
Chorus: Truly Distributed Distributed-MIMO

Ezzeldin Hamed
Microsoft

ezhamed@microsoft.com

Hariharan Rahul
MIT CSAIL

rahul@csail.mit.edu

Bahar Partov
Wavelite

bahar@wavelite.net

ABSTRACT

Distributed MIMO has long been known theoretically to bring
large throughput gains to wireless networks. Recent years have
seen significant interest and progress in developing practical
distributed MIMO systems. However, these systems only dis-
tribute the transmission function across the multiple nodes.
The control fabric that synchronizes the nodes to a common
reference phase still fundamentally requires a single leader that
all nodes in the network are capable of hearing.

This paper presents Chorus, a truly distributed distributed-
MIMO system. Chorus is leaderless – all nodes are peers, and
jointly transmit the synchronization signal used by other nodes
to synchronize to a common reference phase. The participation
of all nodes in the network in the synchronization signal en-
ables Chorus to scale to large networks, while being resilient to
node failures or changes in network connectivity, and without
imposing onerous management burdens on network adminis-
trators. We implement and evaluate Chorus and demonstrate
that it can synchronize effectively without the need for a single
leader, scale to large networks where no leader node can be
heard by all others, and provide 2.7× throughput improvement
over traditional leader-based systems.

CCS CONCEPTS

• Networks → Network protocols; Wireless access points,

base stations and infrastructure; • Hardware→Digital sig-

nal processing;

KEYWORDS

Wireless Networks, Multi-user MIMO, Distributed MIMO,
LTE, Synchronization

ACM Reference Format:

Ezzeldin Hamed, Hariharan Rahul, and Bahar Partov. 2018. Chorus:
Truly Distributed Distributed-MIMO . In SIGCOMM ’18: ACM SIG-

COMM 2018 Conference, August 20–25, 2018, Budapest, Hungary.

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage and that copies bear this
notice and the full citation on the first page. Copyrights for components of this
work owned by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5567-4/18/08. . . $15.00
https://doi.org/10.1145/3230543.3230578

ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/3230
543.3230578

1 INTRODUCTION

Distributed-MIMO can eliminate interference and deliver dra-
matic throughput improvements in wireless networks [2, 31, 40,
45]. It does so by synchronizing the oscillators on independent
nodes, allowing a network of transmitters to act as if they were
one huge MIMO transmitter. The theory underlying distributed
MIMO has been around for several decades [48]. Recent years
however have seen significant advances in moving distributed-
MIMO from theory to practice [1, 5, 23, 33, 36, 46]. Multiple
systems have developed coordination protocols to synchronize
the phase of distributed oscillators, thereby allowing them to
transmit together without interference.

Yet, existing systems only focus on enabling the transmis-
sion functionality of signals to be distributed. The control plane
itself, which coordinates the transmitters, is still fairly central-
ized [1, 5, 23, 33, 36, 49]. Specifically, in past systems, the
transmitters are typically organized around an architecture con-
sisting of clusters, each with a single leader and multiple slaves.
All the slaves listen to the leader signal and synchronize the
phase of their signals to match that of the leader. Such an archi-
tecture prevents distributed MIMO networks from enjoying key
desirable features expected in network protocols: scalability,
resilience, and ease of management. First, they do not easily
scale to large networks where the transmitters cannot all hear
one node. Second, they are not resilient - they fail if the leader
fails or any of the slaves becomes disconnected from the leader.
Third, they are difficult to deploy and manage. The network ad-
ministrator has to pick the nodes’ positions carefully to ensure
they all hear the leader. The administrator cannot simply add
or remove nodes, and has to monitor the system to ensure that
the connectivity constraints always hold.

Bringing scalability, resilience, and manageability to dis-
tributed MIMO is particularly important for 5G small cell
networks. All major cellular equipment manufacturers and op-
erators expect massive deployment of small cells in 5G in order
to meet capacity requirements, especially in dense urban set-
tings, such as Manhattan, downtown Tokyo etc. [10, 21, 44].
Such dense small cell deployment will naturally increase the
interference between transmitting nodes, and emphasize the
need for distributed MIMO, which both eliminates interference
and increases throughput. Further, such small cell networks
will naturally span large geographic scale (e.g., Manhattan),
and hence will need a distributed architecture that does not

461

https://doi.org/10.1145/3230543.3230578
https://doi.org/10.1145/3230543.3230578
https://doi.org/10.1145/3230543.3230578

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary E. Hamed et al.

assume the presence of one node that can be heard by all oth-
ers. Finally, small cells are typically deployed in third-party
premises with limited access and control for the operators of
the network. This will make management a nightmare with ex-
isting Distributed-MIMO solutions, as nodes cannot be easily
replaced and changes to the wireless environment are often out
of operator control, making it very hard to ensure that all slaves
always hear the leader.

In this paper, we introduce Chorus, a system that removes
these limitations and builds a truly distributed Distributed-
MIMO network. In Chorus, there are no special roles, i.e., no
leader and slaves. All Chorus nodes transmit a synchronization
signal, and all synchronize their oscillator phases by listening
to the synchronization signals transmitted by other nodes in
their vicinity. This makes the design resilient to node failure,
addition and removal. There are also no special constraints on
topology or connectivity. Thus, the coordination protocol is
easy to manage and naturally scales to large networks with
transmitters that are no longer in hearing range of each other.

Chorus is different from standard distributed consensus pro-
tocols (e.g., Paxos or Raft [25, 26, 30]). In those protocols,
the state of the system advances or rolls back only based on
interactions between the nodes in the system, and is controlled
only by the protocol. In contrast, Chorus’s distributed protocol
tracks an underlying analog state of the world (specifically, a
reference oscillator phase) that advances independently of the
protocol. This analog state cannot be controlled or rolled back
by the distributed protocol, instead the role of the protocol is
to ensure that all nodes in the system accurately track the state
of the reference oscillator to within tens of nanoseconds.

The design of Chorus has the following three components
that together deliver a fully distributed phase synchronization
protocol for distributed-MIMO.

(a) Self-Organizing Tree Architecture: As described earlier,
each Chorus node transmits a synchronization signal and syn-
chronizes with the composite synchronization signal that it
hears. Naively applying this design leads to synchronization
loops –e.g., a node may be synchronizing with a second node,
that is synchronizing with a third node, which is synchronizing
with the first node in the loop. Such loops are destabilizing, i.e.,
they prevent the system from converging [29]. To prevent loops,
Chorus has a distributed protocol to organize the nodes in the
form of a tree (specifically a fat tree). Nodes at the same depth
of the tree transmit the synchronization signal in the same fre-
quency, and this composite synchronization signal is used by
nodes at the next lower depth to synchronize themselves. In
addition to this resilient fat tree architecture, Chorus also has a
special acyclic structure at the root to make the synchronization
tree resilient to failures of the root. We describe the details of
our protocol and resilient architecture in §5.

(b) Robust Phase Update Algorithm: In past work on dis-
tributed MIMO, each transmitter listens to the leader’s signal,

computes the difference between its phase and that of the leader,
and adds the difference to its own phase [1, 5, 23, 33, 36, 49].
This simple algorithm however does not work for Chorus. In
Chorus, the synchronization signal is no longer a clean trans-
mission from one leader – it is a composition of synchroniza-
tion signals from multiple nodes. Thus, there is more phase
variability due to potential misalignment between the transmit-
ters of the composite signal. Furthermore, in past systems, the
phase difference can be computed at the time of transmission
and applied immediately. In contrast, in Chorus, the synchro-
nization signal can be sent only sporadically due to the frame
structure of LTE. As a result, the measured phase difference
can be outdated. To deal with multiple transmitters, as well as
its more stringent synchronization requirements, Chorus uses
tools from signal processing and control theory. Specifically,
instead of using a known synchronization signal, Chorus ran-
domizes the synchronization signal sent by each transmitter in
order to ensure resilience to channel conditions. Additionally,
Chorus explicitly models measurement variability and delays,
and incorporates its model within the framework of robust con-
trol, which is known to account for these uncertainties. In §6,
we describe our controller formulation.

(c) LTE Compatibility: We would like Chorus to be directly
applicable to small cells without having to change the LTE
protocol or user devices. To do so, we leverage that LTE’s
OFDM modulation divides the frequency band into subcarriers,
which themselves get divided into timeslots called resource
elements. Chorus allocates some of these resource elements for
transmitting synchronization signals. Chorus also schedules the
resource elements used for synchronization so that they look
to user devices as if they were yet another user in the system.
Only small cells participating in Chorus need to interpret the
synchronization signal.

We implement Chorus in a hardware platform composed of
an FPGA connected to a high speed ARM core. We use the
srsLTE open source LTE stack implementation [42] and aug-
ment the eNodeB with Chorus. Our implementation therefore
provides an LTE small cell that is capable of synchronized
operation and distributed joint transmission. We perform our
experiments in the white space frequency bands (680 MHz),
which is very close to the 700-800 MHz where major US opera-
tors such as Verizon and AT&T run their networks. Our results
show:

• Chorus’s distributed synchronization is scalable, and syn-
chronizes small cells that are not within range of each other.
Specifically, the median phase variance between two such
small cells is less than 0.004 radians2.

• Chorus is resilient to the loss of any single node by enabling
multiple nodes to simultaneously transmit the synchroniza-
tion signal. Specifically, Chorus achieves synchronization
within a phase variance of 0.002 radians2 even when 10
independent small cells jointly transmit the synchronization

462

Chorus: Truly Distributed Distributed-MIMO SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary

signal. This means that the interference between concurrent
transmissions from our distributed MIMO nodes is less than
0.5 dB.

• Chorus’s controller is resilient to variations in synchroniza-
tion signal SNR. Specifically, it delivers accurate synchro-
nization even when synchronization SNR is as low as 6 dB.
The resilience to loss of any single node, as well as variation
in synchronization SNR, ensure that Chorus’s deployments
are easy to manage.

• We evaluate Chorus in a 20 node testbed deployment, and
compare its performance with MegaMIMO [23, 33], a state-
of-the-art leader-based distributed MIMO system.1 Chorus
delivers 2.7× higher throughput than MegaMIMO in our
testbed. This gain is the result of Chorus’s ability to build
a large distributed MIMO system across nodes that cannot
hear a single leader, and allow all these nodes to transmit
together. In contrast, MegaMIMO must divide the network
into multiple distributed MIMO clusters, each within range
of a single leader. These clusters have to transmit in different
time slots to avoid mutual interference, and as a result misses
out on large throughput gains.

• We evaluate the scaling performance of Chorus in a larger ge-
ographic setting using simulation. Specifically, we consider
an example deployment of 25600 small cells in an 8 × 8 sq.
km. area, which is slightly larger than the size of Manhattan.
We show that Chorus can synchronize cells within a median
radius of 5 km to within a phase variance of 0.004 radians2.
Nodes outside this range show higher phase variance. These
differences however are irrelevant, because these nodes are
much more distant from each other than the range at which
nodes interfere in the network.

2 RELATED WORK

Related work falls in five categories:

(a) Distributed MIMO Schemes for Wi-Fi and LTE: The
typical design of distributed MIMO systems assume a leader/
coordinator that plays a special role in synchronizing the os-
cillators of the nodes. Such a design is used in distributed
MIMO schemes proposed for both Wi-Fi and LTE, such as
MegaMIMO [23, 33], AirSync [5], AirShare [1] for Wi-Fi, as
well as Co-ordinated Multi Point (CoMP) for LTE, which is
implemented in example systems such as PCell [22, 32] and a
demonstration by Ericsson [13]. In particular, MegaMIMO and
AirSync are organized around a single leader that all slaves
must be able to hear. AirShare [1] transmits the synchronization
signal over a separate out-of-band channel, using a network of
lead emitter and slave emitters. The CoMP schemes assume a
shared clock, distributed either via GPS or a wire, and a dedi-
cated central server that creates the signals for all participating

1MegaMIMO is designed for a Wi-Fi network with one leader, but we adapt it
to larger small cell networks as we describe in §11.4.

base stations, and delivers them to all antennas using a dedi-
cated fiber backhaul infrastructure with very high throughput
and carefully controlled latencies. As such, these systems do
not deliver the benefits of a truly distributed design. They do
not scale to a large network of small cells, they are not resilient
to network faults, and are complicated to manage.

There are some previous schemes that have considered scal-
ing beyond a single leader. For example, NEMOx [49] consid-
ers multiple clusters each having its own leader AP. The leader
APs coordinate with each other to limit interference across
clusters. However, such a system still is not resilient to the loss
of the leader within a cluster, or changes in network topology
that prevent adjacent leaders from coordinating, and is difficult
to manage since it requires operators to determine the partition-
ing of the network into clusters and the corresponding leader
assignment. An extension to Airsync [35] proposes a hierarchi-
cal leader scheme that faces the same problems of scalability
and resilience, and further, that system has only been proposed
in theory and not evaluated empirically. Vidyut [46] avoids the
need for a single leader by allowing the Wi-Fi access points
to synchronize their transmissions over the power lines, even
if they are not within the same coverage area. Such a scheme
applies to nodes within the same home or building, but does
not scale to a larger network and does not apply to small cells
where nodes are geographically dispersed and connected to
different power systems.

(b) Distributed Coordination Protocols: There is a signifi-
cant literature on a variety of coordination, consistency, and
consensus protocols in the distributed systems literature, such
as Dynamo, Paxos, Spanner, and Raft [11, 25, 26, 30]. These
systems are typically used to determine a leader among a set
of servers in a distributed system, and agree in a distributed
manner on states of a state machine. These systems are how-
ever fundamentally different in scope, and timescales, from
Chorus. Specifically, in these distributed protocols, the state
of the system is determined only by interactions between the
servers in the distributed system, and advances or rolls back
based on messages exchanged between them. In contrast, the
goal of Chorus is to track an analog state, specifically, the
phase of a reference oscillator, which is constantly changing
independent of the interaction between the nodes in the system.
As a result, the role of the protocol is to ensure that all nodes
in the system track this reference oscillator accurately within
tens of nanoseconds.

(c) Massive MIMO: A popular recent trend in LTE is massive
MIMO [24, 28, 38, 39]. For instance, systems such as Argos
have demonstrated designs where a large number of MIMO
antennas are packed densely on a single node. Chorus is com-
plementary to Massive MIMO. Specifically, massive MIMO
is typically applicable to base stations or macro cells, which
can accommodate the size and power requirements of the large
number of antennas and their corresponding digital and analog

463

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary E. Hamed et al.

chains. In contrast, Chorus is targeted at small cells, which
have a much smaller form factor and lower power budget.

(d) Inter-Cell Coordination without Frequency Reuse: LTE
has some mechanisms for loose GPS-based synchronization
between devices, to enable joint transmission from multiple de-
vices in nearby subcarriers, subcarrier suppression for inter cell
interference cancellation etc [7]. Similarly, schemes have been
proposed to achieve such inter-cell interference elimination in
802.11ac [47]. Unlike distributed MIMO, these schemes do
not allow concurrent transmissions in the same frequencies at
the same time. They only limit interference between adjacent
frequencies. Hence their throughput gains are much lower than
distributed MIMO.

(e) Other network synchronization techniques: There is a
significant literature on time synchronization for wired and
wireless networking applications. However, all those tech-
niques focus only on time synchronization and are not capa-
ble of providing phase synchronization, which is essential for
beamforming. Those techniques for network synchronization
fall into two major categories.
Theoretical: Dorfler et. al [12] discuss various theoretical mod-
els of oscillators and the performance bounds associated with
different levels of synchronization. The paper however does
not describe algorithms that can achieve the different levels
of synchronization, nor does it explore the system issues of
designing and building a network of synchronized transmitters.
Antonioni et. al. [4] discuss the game theoretic tradeoff of syn-
chronization in natural systems, such as fireflies, based on the
costs of synchronizing and the benefits that would accrue. As
such, this work neither provides algorithms that achieve accu-
rate synchronization, nor do these tradeoffs apply to MIMO
beamforming.
Practical: Chen et. al. [8] , Sommer et. al [41] evaluate various
gradient clock synchronization algorithms in sensor networks.
These algorithms provide tight time synchronization by flood-
ing the network with messages and then using these message
timestamps to discipline their local clocks. However, they do
not provide phase synchronization, which is needed for beam-
forming. NTP is similar, and further, achieves time synchro-
nization only at the accuracy of ms, which is inadequate for
joint MIMO transmission. Further, none of these algorithms
have been evaluated across a wide range of SNRs, which is
actually necessary for a synchronization system to work ro-
bustly in practice, nor do they address the practical challenges
of interoperability with standards like LTE.

3 SCOPE

As in prior work on Distributed-MIMO, this paper focuses
on delivering phase coherence across distributed independent
nodes [1, 5, 23, 33, 46], thereby allowing those nodes to act
as one huge MIMO node which can perform the basic prim-
itives of multi-user transmission, such as nulling, diversity,

and multi-user beamforming. All of these systems focus on the
physical layer signal transmission, and the associated necessary
coordination protocols.

In today’s multi-user and massive MIMO systems, there are
additional functions that are performed by the higher layers.
For example, the higher layers decide the frequency and time
slots in which each user receives its data, as well as the choice
of transmit antennas, and the combinations of beamforming,
nulling, and diversity to be used for the different users. Much
work has been done in both academia and industry to develop
algorithms for these higher layers [3, 9, 27, 36, 37, 43]. The
higher layers in distributed-MIMO also have to address these
questions. Given the similarity, they can leverage the past work
for existing MIMO systems, but have to account for the greater
complexity due to the bigger scale of a distributed-MIMO sys-
tem and the additional system constraints such as the amount
of backhaul bandwidth available for each small cell. Dealing
with these issues is beyond the scope of this paper, and is left
for future work.

4 OVERVIEW

Chorus is designed for 5G cellular networks with dense small
cell deployments containing tens of thousands of small cells
spanning multiple tens of square kilometers. These dense net-
works can obtain dramatic throughput gains from distributed-
MIMO as their throughput is currently limited by interference.
However, their size and geographic scale make them unsuited
for current distributed-MIMO solutions, which require a single
leader that needs to be reliably heard by all other small cells in
order to perform phase synchronization.

Chorus addresses these challenges by designing a scheme
that does not require a single leader transmitting a synchroniza-
tion signal. Instead, all nodes act as leaders, jointly transmitting
the synchronization signal. Each node locally has a controller
that listens to the synchronization signal transmitted by other
nodes, and synchronizes the phase of its oscillator to the signal.
As a result, Chorus can synchronize the phase of hundreds
to thousands of nodes in a large geographic area, creating a
distributed massive MIMO fabric that can be leveraged by
higher layers. Note however that this does not mean that thou-
sands of nodes have to transmit data together to the same set of
clients. The distributed MIMO fabric allows the higher layers
to treat any subset of the network as a large massive MIMO
system. They can freely pick groups of nodes to deliver multi-
plexing or diversity gain to specific client sets. They can also
change those groups from one transmission to another without
worrying about which small cells hear each other.

Chorus’s protocol and architecture is designed to be compat-
ible with LTE, and operates without requiring any changes to
LTE end user devices. We describe the different components
of Chorus in the subsequent sections.

464

Chorus: Truly Distributed Distributed-MIMO SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary

G

G

Reference

Signal

Node A Controller

Node B Controller

Output

+

+

Figure 1—Positive Feedback between two nodes. The figure shows two
nodes transmitting and receiving synchronization signals to each other. Each
node can be modeled as a control system with transfer function G . Node
A receives a reference synchronization signal from node B, and transmits a
synchronization signal, which in turn is used by Node B as its input synchro-
nization signal, producing a positive feedback loop.

5 SELF ORGANIZING TREE

ARCHITECTURE

Chorus achieves leaderless synchronization by making all
nodes equally responsible for propagating the synchroniza-
tion signal. Specifically, every node continuously listens to the
synchronization signal, compensates for its own phase shift
with respect to the synchronization signal, and transmits a syn-
chronization signal that can then be used by other nodes to
measure their phase shifts and synchronize their oscillators.

However, if nodes do this naively, they could end up with
synchronization loops. For example, consider the following
topology – node 1 transmits a synchronization signal that is
used by node 2, which transmits a synchronization signal used
by node 3, which in turn, transmits a synchronization signal that
is used by node 1. Such synchronization loops can destabilize
the system, i.e., prevent the network from converging to a
coherent phase.

To understand why, let us model the system using control
theoretic concepts. Each node in our system has a reference
signal which is the synchronization signal received by the node.
The node internally has some controller which aims to match
the node’s phase to the reference phase. Since the details of
the controller are irrelevant to this argument, let us abstract the
controller inside the node by the function G. Since the goal
of the controller is to ensure that the output synchronization
signal matches the reference, the transfer function G should be
as close to 1 as possible.

Now, let us see what happens when there is a loop. We will
take a simple case with two nodes A and B. Node A receives a
synchronization signal from node B, which it uses to synchro-
nize and transmit its own synchronization signal. Node B will
hear the synchronization signal transmitted by node A, use it to
synchronize itself, and in turn transmit the synchronization sig-
nal that node A uses. This leads to a feedback loop, as shown
in Fig. 1. From basic control theory [29], the transfer function
of such a loop is G

1−G2 . Since, accurate tracking requires G to

A

B

C
L1

L0 L1

L2 L2 L2

N1 N2 Nk

Root nodes

L2
L2 L2

A B
L0

L1 L1

N1 N2 Nk

Root nodes

L1
L1 L1

(a) Resilience to 1 failure at the root (b) Resilience to 2 failures at the root

Figure 2—Resilience to Root Failures: (a) shows a topology for the synchro-
nization tree that is resilient to either node A or B failing. (b) shows a topology
that is resilient to any two nodes of {A,B,C} failing.

be as close to 1 as possible, the loop is bound to be unstable.
The same argument generalizes to larger loops.

5.1 Chorus’s Layering Protocol

Since our objective is to eliminate loops, by definition, our
synchronization topology must be a tree. We will refer to the
nodes at a particular depth in the synchronization tree as a
layer, with the root being at depth 0, and so on. Each layer’s
synchronization signals are associated with a different set of
frequencies. Each node transmits its synchronization signal in
the frequencies corresponding to its layer, and synchronizes
itself by listening to the synchronization signal on the frequen-
cies corresponding to its parent layer directly above it. Thus,
the tree structure is really a fat tree.

Chorus’s synchronization tree is self-organizing. All that the
administrator has to do is to pick the root of the tree. Once
the administrator nominates the root, the tree self organizes as
follows: The root starts transmitting a signal in layer 0. Each
node who wants to join the system listens for synchronization
signals on the frequencies associated with all layers. The node
picks the lowest layer from which it receives an adequately
strong synchronization signal. Specifically, each node inter-
nally is running a controller (described in §6) whose objective
is to match its phase with the phase of the synchronization
signal. The controller needs a minimum synchronization signal
SNR in order to provide robust phase coherence. Thus, when
picking a layer, the node picks the lowest layer whose SNR is
above this threshold. We evaluate the performance of Chorus’s
controller in §11.2, and describe how we can determine this
SNR threshold. Intuitively, one can see these layers in space
as concentric rings starting from the single layer 0 node in the
network.

Since the synchronization signals will attenuate with dis-
tance, Chorus can reuse synchronization frequencies. For ex-
ample, say that we have 8 sets of synchronization frequencies,
which are used by layers 0 through 7. Layer 8 can re-use the
frequencies corresponding to layer 0, assuming nodes at this

465

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary E. Hamed et al.

layer are sufficiently distant from the node in layer 0. By de-
fault, Chorus uses 8 distinct sets of synchronization frequencies.
Thus, layer i, for i ≥ 1, receives on synchronization frequency
(i − 1) mod 8, and transmits on synchronization frequency i

mod 8. In §7, we describe how these synchronization frequen-
cies can be provided cheaply in the LTE framework without
allocating dedicated frequency bands.

5.2 Resilience

Chorus is resilient to node addition and removal, as well as
changes in channel quality and, therefore, topology of the syn-
chronization tree. In particular, say that a node fails. Such a
failure typically has no impact on the other nodes. Specifically,
all nodes who are synchronizing to the layer on which the
failed node transmits are likely to continue receiving the syn-
chronization signal from the rest of the nodes in that layer. In
the unlikely case, where the failed node has a descendant who
cannot hear any other nodes from that layer, the descendant
will immediately discover the loss of its synchronization signal
from its parent layer, and therefore pick the next layer with
sufficiently high SNR. This process could, in principle, cas-
cade across several nodes, and naturally resolve itself with each
node moving to the appropriate layer. Node addition works
similarly.

In our description so far, we have addressed the resilience
at all layers except layer 0. We now address how to make
layer 0 resilient. Specifically, consider the topology in Fig. 2(a).
This is a modified tree topology where node A transmits a
synchronization signal on layers 0 and 1, node B listens to
the synchronization signal on layer 0, and transmits a synchro-
nization signal on layer 1, and nodes N1,N2, . . . ,Nk listen to
the synchronization signal on layer 1, and transmit a synchro-
nization signal on layer 2. In this case, if node A dies, node B
automatically becomes the root of the network and the system
continues to operate as usual. Further, if node B dies, nodes
N1,N2, . . . ,Nk transparently continue to synchronize with par-
ent layer 1, but using node A alone. Thus, this system can
withstand one root failure, at the expense of an additional layer
at the root alone. We can extend this idea to multiple root fail-
ures. For instance, Fig. 2(b) shows a root topology that can
withstand up to two nodes at the root failing, i.e., any two
nodes of A, B, and C can fail. While we expect that the system
administrator should pick robust nodes for the root, such as
base stations, the fault tolerant topology shown here enables
resilience to the transient failure of one or more of the root
nodes.

6 ROBUST PHASE UPDATE ALGORITHM

Chorus embeds the synchronization signal in the LTE frame.
LTE divides the frequency band into subcarriers, which them-
selves are divided into timeslots called resource elements. To
maintain low overhead, the synchronization signal appears

in certain resource elements, once every 5 milliseconds (the
details are in §7). Every time the synchronization signal is
available, the small cell obtains new measurements, which it
uses to update its phase so that it maintains phase coherence
with the received synchronization signal. But, how should a
Chorus node use the measurements to update its phase?

Past distributed MIMO update rules are not suitable for Cho-
rus. Specifically, past work belongs to two categories. Systems
like AirSync [5] have the synchronization signal all the time on
a dedicated channel. Thus, each node can continuously com-
pute the phase difference between its signal and the received
synchronization signal, and compensate for that difference.
Systems like MegaMIMO [23, 33] transmit the synchroniza-
tion signal immediately before every packet and use it only for
the duration of that packet – i.e., they synchronize on demand
and immediately before transmission. Chorus’s requirements
are more stringent than either system – it needs to provide
continuous phase tracking to accommodate LTE’s continuous
data transmission, but can afford only infrequent synchroniza-
tion signals (every few milliseconds) in order to integrate into
the LTE framework with low overhead. Furthermore, Chorus’s
synchronization signal exhibits a higher variability because it
is transmitted by multiple nodes as opposed to a single leader.

To deal with these more stringent conditions, Chorus com-
bines techniques from signal processing and control theory.
First, Chorus designs its synchronization signal to be resilient
to channel conditions in the presence of multiple transmitters.
It then uses principles from robust control to perform phase
correction using this synchronization signal.

(a) Resilient Synchronization Signal: In order to provide re-
silience against destructive interference and changes in the
network structure, Chorus designs the synchronization signal
sent from multiple nodes to be uncorrelated. Specifically, each
node chooses a random signal to be transmitted on each re-
source element used for synchronization, and sends this signal
as a repeated pattern in the synchronization subcarriers every
5 milliseconds. Sending a different random signal from each
node ensures that the synchronization signals from different
transmitters do not destructively combine in all the subcarriers
independent of the channels from the different transmitters to
every receiver. The receiver then correlates successive copies
of the synchronization signal to compute the phase change
accumulated in the 5 millisecond duration.

(a) Controller: Chorus formulates phase tracking as a control
problem. it then addresses it within the framework of robust
control, which is particularly suitable for dealing with uncer-
tainties and noisy feedback. Specifically, Chorus models the
system as a combination of a control block and a plant. The
objective of the control loop is to make the error signal, which
is the difference between the phase of the actual received syn-
chronization signal and the output phase of the plant (i.e., the
node), go to zero. The output phase of the plant is used to

466

Chorus: Truly Distributed Distributed-MIMO SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary

Measurement

 noise

Robust

Control

Plant

Reference

(Phase of Sync) FIR

Filter
Smooth Freq

Estimator

Crystal

Integrator

RF and

Baseband

Delay

Control Block

-

Output

+ +

Figure 3—A Block-diagram of Chorus’s Controller. Chorus uses a robust controller which takes as input a smoothed version of the phase error. The controller
output is used to update a frequency drift and phase update. The plant refers to the controlled system which models the delays in the baseband.

modulate and demodulate the transmitted and received signals
at the node, and is intended to track the phase of the received
synchronization signal.

Fig. 3 shows a schematic of our system.

• The control block takes as input an error signal correspond-
ing to the difference between the actual phase of the received
synchronization signal and the output phase of plant (with
added measurement noise). It then uses a Finite Impulse
Response (FIR) filter to reduce variability and smooth this
input signal. It feeds this smoothed value to a robust con-
troller that produces a phase correction to be used by the
plant.

• The plant consists of the RF and baseband systems which
incur some processing delay, and a correction module that
utilizes the phase output of the control block to perform fre-
quency and phase correction of the baseband system. Specifi-
cally, the correction module uses the phase correction output
of the control block to produce a smoothed frequency esti-
mate, which it then feeds through an integrator to produce
an additional phase correction per sample. The output of the
integrator is added to the control block phase correction to
produce a combined phase correction. The local crystal has
frequency drift due to temperature and other variations, and
can be modeled as an additive disturbance to this combined
phase correction, which feeds into the baseband system.

Modeling tools provide support for designing such con-
trollers; specifically, the MATLAB Simulink toolbox can take
as input a model of the system, and produce a robust con-
troller [29]. However, typically, these controllers require the
system to be Linear Time Invariant (LTI). Unfortunately, phase
is non-linear since it wraps around. Hence, in order to use
these controllers effectively, one has to ensure that the system
operates in a range where the measured phase does not wrap
around. To ensure this, Chorus has an initialization phase that
estimates the coarse frequency and timing offset between the
synchronization signal and the local node, and corrects for it.
Chorus uses the standard OFDM CFO correction algorithm

for coarse frequency offset correction, and leverages the LTE
frame structure for time synchronization as described in §7. It
then applies the coarse corrections in the baseband of the plant
before starting the controller.

7 LTE COMPATIBILITY

In this section, we describe how Chorus can be implemented
within the LTE protocol structure. Specifically, there are four
issues that need to be addressed in order to integrate Chorus
with LTE. We discuss these issues below.

7.1 Making Synchronization Signals

Transparent to End-User Devices

In earlier sections, we described how Chorus assigns different
synchronization frequencies to different layers. Of course, we
would like to transmit these synchronization signals in-band.
Furthermore, we would like these synchronization signals to be
transparent to existing end-user devices (called UEs in LTE).

Our basic idea is to make the synchronization signal look
like yet another user in the system. Only the small cells par-
ticipating in the Distributed-MIMO system understand how to
interpret the synchronization signal, and process it appropri-
ately, whereas regular user devices simply steer clear of these
frequency bands because they are not intended for them.

To achieve this, Chorus leverages the structure of LTE trans-
missions [16, 19, 20]. LTE transmissions are organized as
frames, with each frame being 10 ms long. Each frame can
be viewed as a time-frequency map. In particular, each frame
consists of 10 1 ms subframes. It is also divided in the fre-
quency domain into many subcarriers which are combined
using OFDM.

Users are allocated at the granularity of groups of subcarriers
for a subframe (Resource Block). Thus, we allocate the virtual
synchronization user two resource blocks each in subframe 0,
and subframe 5. A typical LTE channel of 10 MHz has 500
resource blocks in a frame. This amounts to a total overhead of
4/500, which is less than 1%. The overhead further decreases

467

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary E. Hamed et al.

with increasing channel width. Having allocated these resource
blocks for synchronization, Chorus maps the synchronization
signals for different layers to these resource blocks. Specifi-
cally, we interleave the synchronization signals for the different
layers in these resource blocks, similar to the way user data is
interleaved.

7.2 Addressing FDD Systems

LTE systems come in two flavors: TDD (Time Division Duplex)
which has the same frequency bands for uplink and downlink
and schedules uplink and downlink at different points in time,
and FDD (Frequency Division Duplex) which uses different
frequency bands for uplink and downlink, with both uplink and
downlink operating simultaneously at all times.

As we described above, to make the system transparent to
end-user devices, we need the synchronization signal to be
transmitted as if it were a virtual user. However, this means
that such signals would have to be transmitted on the downlink
frequencies for FDD systems. Small cells in FDD systems are
not capable of listening to downlink transmissions, and hence
cannot use these signals to synchronize. Conceptually, one
solution to this problem is to modify end-user devices to listen
to the synchronization signal on the downlink, synchronize to it,
and transmit a synchronization signal on the uplink. However,
this defeats the objective of not modifying end-user devices.
So, the solution is to simply have the operator deploy a few
special end-user devices that have been modified to support
this cascading of synchronization signals. We refer to these
boxes as Cascading End Users.2

7.3 Joining The Network

Initially, as a node decides to join the system, its phase might
not at all be coherent with other synchronized nodes in the
network. The node cannot simply start transmitting a synchro-
nization signal before it reaches a reasonable level of coherence.
Thus, when the node starts, it uses existing LTE synchroniza-
tion signals, specifically the Primary and Secondary Synchro-
nization Signals (PSS and SSS) that are transmitted by other
distributed-MIMO nodes, to obtain a coarse frequency offset
estimate and time synchronization to a frame boundary. Hav-
ing obtained these estimates, the Chorus node then determines
the synchronization layer to which it belongs, and starts its
controller. The controller then uses the synchronization signals
to start doing fine tracking of the frequency offset, and reports
to the node when it has converged. At this point, the small
cell is fully synchronized and ready to join the distributed-
MIMO system by transmitting the synchronization signal on
its appropriate layer. The node also now joins the rest of the

2This does not mean that the operator actually deploys cellphones. The operator
deploys boxes that are similar in form factor to a picocell, but are significantly
simpler – they do not need to do end-user data processing, and hence are not
limited by backhaul requirements or other deployment constraints.

distributed-MIMO nodes in transmitting PSS and SSS signals.
For FDD, the Cascading End Users will relay the PSS and SSS
on the uplink for use by the joining small cells.

7.4 Transmission

Now that small cells are part of the Distributed-MIMO net-
work, they can participate in joint transmission much like with
Coordinated Multi Point (CoMP) today. Specifically, the sys-
tem can use CSI-RS (Channel State Information Reference
Signals) to measure downlink channels and get feedback from
UEs, the UE-RS (UE-Specific Reference Signals) as pilots to
measure the beamformed downlink channel to end users, and
the actual data subcarriers for beamformed data transmission.

8 IMPLEMENTATION

We prototype Chorus using a joint software-hardware imple-
mentation. Our prototype is integrated with srsLTE [42], an
open source LTE stack library, and hence it is compatible with
LTE end user devices. The prototype runs on a custom pro-
grammable radio platform, which comprises of a Zedboard in-
tegrated with the Analog Devices RF frontend, FMCOMMS3.
The Zedboard has an FPGA connected to an ARM core by a
high-throughput, low latency bus, hence allowing for real-time
processing at the PHY layer. Our hardware implementation is
done using Verilog on the FPGA, and our software runs on the
ARM core.

We implement the components of Chorus in the different
software and hardware elements as follows:

• The layered architecture is implemented across both soft-
ware and hardware. Specifically, the hardware reports the
signal strength for the different synchronization layers to
our software, which determines which layer this small cell
node should belong to. The hardware then determines the
appropriate time-frequency pattern of the transmitted syn-
chronization signal based on this layer. Further, the initializa-
tion protocol described in §7 to determine time and coarse
frequency synchronization are implemented in hardware.

• Chorus’s controller that performs continuous synchroniza-
tion and ongoing tracking of the received synchronization
signal is implemented in hardware so as to be real-time and
responsive.

• The LTE frames for transmission are created jointly by soft-
ware and hardware. Specifically, the srsLTE software en-
codes and modulates the data, and produces protocol com-
pliant LTE frames, with both cell specific and user specific
information. The hardware translates this frame into the sig-
nal representation after augmenting it with synchronization
information depending on the layering information described
above.

468

Chorus: Truly Distributed Distributed-MIMO SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary

• For joint transmissions, we provide software knobs that
allow the system to pick between diversity, nulling and mul-
tiplexing. The hardware executes on these knobs by perform-
ing the correct precoding.

9 TESTBED

Our evaluation testbed is distributed across one floor in our
building (80 × 60 feet). Depending on their location, nodes
can be separated by elevator banks, passages and inside walls
etc. The testbed contains a total of 20 nodes, with each node
emulating either an LTE small cell or an LTE client. We assign
one LTE small cell node to be in layer 0, and then run our
layering algorithm to assign layers to other small cells. We
control the transmitted power of our nodes to create different
interference neighborhoods, and emulate a larger geographic
area. For each experiment, we deploy our nodes around the
floor to create different topologies and layering of small cells.
The exact topology for each experiment is described along with
the experiment (See Fig. 8 for an example layout for one of the
experiments.) In order to replicate LTE conditions as closely as
possible, we run our experiments in the white space frequency
bands. Specifically, we use the 680 MHz center frequency,
which is very close to the 700-800 MHz where major US
operators such as Verizon and AT&T run their networks. LTE
has multiple possible channel widths, and our prototype is
implemented using the 3 MHz channel width. Chorus can
support any channel width; however, our choice of 3 MHz
is dictated by the FPGA size and processing power of our
platform.

10 METRICS

In this section, we describe the metrics we use to evaluate
Chorus.

(a) Phase Variance: The key function of distributed MIMO
protocols is to synchronize the oscillator phase across different
nodes. Thus, it is natural to evaluate Chorus in terms of the
phase variance across the distributed MIMO transmitters. In
an ideal scenario, the phase across multiple independent trans-
mitters will be coherent across time, and the variance will be
zero. The smaller the phase variance, the lower the interference
caused by misalignment of signals during joint transmission.

(b) Throughput Gain: We compute the ratio of the total
throughput that can be delivered by the network, i.e. by con-
current transmissions from multiple independent small cells to
multiple end user devices using a distributed-MIMO scheme,
to the throughput delivered by the network without distributed-
MIMO, i,e. with only one small cell transmitting to a single
end user device at a time.

11 RESULTS

In this section, we evaluate Chorus’s performance and scaling
behavior.

11.1 Resilience to Multiple Nodes

Transmitting the Synchronization Signal

A key property of Chorus is that it achieves resilience to the
failure of individual nodes and changes in network connectivity
by having multiple nodes simultaneously transmit the synchro-
nization signal. In this section, we verify how the quality of
synchronization varies as the number of nodes transmitting the
synchronization signal increases.

For this experiment, we deploy the nodes in our testbed such
that there are three distinct areas of connectivity. We pick one
node and assign it to layer 0. We then run the layering protocol,
which then assigns layer 1 to all the nodes that can hear layer 0,
and layer 2 to all the nodes that can hear layer 1. By definition,
layer 1 nodes synchronize to the layer 0 node, and layer 2
nodes synchronize to the combined signal from layer 1 nodes.
We vary the number of LTE small cells in layer 1. We then
pick one node in layer 2 to synchronize to the combined layer
1 signal. Our goal is to evaluate how well the node in layer 2
is synchronized to the individual nodes in layer 1, though it is
using a combined synchronization signal from all the layer 1
nodes. For this, we pick one node in layer 1 to transmit data
concurrently with the node in layer 2, and receive these signals
at an auxiliary node.3 To enable the auxiliary node to measure
the phase difference between the layer 1 and layer 2 nodes,
we make them transmit in alternate symbols, i.e., the layer 1
node transmits in the odd numbered symbols, and the layer 2
node transmits in the even numbered symbols. The auxiliary
node then compares the phase difference between the two
nodes using every pair of adjacent symbols, after compensating
for the corresponding channels between the layer 1 and layer
2 node to itself. We repeat the measurement with different
choices of layer 1 and layer 2 nodes.

Results. Fig. 4(a) plots the variance in the phase difference
between the data signals from layer 1 and layer 2 nodes as a
function of the number of transmitters on layer 1. The variance
is measured across 1 sec intervals which is significantly larger
than the channel coherence time. If the layers are synchronized
perfectly, the phase difference between the adjacent symbols
will be zero, since the oscillators are locked with each other.
Any error in synchronization will manifest as a non-zero phase
difference. The figure shows that the variance in the phase
difference stays below 0.0022 radians even as the number of
transmitters in layer 1 increases from 1 to 10. The low phase
variance shows that Chorus operates properly without a unique
leader, and can maintain good synchronization even when many
small cells contribute to the synchronization signal.

3Note that all nodes in layer 1 are transmitting synchronization signals.

469

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary E. Hamed et al.

1 2 3 4 5 6 7 8 9 10
0

0.001

0.002

0.003

0.004

0.005

Number of Transmitters

P
h

a
s
s
e

 V
a

ri
a

n
c
e

Phase Variance

Median Phase Variance

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

Number of Transmitters

IN
R

 (
d

B
)

(a) Phase variance (b) Interference-to-Noise Ratio (INR)

Figure 4—Performance at an auxiliary node as a function of number of joint transmitters in an intermediate synchronization layer. (a) plots the phase
variance observed at an auxiliary node as a function of the number of simultaneous transmitters in a layer. The figure shows that the phase variance observed at an
auxiliary node remains constant and low even as the number of transmitters in the intermediate synchronization layer increases. (b) shows the impact of this phase
variance on interference, by estimating the Interference to Noise Ratio (INR). The graph shows that the INR stays less than 0.5 dB for up to 10 simultaneous
transmitters. This demonstrates that Chorus’s strategy of having all nodes in the system transmit the synchronization signal provides robust synchronization.

0 5 10 15 20 25 30
0

0.002

0.004

0.006

0.008

0.01

Synchronization SNR (dB)

P
h

a
s
e

 V
a

ri
a

n
c
e

Phase Variance

Median Phase Variance

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

Synchronization SNR(dB)

IN
R

 (
d
B

)

(a) Phase variance (b) Interference-to-Noise Ratio (INR)

Figure 5—Performance at an auxiliary node as a function of synchronization SNR. (a) plots the variance in phase between the signals received from two
small cells at an auxiliary node and (b) shows the median Interference to Noise Ratio (INR) for various synchronization SNRs. The figure shows that Chorus can
achieve median INR less than 1 dB even for synchronization SNRs as low as 6 dB. This determines the minimum SNR of the synchronization link used by
Chorus’s layering algorithm.

To understand the implication of phase variance, let us rea-
son about its impact on interference. Say that the distributed
MIMO is trying to eliminate interference by nulling the trans-
mitted signals at a particular receiver. If the transmitters are
perfectly phase coherent, then they can compensate for the
channels between them to the receiver perfectly, and align the
signals to eliminate interference. Any phase variance will trans-
late into phase noise and manifest itself as a misalignment of
the signals, i.e., interference. We can use our measurements
from above to compute the residual interference when the two
transmitters apply nulling at the auxiliary node. Fig. 4(b) plots
these results. Note the similarity in shape between the INR plot
and the phase variance plot. This is because of the approxi-
mately linear relationship between them at low INR. The figure
shows that the residual interference to noise ratio is 0.5 dB,
which is small and comparable to previous systems. This shows
that despite the fact that Chorus has no leaders and multiple
nodes transmitting the synchronization signal concurrently, it

can achieve high performance comparable to past systems that
relied on a single leader.

11.2 Resilience to Varying Synchronization

Link Quality

It is important to understand Chorus’s performance as a func-
tion of the synchronization link SNR for two reasons. First,
recall that Chorus nodes join the lowest numbered layer with
adequately strong synchronization signal. Hence, we want to
calibrate the performance of the controller across SNRs to de-
termine this value. Second, a key objective of Chorus is to be
able to work robustly across a range of synchronization SNRs
to ensure resilience to variations in link quality.

For this experiment, we again deploy the nodes as before
such that the layering algorithm divides the network into three
layers, layer 0, layer 1, and layer 2. We pick two small cell
nodes, both in layer 2, synchronizing to a node in layer 1. Our
objective is to investigate whether the two small cell nodes

470

Chorus: Truly Distributed Distributed-MIMO SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary

have accurately synchronized their oscillators. To do that, we
repeat the same measurement procedure as in §11.1, where
the two small cells interleave their data transmissions, and an
auxiliary mode measures the phase difference between the two
small cells.

We repeat this process and characterize the phase synchro-
nization accuracy across different SNRs and locations in our
testbed.

Results. Fig. 5(a) plots the variance in phase difference be-
tween the two small cells measured across a 1 sec time interval,
as a function of the minimum SNR of the synchronization links,
i.e., the links from the layer 1 node to the two small cells. The
figure shows that even when the synchronization link SNR is
as low as 6 dB, the median phase variance stays lower than
0.0045.

As before, we again examine the impact of this phase vari-
ance on interference, by measuring the residual interference,
i.e., INR. We plot the INR as a function of the minimum SNR
of the synchronization links in Fig. 5(b). Again, we notice that
the median INR is very small, less than 1 dB for synchroniza-
tion SNR larger than 6 dB.

Figs. 5(a) and (b) show that by picking the minimum syn-
chronization link SNR to be 6 dB, Chorus can ensure that the
maximum interference is less than 1 dB.

11.3 Synchronizing Nodes that Cannot Hear

Each Other

Chorus’s architecture allows it to synchronize nodes that are
not within listening range of each other by cascading the syn-
chronization signal across layers. In this section, we evaluate
the performance of such cascading.

For this experiment, we deploy our nodes such that the
layering algorithm divides the network into four layers, layers
0 through 3. We then pick three nodes, one each in layers 1,
2 and 3, from our testbed. By the definition of our layering
algorithm, nodes in layer 3 cannot hear nodes in layer 1. For
each run, we pick one node in layer 1, and one node in layer
3, and synchronize via a node in layer 2, as described in §5.
Our objective is to investigate whether the nodes in layer 1
and layer 3 have accurately synchronized their oscillators. We
therefore repeat the same measurement as in §11.2, but with
the small cells in two different layers.

Results. Fig. 6 plots the variance in phase difference between
the two small cells measured across a 1 sec time interval, as
a function of the minimum SNR of the synchronization links,
i.e., the links between the layer 2 node to the two small cells.
The figure shows that the quality of synchronization stays high
even as the SNR of the synchronization signal drops.

0 5 10 15 20 25 30
0

0.005

0.01

0.015

0.02

Synchronization SNR (dB)

P
h

a
s
e

 V
a

ri
a

n
c
e

Phase Variance

Median Phase Variance

Figure 6—Phase variance between small cells that cannot hear each other

and are synchronized through an intermediate node, as a function of syn-

chronization SNR. The figure shows that Chorus can achieve high level of
synchronization even when the nodes cannot hear each other.

1 2 3 4 5 6 7 8 9 10

1 24 15 14

2 24 21 10

3 15 21 12

4 10 12 17

5 17 17

6 17 12 7

7 12 20 19

8 20 11

9 7 19 11 13

10 14 13

Figure 7—Pairwise link strength between small cells. The figure shows the
pairwise SNR in dB between small cells in our deployment, with links with
SNR less than the synchronization SNR threshold (6 dB) grayed out. No single
small cell can be heard by all other small cells.

11.4 Comparison with Leader-Based

Distributed MIMO

In this section, we empirically compare Chorus’s fully dis-
tributed protocol with MegaMIMO, a leader-based distributed
MIMO system. MegaMIMO is designed for Wi-Fi networks
but can be extended to small cells. The data plane does not
need to change since both Wi-Fi and LTE operate over OFDM.
For the control plane, MegaMIMO makes the leader node trans-
mit a synchronization header before each packet. This is not
possible in LTE since one cannot insert new headers between
LTE frames. To make MegaMIMO compatible with LTE, we
make the leader transmit its synchronization information in the
same resource elements used to transmit Chorus’s synchroniza-
tion signals. Since MegaMIMO has no layers, a MegaMIMO
leader transmits its synchronization signal in the channels of
all layers.

We consider a deployment across a single floor of our build-
ing. The floor consists of both offices and conference rooms,
and our deployment consists of 20 nodes, with 10 acting as
small cells, and 10 acting as clients. As explained earlier, we
reduce the transmission power to emulate a larger geographic
area. We measure the pairwise link quality between all the
small cells to identify nodes that can hear each other well.

471

472

Chorus: Truly Distributed Distributed-MIMO SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary

−4000 −2000 0 2000 4000
−4000

−2000

0

2000

4000

X Distance (meters)

Y
 D

is
ta

n
c
e

 (
m

e
te

rs
)

Figure 10—Visualization of Chorus’s layering scheme. The figure depicts
the different layers assigned by Chorus’s layering algorithm. It shows that
across the geographical range of this simulation, Chorus reuses synchronization
frequencies.

v 12.7.0 LTE standard [17]. We use the Non Line of Sight
Propagation Model for a Manhattan grid layout, as described
on Page 93 of 3GPP TR 36.814 V9.0.0 [14]. Receivers have a
noise floor of -100 dB, which corresponds to the standard noise
figure of 6 dB (defined in the LTE TR 36 931 document [15])
at 27◦ C for a bandwidth of 5 MHz. With these parameters,
the SNR in our network attenuates to 0 dB at around 300 m.
In order to evaluate dense deployments, we consider a case
where small cells are separated by an average distance of 50 m,
in a 8 km × 8 km grid, which roughly corresponds to the
size of Manhattan. Thus, our simulation has 25600 small cell
nodes deployed uniformly at random in this grid. We have an
oscillator model for each node, with a carrier frequency offset
of ±100ppb, which corresponds to the LTE hardware tolerance
defined in TR 36 104 [6, 18], and a phase noise of -88 dBc
at 100 KHz for a bandwidth of 5 MHz, which is typical for
the voltage, temperature and oven controlled oscillators used
in small cells [34]. Each small cell node in our system runs
the Chorus controller to ensure phase synchronization in the
presence of oscillator offsets. We run the layering algorithm on
our simulated deployment, and then simulate the operation of
the network for a duration of 5 seconds, which is significantly
larger than the typical channel coherence time of 100-200 ms.

Fig. §10 visualizes the results of the layering algorithm,
showing that this network has 19 layers. Since Chorus has
8 distinct synchronization frequencies, the layers reuse these
frequencies as described in §5.

Since we have access to the absolute phases of our oscil-
lators in our simulation, we can compute the absolute phase
difference, and consequently the phase variance, between pairs
of nodes in our system. We plot the median of this phase vari-
ance as a function of the distance between node pairs. Since
the number of node pairs in our system is very large, the graph
is generated by subsampling the node pairs.

0 2000 4000 6000 8000
0

0.002

0.004

0.006

0.008

0.01

Distance (meters)

P
h
a
s
e
 V

a
ri
a
n
c
e

Figure 11—Phase variance as a function of distance. The figure shows that,
while phase variance increases as a function of distance between the nodes,
it stays within 0.004 for nodes within 5 km of each other. This implies that
Chorus provides tight phase synchronization for nodes significantly longer
than the interference range of nodes, and hence enables joint transmission
from multiple transmitters.

Fig. 11 shows the median phase variance as a function of
distance. As one would expect, the phase variance increases as
the distance between node pairs increases. Further, the phase
variance stays less than 0.004 for all nodes within distance
5 km of each other. For nodes farther apart than this distance,
the higher phase variance is irrelevant because the nodes are
separated by many multiples of the interference range. Given
this large distance, no client will hear these far away nodes
and hence there is no danger from having these nodes syn-
chronized. In contrast, the phase difference between nearby
nodes is bounded. This shows that Chorus’s synchronization
fabric scales to large networks. Of course this does not mean
that thousands of nodes will transmit concurrently to the same
client set. Rather it shows that Chorus can create an abstraction
of distributed phase coherence across thousands of nodes. The
higher layers can then treat the network as they would treat a
very large massive MIMO system, and become free to combine
any subset of nearby base stations to create multiplexing or
diversity gains for the clients.

12 CONCLUSION

We have presented Chorus, a new design for distributed MIMO
that has a fully distributed phase synchronization protocol,
where all nodes contribute equally to propagating the synchro-
nization signal. Chorus allows dense deployments of 5G small
cell networks to coordinate their transmissions, eliminate in-
terference, and deliver large throughput gains. The resulting
distributed MIMO network is scalable, resilient to failures and
changes in connectivity. We have integrated Chorus with an
open source LTE stack library, and demonstrated that it can
deliver tight synchronization at scale, and distributed-MIMO
throughput gains with unmodified end-user devices. We be-
lieve that Chorus’s flexible and self-healing design will enable
distributed-MIMO to truly move from small scale demonstra-
tions to practical, manageable use in large networks.

473

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary E. Hamed et al.

REFERENCES
[1] O. Abari, H. Rahul, and D. Katabi. AirShare: Distributed Coherent

Transmission Made Seamless. In IEEE INFOCOM 2015, Hong Kong,
China, April 2015.

[2] S. Aeron and V. Saligrama. Wireless ad hoc networks: Strategies and
scaling laws for the fixed SNR regime. IEEE Transactions on Inf. Theor.,
53(6), June 2007.

[3] N. Anand, J. Lee, S. J. Lee, and E. W. Knightly. Mode and user selection
for multi-user mimo wlans without csi. In 2015 IEEE Conference on

Computer Communications (INFOCOM), pages 451–459, April 2015.
[4] A. Antonioni and A. Cardillo. Coevolution of synchronization and coop-

eration in costly networked interactions. Phys. Rev. Lett., 118:238301,
Jun 2017.

[5] H. Balan, R. Rogalin, A. Michaloliakos, K. Psounis, and G. Caire.
Airsync: Enabling distributed multiuser mimo with full spatial multi-
plexing. Networking, IEEE/ACM Transactions on, 21(6):1681–1695,
Dec 2013.

[6] D. BladsjÃű, M. Hogan, and S. Ruffini. Synchronization aspects in lte
small cells. IEEE Communications Magazine, 51(9):70–77, September
2013.

[7] A. Bommani. A survey on inter-cell interference reduction techniques
in lte-a heterogeneous networks. IJISET - International Journal of

Innovative Science, Engineering & Technology, April 2015.
[8] J. Chen, Q. Yu, Y. Zhang, H. H. Chen, and Y. Sun. Feedback-based

clock synchronization in wireless sensor networks: A control theoretic
approach. IEEE Transactions on Vehicular Technology, 59(6):2963–2973,
July 2010.

[9] R. Chen, Z. Shen, J. G. Andrews, and R. W. Heath. Multimode trans-
mission for multiuser mimo systems with block diagonalization. IEEE

Transactions on Signal Processing, 56(7):3294–3302, July 2008.
[10] Ultra-dense heterogeneous small cell deployment in 5g and be-

yond. http://www.comsoc.org/netmag/cfp/ultra-dense-heterogeneous-sm
all-cell-deployment-in-5g-beyond. IEEE Comsoc.

[11] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo:
Amazon’s highly available key-value store. In Proceedings of Twenty-

first ACM SIGOPS Symposium on Operating Systems Principles, SOSP
’07, pages 205–220, New York, NY, USA, 2007. ACM.

[12] F. DÃČÂűrfler and F. Bullo. Synchronization in complex networks of
phase oscillators: A survey. Automatica, 50(6):1539 – 1564, 2014.

[13] 5g live test: Multipoint connectivity with distributed mimo. https://www.
youtube.com/watch?v=jCO68dPoNwA. Ericsson Inc.

[14] ETSI. 3rd Generation Partnership Project; Technical Specification Group
Radio Access Network; Evolved Universal Terrestrial Radio Access
(E-UTRA); Further advancements for E-UTRA physical layer aspects
(Release 9). ETSI, 2010.

[15] ETSI. LTE; Evolved Universal Terrestrial Radio Access (E-UTRA);
Radio Frequency (RF) requirements for LTE Pico Node B (3GPP TR
36.931 version 9.0.0 Release 9). ETSI, 2011.

[16] ETSI. LTE; Evolved Universal Terrestrial Radio Access (E-UTRA);
Physical channels and modulation (3GPP TS 36.211 version 10.4.0 Re-
lease 10). ETSI, 2012.

[17] ETSI. LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Base
Station (BS) radio transmission and reception (3GPP TS 136.104 version
12.7.0 Release 12). ETSI, 2015.

[18] ETSI. LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Base
Station (BS) radio transmission and reception (3GPP TS 36.104 version
12.6.0 Release 12) . ETSI, 2015.

[19] ETSI. LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Mul-
tiplexing and channel coding (3GPP TS 36.212 version 13.0.0 Release
13). ETSI, 2016.

[20] ETSI. LTE; Evolved Universal Terrestrial Radio Access (E-UTRA);
Physical layer procedures (3GPP TS 36.213 version 13.0.0 Release 13) .

ETSI, 2016.
[21] Verizon sees small cell, dark fiber strategies as differentiators in 5g

world. http://www.fiercewireless.com/tech/verizon-sees-small-cell-dar
k-fiber-strategies-as-differentiators-5g-world-report. Fierce Wireless
Verizon report.

[22] A. Forenza, R. W. H. Jr., and S. G. Perlman. System and Method For

Distributed Input-Distributed Output Wireless Communications. U.S.
Patent Application number 20090067402.

[23] E. Hamed, H. Rahul, M. A. Abdelghany, and D. Katabi. Real-time
distributed mimo systems. In Proceedings of the 2016 Conference on

ACM SIGCOMM 2016 Conference, SIGCOMM ’16, pages 412–425,
New York, NY, USA, 2016. ACM.

[24] J. Hoydis, S. ten Brink, and M. Debbah. Massive mimo in the ul/dl of
cellular networks: How many antennas do we need? IEEE Journal on

Selected Areas in Communications, 31(2):160–171, February 2013.
[25] L. Lamport. The part-time parliament. ACM Trans. Comput. Syst.,

16(2):133–169, May 1998.
[26] L. Lamport. Acm sigact news. SIGACT News, 32(4):18–25, Dec. 2001.
[27] C. H. Lin, Y. T. Chen, K. C. J. Lin, and W. T. Chen. Fdof: Enhancing

channel utilization for 802.11ac. IEEE/ACM Transactions on Networking,
PP(99):1–13, 2018.

[28] L. Lu, G. Y. Li, A. L. Swindlehurst, A. Ashikhmin, and R. Zhang. An
overview of massive mimo: Benefits and challenges. IEEE Journal of

Selected Topics in Signal Processing, 8(5):742–758, Oct 2014.
[29] K. Ogata. Modern Control Engineering. Prentice Hall PTR, Upper

Saddle River, NJ, USA, 4th edition, 2001.
[30] D. Ongaro and J. Ousterhout. In search of an understandable consensus

algorithm. In Proceedings of the 2014 USENIX Conference on USENIX

Annual Technical Conference, USENIX ATC’14, pages 305–320, Berke-
ley, CA, USA, 2014. USENIX Association.

[31] A. Ozgur, O. Leveque, and D. Tse. Hierarchical cooperation achieves
optimal capacity scaling in ad hoc networks. IEEE Trans. on Info. Theor.,
2007.

[32] pCell. An Introduction to pCell. Artemis, February 2015.
[33] H. Rahul, S. Kumar, and D. Katabi. MegaMIMO: Scaling Wireless

Capacity with User Demands. In ACM SIGCOMM 2012, Helsinki,
Finland, August 2012.

[34] OCXO Overview. http://hypertech.co.il/wp-content/uploads/2015/12/F
requency-Control-Solutions-OCXO.pdf. Rakon.

[35] R. Rogalin, O. Y. Bursalioglu, H. Papadopoulos, G. Caire, A. F. Molisch,
A. Michaloliakos, V. Balan, and K. Psounis. Scalable synchronization and
reciprocity calibration for distributed multiuser mimo. IEEE Transactions

on Wireless Communications, 13(4):1815–1831, April 2014.
[36] W. Shen, K. C. Lin, M. Chen, and K. Tan. Client as a first-class citizen:

Practical user-centric network MIMO clustering. In 35th Annual IEEE

International Conference on Computer Communications, INFOCOM

2016, San Francisco, CA, USA, April 10-14, 2016, 2016.
[37] W. L. Shen, K. C. J. Lin, M. S. Chen, and K. Tan. Sieve: Scalable user

grouping for large mu-mimo systems. In 2015 IEEE Conference on

Computer Communications (INFOCOM), pages 1975–1983, April 2015.
[38] C. Shepard, N. Anand, and L. Zhong. Practical performance of mu-mimo

precoding in many-antenna base stations. In Proceeding of the 2013

Workshop on Cellular Networks: Operations, Challenges, and Future

Design, CellNet ’13, pages 13–18, New York, NY, USA, 2013. ACM.
[39] C. Shepard, H. Yu, N. Anand, E. Li, T. Marzetta, R. Yang, and L. Zhong.

Argos: Practical many-antenna base stations. In Proceedings of the 18th

Annual International Conference on Mobile Computing and Networking,
Mobicom ’12, pages 53–64, New York, NY, USA, 2012. ACM.

[40] O. Simeone, O. Somekh, H. Poor, and S. Shamai. Distributed MIMO in
multi-cell wireless systems via finite-capacity links. In ISCCSP, 2008.

[41] P. Sommer and R. Wattenhofer. Gradient clock synchronization in wire-
less sensor networks. In 2009 International Conference on Information

Processing in Sensor Networks, pages 37–48, April 2009.

474

http://www.comsoc.org/netmag/cfp/ultra-dense-heterogeneous-small-cell-deployment-in-5g-beyond
http://www.comsoc.org/netmag/cfp/ultra-dense-heterogeneous-small-cell-deployment-in-5g-beyond
https://www.youtube.com/watch?v=jCO68dPoNwA
https://www.youtube.com/watch?v=jCO68dPoNwA
http://www.fiercewireless.com/tech/verizon-sees-small-cell-dark-fiber-strategies-as-differentiators-5g-world-report
http://www.fiercewireless.com/tech/verizon-sees-small-cell-dark-fiber-strategies-as-differentiators-5g-world-report
http://hypertech.co.il/wp-content/uploads/2015/12/Frequency-Control-Solutions-OCXO.pdf
http://hypertech.co.il/wp-content/uploads/2015/12/Frequency-Control-Solutions-OCXO.pdf

Chorus: Truly Distributed Distributed-MIMO SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary

[42] srsLTE. Open source 3gpp lte library. https://github.com/srsLTE.
[43] An overview of algorithms for downlink transmit beamforming. https:

//ll.mit.edu/asap/asap_04/DAY1/16_PR_SWINDLEHURST.PDF. BYU.
[44] 10x, 100x, 1000x capacity growth will require small cells. https://www.

qualcomm.com/invention/technologies/1000x/small-cells. Small Cells
World Summit.

[45] S. Venkatesan et al. A WiMAX-based implementation of network MIMO
for indoor wireless. EURASIP, ’09.

[46] V. Yenamandra and K. Srinivasan. Vidyut: Exploiting power line infras-
tructure for enterprise wireless networks. In Proceedings of the 2014

ACM Conference on SIGCOMM, SIGCOMM ’14, pages 595–606, New
York, NY, USA, 2014. ACM.

[47] H. Yu, O. Bejarano, and L. Zhong. Combating inter-cell interference in
802.11ac-based multi-user mimo networks. In Proceedings of the 20th

Annual International Conference on Mobile Computing and Networking,
MobiCom ’14, pages 141–152, New York, NY, USA, 2014. ACM.

[48] H. Zhang and H. Dai. On the capacity of distributed mimo systems. In
Proc. Conf. Inform. Sciences and Systems (CISS), 2004.

[49] X. Zhang, K. Sundaresan, M. A. A. Khojastepour, S. Rangarajan, and
K. G. Shin. Nemox: Scalable network mimo for wireless networks. In
Proceedings of the 19th Annual International Conference on Mobile

Computing & Networking, MobiCom ’13, 2013.

475

https://ll.mit.edu/asap/asap_04/DAY1/16_PR_SWINDLEHURST.PDF
https://ll.mit.edu/asap/asap_04/DAY1/16_PR_SWINDLEHURST.PDF
 https://www.qualcomm.com/invention/technologies/1000x/small-cells
 https://www.qualcomm.com/invention/technologies/1000x/small-cells

	Abstract
	1 Introduction
	2 Related Work
	3 Scope
	4 Overview
	5 Self Organizing Tree Architecture
	5.1 Chorus's Layering Protocol
	5.2 Resilience

	6 Robust Phase Update Algorithm
	7 LTE Compatibility
	7.1 Making Synchronization Signals Transparent to End-User Devices
	7.2 Addressing FDD Systems
	7.3 Joining The Network
	7.4 Transmission

	8 Implementation
	9 Testbed
	10 Metrics
	11 Results
	11.1 Resilience to Multiple Nodes Transmitting the Synchronization Signal
	11.2 Resilience to Varying Synchronization Link Quality
	11.3 Synchronizing Nodes that Cannot Hear Each Other
	11.4 Comparison with Leader-Based Distributed MIMO
	11.5 Scaling the Network

	12 Conclusion
	References

