P2

D E

A'' B'' C''

A''' B'''

packet  P3

packet  P4

D''

Fig. 3. Collision resolution: the
multi-packet collision case.

32-bit known 
sequence

source id seq CRC

16-bit 16-bit 16-bit

Chorus  
preamble

Chorus  
header

802.11 header 
and payload

PHY 
header

Data payload 
CRC

MAC 
header

Fig. 4. The broadcast packet format
in Chorus.

beginning, hence obtaining a different estimation of the packet.
Chorus then performs the following packet combination to
improve the decoding probability.

C. Using Packet Combination to Improve Diversity

Since P1 and P2 may have different strengths, their decoding
confidence also differs. Decoding confidence is indicated by
the magnitude of the decision symbol. The farther away it is
from the decoding threshold (which is 0 in BPSK), the higher
probability it can produce the correct bit, since this is equivalent
to a higher SNR. Combining two decision symbols carrying
the same bits (e.g., A and A′ in Fig. 2) can increase the
decoding confidence. This is because the useful information
is enhanced, while the noise within the two symbols is not
combined coherently.

In Sec. V, we show that weighted summing over correspond-
ing symbols can improve the decoding probability, when two
versions of the same packets are received sequentially without
collision. Such a weighted combination harvests full transmit
diversity, i.e., the SNR of the combined packet is the sum SNR
of the two independently received packets.

For those iteratively decoded packets, we only use selective
combination, i.e., assigning weight 1 to the packet with the
highest SNR, and 0 to all other packets. This is because a
weighted combination over two iteratively decoded packets
does not improve SNR. In fact, the iterative collision resolution
in Chorus can cause error propagation, due to the correlation be-
tween consecutively decoded symbols. For example, in Fig. 2, if
symbol A produces an erroneous bit, then the error propagates
to A′, which affects subsequent symbols such as C. Fortunately,
such error propagation stops if the actual bits of A′ and C
are the same. In this case, after subtracting the error image of
A′, we obtain a strengthened symbol that indicates the correct
bit of C. Error propagation also stops when symbol C has a
much higher strength than A′. Based on these two intuitions,
we bound Chorus’ BER, proving that the probability of error
propagation decays exponentially with the error length (Sec. V).

D. Multi-packet Collision Resolution

Since Chorus allows concurrent transmissions, multiple ver-
sions of a packet can collide, especially when the network
has high density. The resolution of multi-packet collision is
complicated by the fact that intermediate packets no longer
have clean symbols at the beginning or end. Fig. 3 illustrates
a typical scenario.

Denote the earliest and latest packets as head packet and
tail packet, respectively. To decode the head packet, Chorus
proceeds in a way similar to the two-packet case, except that
it needs to subtract multiple reconstructed symbols, including
the one from the tail and those from the intermediate packets.
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Similarly, another version can be obtained by decoding the tail
packet, but in reverse order, starting from its end backward to
the beginning. To obtain additional versions from intermediate
packets, Chorus performs simple hard decoding. It tracks the
packet symbol-by-symbol, treating all others as noise. Intu-
itively, the results have reasonable confidence only when this
packet has much higher strength than others. The achievable
decoding confidence will be rigorously characterized in Sec. V.

IV. COGNITIVE SENSING AND BROADCAST SCHDULING

Chorus’s physical layer collision resolution must be inte-
grated with the MAC layer, in order to reduce unresolvable

collisions occurring when packets with different data collide.
In addition, Chorus’s network layer must ensure broadcast
packets can reach the network edge. Next we detail both the
MAC and network layer support for broadcast.

A. MAC Layer Cognitive Sensing and Scheduling

Chorus’s MAC layer maintains the carrier sensing and
backoff in the 802.11-based CSMA protocol, but adopts cog-
nitive sensing that exploits the collision-resolution advantage,
while avoiding unresolvable collisions. The principle of cog-
nitive sensing is to decode the identity of the packet on the
air, and accordingly, make the transmission decision. To this
end, Chorus needs to add a new header field into the 802.11
packet.

1) Chorus packet format: Fig. 4 illustrates the broadcast
packet format in Chorus. First, a known random sequence is
attached to facilitate packet detection and offset identification
(Sec. III-A). Second, a Chorus header field is added, which
informs the receiver of the packet’s identity, including the
broadcast source’s ID and the packet’s sequence number. A
16-bit CRC (Cyclic Redundancy Check) [12] is included in
this header. In case of CRC failure, this packet is discarded as
it conveys wrong identity information.

When the headers of two packets collide, Chorus proceeds
with the iterative decoding, assuming they have the same
identity. After the decoding, it performs CRC over the header
of each packet to ensure they are identical. If not, a decoding
failure occurs, and both packets will be discarded. A decoding
failure also happens when the CRC over the payload fails.

2) Scheduling of Sensing and Transmissions: With the
collision-resolution capability, each transmitter calls a SEND
procedure to perform cognitive sensing, as shown in Fig. 5
Transmitters make scheduling decision following three rules:

R1. Forward a packet immediately if the channel is idle.
R2. If the channel is busy, and the packet in the air is exactly

one of the packets in the transmit queue, then start transmitting
the pending packet.

call SEND

rate control

max retrans?
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call SEND

SRC

(forwarding)
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RECV
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Fig. 6. Control flow for scheduling network-wide broadcast.

R3. If the channel is busy, but a preamble cannot be
detected, or the header field of the packet on the air cannot
be decoded, or a different packet is on the air, then start the
backoff procedure according to the 802.11.

R1 is typical of all CSMA protocols. R2 is unique to the
CSMA/CR-based scheme in Chorus. It enforces the principle
behind Chorus, i.e., overlapping packets carrying the same
data may not cause collisions. Instead, by collision resolution,
these packets offer transmit diversity to the receiver. Therefore,
a sender node, such as node B in Fig. 1, can transmit its pending
packet if it has the same identify as the one on the air (e.g., the
one that A is transmitting). In contrast, CSMA/CA transmitters
stall and back off whenever the channel is busy.

R3 ensures friendliness to alien traffic, and is relevant for
multi-source broadcast and co-existence with CSMA/CA based
unicast traffic. To prevent unresolvable collisions between dif-
ferent packets, Chorus starts the normal 802.11 backoff if
it senses that the channel is occupied by such alien traffic.
To reduce interference to co-existing traffic, it also backoffs
conservatively if the identity of the packet on the air cannot be
decoded.

The advantages of cognitive sensing and scheduling come
at the expense of additional overhead. In 802.11b, the sensing
time slot is 20 µs, equivalent to the channel time of 20 bits
in the broadcast mode. In contrast, Chorus needs to sense
over the entire preamble and the header (80 bits in total,
as indicated in Fig. 4). However, this overhead is negligible
compared to the packet length. We will formalize the cost of
the header overhead using both asymptotic analysis (Sec. V)
and simulation experiments (Sec. VI).

B. Scheduling Network-wide Broadcast

Broadcast in Chorus is anonymous and decentralized. The
source and relays do not need any topology information or
neighbor identity. Following the SRC procedure in Fig. 6, the
source node composes a Chorus packet, and transmits it like a
normal 802.11 broadcast packet. Any neighbor who overhears
this packet will provide best-effort service by forwarding it
once, following the FORWARD procedure. Receivers with
overlapped packets perform collision resolution before contin-
uing with the packet relaying. After each successful reception,
a receiver flushes those pending packets with obsolete seq, in
order to prevent unresolvable collisions between packets with
different sequence numbers. Intuitively, multiple versions of
a packet proceed in parallel like a wavefront, which stops at
the network edge. In case of continuous broadcast, the source
node can control its rate to prevent congestion, and perform
retransmission to improve PDR. These further optimizations are
left to the application and will not be used in our evaluation.

When multiple broadcast sessions are running concurrently,



their packets are identified through the source-id field in the
header part. Each relay maintains a transmit queue storing the
packets to be forwarded. When the channel is idle, it directly
transmits the head-of-line packet. Otherwise, it follows the
MAC layer cognitive scheduling protocol, which maximizes
the spatial reuse opportunity by scheduling the same packets,
while avoiding collision with other broadcast sessions. Note
that the co-existence with unicast traffic is a special case of
multi-source broadcast. In effect, the latter case requires more
conservative scheduling because of more severe interference,
and therefore it will be used as a benchmark for validating
Chorus’s friendliness to alien traffic.

V. PERFORMANCE ANALYSIS

In this section, we first characterize the performance of
collision resolution and packet combination in Chorus. We
then analyze its asymptotic delay and throughput performance,
in comparison with the traditional CSMA/CA schemes. The
analytical results serve as guidelines for selecting the design
parameters, such as packet-combining weights and maximum
source rate.

Unless noted otherwise, we use the following set of nota-
tions: L for the packet length, F the offset between two collided
packets, D the data rate, W the signal bandwidth, N the noise
power, and δ2 the noise variance. Multiple collided packets
are indexed according to their arrival time, and γi denotes
the SNR of packet i. We maintain consistent settings to the
802.11b broadcast mode. Specifically, all links adopt the 1Mbps
basic access mode using BPSK [13] (assuming D = 1Mbps,
W = 1MHz). No MAC-layer retransmission, ACK, RTS/CTS
or other control packets are involved.

A. Achievable SNR and BER

We begin with an elementary scenario where two versions
of a packet (denoted as P1 and P2) from different transmitters
collide. This scenario is analogous to the two-user uplink
channel in information theory [14], which adopts interference
cancellation as the optimal decoder. However, Chorus’s appli-
cation scenario is unique in that P1 and P2 carry the same data.
Ideally, they should complement, or at least do not interfere
with each other. This intuition is formalized in the following
set of theorems.

Theorem 1. Without packet combination, the achievable SNR of

Chorus’s collision resolution in the two-packet collision case

is Λ = max{P1

N
, P2

N
}. When decoding m overlapped packets,

the achievable SNR of Chorus’s collision resolution is Λ =
max{P1

N
, Pi

P

j 6=i Pj+N
, Pm

N
}, i ∈ {2, . . . ,m − 1}.

Proof: The proof follows from Chorus’s iterative decoding.
We represent symbols in the complex form. Suppose at time
t, symbol s̃1(t) = a1e

jθ1x1(t) in P1 collides with s̃2(t) =
a2e

jθ2x2(t) in P2. Let v denote the receiver noise, then the
received symbol s̃(t) = s̃1(t) + s̃2(t) + v. If we decode P1
first (forward-direction decoding), then x2(t) = x1(t − F ).
In addition, the channel amplitude a2 and phase θ2 can be
estimated via correlation, which can achieve high accuracy and
introduces negligible noise [9]. Therefore, we can obtain a
decision symbol for x1(t) as: s̃(t) − s̃2(t) = a1e

jθ1x1(t) + v.

The resulting SNR level is:
|a1ejθ1 |2

2δ2 = P1

N
, which equals the

SNR when s1(t) is decoded independently.

� � ��� �

bcP
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Fig. 7. The error propagation process as a Markov chain.

Similarly, if the clean symbols in P2 are decoded first
(backward-direction decoding), then we can obtain P2

N
. Taking

the maximum of these two yields Λ = max{P1

N
, P2

N
}.

When m packets collide, the head and tail packets have clean
symbols, and the achievable SNRs are P1

N
and Pm

N
, respectively,

following a similar line of reasoning as above. Since Chorus
performs hard decoding over intermediate packets, the achiev-
able SNR for an intermediate packet is the same as treating
other packets as noise, i.e., Pi

P

j 6=i Pj+N
,∀i ∈ {2, . . . ,m − 1}.

The result follows directly after taking the maximum SNR of
all packets. ⊓⊔

The above SNR bounds can be transformed to the BER
bound that is directly related to the decoding performance

[12]: BER = Q(
√

2ΛWD−1) = Q(
√

2Λ). where the Q-

function Q(y) = 1√
2π

∫ ∞
y

e−
x2

2 dx. Q(y) → 0 exponentially

when y < 1 and y → −∞, which also holds for y > 1 and
y → ∞. This implies that BER decreases exponentially with
the achievable SNR.

B. Effects of Error Propagation

The above SNR and BER bounds are simplified in that
they ignore the error propagation along sequentially-decoded
symbols. Fortunately, the following analysis verifies that the
error propagation has negligible effect in common cases.

We set up a Markov chain model that relates error propaga-
tion to the SNR of each packet, and the offset between collided
packets. Again, we start with the two-packet collision scenario
in Fig. 2 and analyze the iterative decoding of the head packet
P1. As shown in Fig. 7, we define states according to the error
propagation length, i.e., the number of consecutive errors in
a run. The state transition can be classified into two cases:
(i) the probability that an independent decoding error occurs
(transition from state 0 to state 1), which equals the BER of
clean symbols in P1 (denoted as Pe), and (ii) the probability
Pbc that error propagation stops, i.e., the next bit is correct even
when the current bit is erroneous. The probability of continuing
error propagation is 1 − Pbc. The maximum error propagation
length starting from a clean symbol is G = ⌊L

F
⌋, since

the distance between any two consecutively-decoded symbols
equals F .

Obviously, this Markov chain is aperiodic and irreducible,
and thus, the steady state distribution exists. Let πi be the
steady-state probability of state i, then we have the following
balance equations:







π1 = π0 · Pe

πi = πi−1 · (1 − Pbc), i = 2, 3, · · · , G.
∑G

i=0 πi = 1.

Solving for the steady state, we have:

π0 =
(

1 + Pe · (1 − (1 − Pbc)
G)P−1

bc

)−1
(1)

πi = π0 · Pe · (1 − Pbc)
i−1, i = 1, 2, · · · , G (2)

We proceed to derive the probability Pbc that error propa-
gation stops. BPSK symbols can be represented as real values



subject to channel attenuation, since decoding only depends on
the in-phase part of the received symbol. Back to the example
in Fig. 2, suppose symbol C carries bit “0” (mapped to -1 in
BPSK), and the channel attenuation over C is Xa, then symbol
C is represented as −Xc. Suppose symbol A′ carries bit “1”
(mapped to 1 in BPSK) with channel attenuation Xa′ , then
the collided symbol S = −Xc + Xa′ + v, where v is the
additive white Gaussion noise. In this case, Chorus should
subtract Xa′ from S. However, if the estimation of symbol
A is incorrect, it will propagate to C via A′. Specifically,
Chorus erroneously subtracts −Xa′ , resulting in a decision
value Yc = −Xc +2Xa′ +v. Similarly, when A′ carries bit “0”
but Chorus estimates it as “1” via A, the resulting decision
value is Y ′

c = −Xc −2Xa′ +v. A symmetric argument applies
to the case when symbol C carries bit “1”. Therefore, the
probability that collision resolution outputs a correct bit is:

Pbc = 0.5P{Y ′
c < 0} + 0.5P{Yc < 0}

= 0.5P{w < 2Xa′ + Xc} + 0.5P{w < Xc − 2Xa′} (3)

The first term in Eq. (3) can be bounded as:

P{w < 2Xa′ + Xc} = 1 − P{w ≥ 2Xa′ + Xc}
≥ 1 − δ2(2Xa′ + Xc)

−2 (Chebyshev Inequality)

= 1 − (2
√

2γ2 +
√

2γ1)
−2.

Both γ1 and γ2 are in normal scale, corresponding to
practical log scale values ranging from 6dB and above [9].
Therefore, in the above equation, it is reasonable to assume
γ1 ≫ 1, γ2 ≫ 1. Consequently, P{w < 2Xa′ + Xc} ≈ 1.

For the second term in Eq. (3), a closed-form estimation can
be obtained:

Γ = P{w < Xc − 2Xa′} = 1 − 1

δ
√

2π

∫ ∞

Xc−2Xa′

e−
u2

2δ2 du

= 1 − 1√
2π

∫ ∞

√
2γ1−2

√
2γ2

e−
z2

2 dz (note : z =
u

δ
)

= 1 − Q(
√

2γ1 − 2
√

2γ2)

In practice, since the two packets are from two different
transmitters, the difference between γ1 and γ2 is larger than 1,
even in dB scale. Given the exponential decaying of the Q(·)
function (Sec.V-A), a practical estimation is Γ ≈ 1 if γ1 ≫ γ2

and Γ ≈ 0 if γ1 ≪ γ2.

Combining the analysis of the two terms in Eq. (3), we have
0.5 ≤ Pbc ≤ 1, and Pbc transits fast from 0.5 to 1 when γ1 ≪
γ2. This trend is also illustrated in Fig. 8.

Back to Eq. (1), we have π0 ≤ (1+Pe)
−1 ≈ 1−Pe. π0 ap-

proximates this upper-bound as G → 1, i.e., the offset between
the two packets approaches the packet size. Furthermore, in the
common case G > 1, we have:

π0 ≥ (1 + PeP
−1
bc )−1 ≥ (1 + 2Pe)

−1 > 1 − 2Pe (4)

Therefore, the bit error probability P ′
e in iterative decoding is

bounded as:

Pe ≤ P ′
e = 1 − π0 < 2Pe (5)

In practice, Pe is typically below 10−6; the packet length is
around 1KB. Hence P ′

e has similar effect on packet error rate
(PER) as Pe, even when it approaches the upper bound. This
means the effects of error propagation on PER is negligible,
which will be further verified in our bit-level simulation.

Combining the bounds for Pbc and Pe with Eq. (2), we
conclude that while resolving a given collision, the error
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propagation probability decays exponentially with the error

length (also shown in Fig. 9). This is consistent with the
empirical observation in [9]. The above reasoning can be
straightforwardly extended to multi-packet collision resolution,
where the probability that error stops propagating is also close
to or larger than 0.5, because previous erroneous bit may
strengthen the current bit with probability 0.5.

C. Optimal Packet Combination Weight

When two or more versions of the same packet are received
sequentially without any collision, no error propagation occurs.
Intuitively, this happens when a small packet size is used. Error
propagation is also negligible when the two packets have a
large offset F close to packet length. In such cases, we can
harvest the transmit diversity via weighted combination of the
symbols in the received versions. The optimal weight is derived
as follows.
Theorem 2. Without error propagation, the optimal combina-

tion weight of packet i is γi. The resulting SNR equals
∑m

i=1 γi.

The proof is similar to the maximum ratio combining in
multi-user communications [14], and is omitted due to space
constraint. It should be noted that Theorem 2 does not hold
when combining two or more iteratively-decoded packets with
a small offset F , where error propagation occurs. In a high
SNR region, the error propagation effect dominates the bit
errors caused by noise, so the performance of the weighted
combination can be worse than selective combination, i.e.,
assigning weight 1 to the packet with the highest SNR, and
0 to all other packets. This intuition will be further justified via
our simulation experiments.

D. Asymptotic Delay and Throughput

We now analyze Chorus’s network-level performance, in-
cluding latency and throughput. To be consistent with existing
asymptotic analysis [1], [2], [6], we assume perfect reception
within the transmission range if no collision occurs. The
network radius is r, i.e., it spans r hops from the source to
the receiver farthest away. Let h denote the size of Chorus
preamble plus Chorus header, then we have the following
asymptotic performance bound regarding broadcast latency and
throughput.
Theorem 3. The worst-case latency and throughput of Chorus
is

r(L+h)
D

and LD
3(L+h) , respectively.

Proof: The network can be divided into r rings centered around
the source node. A trivial lower-bound on the latency is r L

D
,

i.e., all nodes within the same ring transmit concurrently after
the previous ring, and the packet is repeated exactly r times.
However, this is only achievable when the cognitive sensing
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function is disabled. The worst-case scenario happens when
cognitive sensing induces the longest delay between adjacent
rings, as shown in Fig. 10. Specifically, at most a half of the
nodes within each ring is transmitting while others within the
same ring are transmitting. This induces latency equal to the
duration of the Chorus preamble and header, which equals h

D
.

In addition, the latency can be repeated at most r times over
the network, resulting in the worst-case latency r L+h

D
.

In continuous broadcast, packets of different sequences must
not collide as the collision cannot be resolved. To prevent such
collisions, nodes within two hops cannot send different packets
concurrently. Therefore, a new packet can be sent from the
source only after the previous packets have propagated at least
three hops away, which takes time 3L+h

D
. As a result, the

amount of data transmitted within a unit time is: L

3 L+h
D

, which

is equivalent to the broadcast throughput of Chorus. ⊓⊔
From Theorem 3, we see that the asymptotic latency of

Chorus satisfies rL
D

≤ Θ(r) ≤ r(L+h)
D

. Under a unit disk
graph model, Chorus’s latency can be close to the trivial lower
bound rL

D
, since h ≪ L. This is in sharp contrast with the

Ω(r log n) latency for anonymous broadcast using CSMA/CA
[6].

Theorem 3 also reveals that the maximum supportable source
rate (or maximum throughput) of Chorus is insensitive to the
network size. As a worst-case bound, it can be used to control
the source rate in continuous broadcast, in order to prevent the
collision between consecutive packets and avoid congestion.

VI. EXPERIMENTAL EVALUATION

We quantitatively evaluate the performance of Chorus in
two steps. First, we use symbol-level simulation to verify
the effectiveness of its collision-resolution scheme. Then, we
introduce the implementation of Chorus based on the 802.11b
module in ns-2, and evaluate its broadcast performance in large-
scale networks. The simulation experiments further justify our
previous analysis.

A. Collision-Resolution Performance

We implement a symbol-level simulator in Matlab. The
symbols are represented as complex numbers, whose magnitude
depends on the packet’s SNR. We assume the receiver noise
profile is AWGN, which is a typical approximation to the noise
profile after receiver filtering and frequency compensation [9].
Given two or more collided packets, the simulator resolves the
collision using Chorus’s iterative decoding algorithm. The
simulated receiver adopts a simple zero-forcing slicer which
outputs a “0” bit if the decision symbol’s real part is negative,
and “1” otherwise. The signal bandwidth is set to 1MHz and
data rate 1Mbps. The noise power density is 10−11 W/Hz.
We vary the received signal power to simulate the SNR range
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Fig. 11. Symbol-level simulation of iterative decoding. The x-axis shows the
SNR of the head packet. As an example illustration, the SNR of the tail packet
is set to 3dB lower than that of the head packet. no-collision indicates the
decoding performance when only the head packet presents.

between 0 and 15 dB. For each SNR value, we simulate 5×104

collisions, each consisting of three copies of a randomly-
generated packet of length 1024B. The results trivially extend to
general cases with an arbitrary number of packets and varying
size. We focus on the head and tail packets since these two
adopt iterative decoding while others use hard-decoding.

Fig. 11 illustrates the BER and PER of Chorus’s iterative
decoding algorithm. We observe close performance between
Chorus’s collision resolution and the case without any colli-
sion. This implies that the BER and PER degradation caused
by error propagation is negligible under practical settings.

The SNR-weighted combination of decoded packets reduces
BER at the low SNR region. However, at the high SNR region,
it results in lower performance than selective combination, i.e.,
assigning weight 1 to the packet with higher SNR, and 0 to
the other. This is because as SNR increases, the error propa-
gation effect dominates the additional diversity from weighted
combination. An additional observation is that our analysis of
error propagation (Sec. V) matches well with the symbol-level
simulation. Therefore, it can be used as the packet reception
model in network-level simulation of Chorus.

An additional observation from Fig. 11 is the impact of
SNR on Chorus’s performance. Inaccurate channel estimation
reduces the SNR, thus increasing BER. Our previous analysis
assumed accurate channel estimation during the iterative de-
coding. This is because Chorus detects and decodes collided
packets with relatively high SNR, while treating undetectable
packets as noise. In addition, channel estimation is usually
realized via adaptive filtering [9], thus the noise added is much
lower than ambient noise and interference.

B. Network-Level Performance

We now evaluate the broadcast performance of Chorus.
We implement the cognitive sensing and broadcast scheduling
protocols based on the 802.11b module in ns-2. We adopt the
collision-resolution module as the PHY-layer packet reception
model. This module computes the SNR for a given collision
pattern, following the analysis in Sec. V. The resultant SNR is
then compared with the SNR threshold to determine whether
the reception succeeds. We do not consider error propagation
since it has negligible effect on PER, as shown in our previous
analysis and simulation. We only use the selective combination
when multi-packet collision occurs.

We use a typical CSMA/CA-based protocol, Double-

Coverage Broadcast (DCB) [4] as a performance benchmark. In
order to reduce the latency caused by redundant transmissions,
DCB prunes the network topology, such that only those nodes
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Fig. 12. The impact of link quality (reflected by ǫ) on latency and PDR. The
error bars indicate variation over 30 random topologies.

with the potential to deliver packets to many downstream
receivers will be selected. It further improves PDR by ensuring
that each receiver is covered at least twice by other selected
forwarders. DCB has been compared with a number of other
CSMA/CA-based broadcast protocols and demonstrated supe-
rior performance.

We have implemented DCB based on the ns-2 802.11b
MAC, following the specification of Algorithm 5 in [4]. Since
it requires a strict definition of neighborhood, DCB assumes
a transmission range exists, within which all nodes receive
packets from the transmitter with the same probability. To
improve accuracy while satisfying this requirement, we use
the following channel model. We define transmission range at
a distance where reception succeeds with an edge reception

probability ǫ. Within this range, the RSS follows the log-
normal distribution [15], with mean 4 and std 5 (dB). This
channel model represents a middle ground between the UDG
and the log-normal shadowing model. When ǫ is close to
1, it approaches the UDG model. As ǫ approaches 0, it is
equivalent to a shadowing model. For a given topology, as ǫ
decreases, the average link quality decreases. From the symbol-
level simulation in Fig. 11, we observe a sharp decrease
of PER beyond certain SNR. Therefore, it is reasonable to
assume a SNR threshold exists, above which packets cannot
be received. Given the edge reception probability ǫ and noise
power, the SNR threshold is calculated by inverting the log-
normal function [15].

All experiments are repeated on 30 randomly-generated
topologies with node degree ranging from 2 to 9. We measure
PDR according to the fraction of nodes that successfully receive
a packet, and latency the duration between its release and
the last successful reception. Both the PDR and latency are
averaged over 1000 packets for each topology, and evaluated
with respect to: link quality (indicated by ǫ), network size,
source rate and packet size. The typical settings are: source
rate 1 pkt/s (packets/second), packet size 1KB, edge reception
probability ǫ = 0.5, network size (number of nodes) 100 with
average node density 6. Unless noted otherwise, we isolate the
effect of each factor by varying it while fixing others to the
typical values.

Our experimental results on DCB are consistent with [4] at a
high link quality, low source rate, small packet size and small
network size. However, in the general case, DCB’s performance
degrades fast. In contrast, Chorus demonstrates significant
advantages in all cases. We report the detailed experiments
below.

1) Link quality: We vary the link quality by tuning the
edge reception probability ǫ. A higher ǫ value implies a lower

100 200 300 400 500
0.4

0.5

0.6

0.7

0.8

0.9

1

Topology size

A
v
e

ra
g

e
 P

D
R

100 200 300 400 500
0

0.2

0.4

0.6

0.8

Topology size

A
v
e

ra
g

e
 d

e
la

y
 (

s
e

c
o

n
d

s
)

 

 

Chorus

DCB

Fig. 13. Scalability of the broadcast protocols as the topology size (number
of nodes) grows.

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

Source rate (packets/second)

A
v
e

ra
g

e
 P

D
R

0 10 20 30 40
0

2

4

6

8

10

Source rate (packets/second)

A
v
e

ra
g

e
 d

e
la

y

 

 

Chorus

DCB

Fig. 14. Sensitivity to source rate, which indicates the maximum supportable
throughput of a broadcast protocol.

packet loss rate for average links in the network. As shown
in Fig. 12, the PDR of both Chorus and DCB decreases
with loss rate. However, Chorus is much less sensitive to
the link condition, owing to the diversity provided by collision
resolution. As ǫ varies, Chorus’s latency remains around 0.1
second, while DCB’s latency varies from 0.12 to 0.3. More
importantly, Chorus keeps more than 90% PDR under all link
conditions, while DCB’s average PDR drops from 90% to 20%
as ǫ decreases. Note that DCB’s latency may drop as the link
quality decreases. This is at the expense of severe packet losses
as indicated by the decrease of PDR.

2) Network size: Sensitivity to network size indicates the
scalability of the broadcast protocol. To quantify scalability
of Chorus, we keep the average network density to 6 while
increasing the total number of nodes in the network. The
network radius grows accordingly. Fig. 13 plots the resulting
latency and PDR. Chorus demonstrates negligible loss of PDR
as the networks size grows. In addition, its latency is 75% lower
than that of DCB. Consistent with the asymptotic analysis, its
latency increases with the network size. However, the growth
rate or sensitivity to network size is much lower than DCB.

3) Source rate: It is well-known that in end-to-end uni-
cast or broadcast, the throughput drops when the source rate
is too high and the network becomes congested. Therefore,
the maximum supportable source rate reflects the maximum
throughput of a broadcast protocol. In Fig. 14, we vary the
rate at which the source node generates broadcast packets,
and track the resulting latency and PDR. Both Chorus and
DCB’s PDR decreases abruptly beyond certain margins, which
roughly indicate their supportable throughput. The supportable
throughput of Chorus is around 20 pkts/second, in contrast to
1 pkt/second in DCB. In addition, DCB’ latency increases from
0.1 second to 10 seconds as the source rate increases from 1
to 40 pkts/second, while Chorus maintains around 0.1 second
latency across this range.

4) Packet size: Fig. 15 shows how packet size affects the
broadcast performance when coupled with variation of source
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rate. When source rate is low (1 pkt/s), the network is less
congested, thus Chorus’s spatial reuse advantage is less obvi-
ous. Owing to the diversity gain, however, it maintains a PDR
higher than 95%, in contrast with 80% when running DCB.
In addition, its latency is 60% lower than DCB for all packet
sizes. When source rate is high (10 pkt/s), Chorus’s PDR and
latency remains the same. In contrast, DCB suffers from a sharp
degradation of performance—its latency increases from 0.2 to
4 seconds as packet size grows from 64B to 1024B. Again, this
is due to its limited supportable throughput. For larger packets,
the source injects more data into the network per unit time,
which causes congestion. In addition, the cost of losing one
packet increases, resulting in higher latency and lower PDR.

As indicated in Sec. V, the worst-case delay of Chorus
is affected by its packet overhead. The experiment results in
Fig. 15 show that Chorus is relatively insensitive to packet
overhead, in contrast to the analysis. This is because the worst
case in Fig. 10 rarely occurs in a random network, and the
overhead is negligible compared with packet length.

5) Multiple broadcast sessions: We proceed to evaluate the
case where multiple broadcast sessions co-exist, each corre-
sponding to one randomly selected source node in a 50-node
topology. We set ǫ = 0.1 and ǫ = 0.5 to represent a lossy
and non-lossy network, respectively. The former case is close
to a real world mesh network [16] in which most links have
intermediate reception rate. We focus on two metrics: average
PDR among all sessions, and broadcast throughput, which
equals the total amount of data delivered to all nodes within
unit time, summed over all the sessions. Fig. 16 plots these
metrics as a function of traffic load (the number of sessions). In
a lossy network, Chorus achieves 3x higher throughput than
DCB, and maintains a PDR above 60%, which indicates the
friendliness among different traffic. The performance gain over
DCB is less in a non-lossy network, where Chorus benefits
more from spatial reuse than diversity gain. Also note that
although throughput increases when the traffic load is high,
the cost is lower PDR, implying that most traffic is confined to
around the source nodes, especially for the DCB protocol.

VII. CONCLUSION

In this paper, we provide theoretical and practical re-
sults that demonstrate the feasibility and advantage of a
collision-resolution protocol for wireless broadcast. We in-
troduce Chorus, which allows forwarders with the same
outgoing packets to transmit at roughly the same time, and then
employs physical-layer iterative decoding to resolve collisions
at the receiver. By decoding multiple versions of a packet at
once, Chorus achieves transmit diversity and improves loss
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Fig. 16. Total broadcast throughput and average PDR when multiple sources
transmit different data, for lossy (edge reception probability ǫ = 0.1, average
link quality q = 0.51) and non-lossy (ǫ = 0.5, q = 0.83) networks.

resilience without any retransmission. More importantly, with
its collision-tolerant MAC, Chorus significantly simplifies the
CSMA scheduling and improves its spatial reuse. Our theoret-
ical analysis and symbol-level simulation show that Chorus’s
iterative decoding algorithm can effectively resolve collisions
with negligible error propagation effect. We also establish an
asymptotic latency bound of Θ(r) when using Chorus for
broadcast, where r is the network radius. Our network-level
experiments further show that Chorus outperforms a typical
CSMA/CA-based broadcast protocol by a significant margin, in
terms of latency, reliability, throughput, and scalability. These
features make Chorus suitable especially for fast information
dissemination in large-scale networks, such as wireless mesh
networks.
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