Chosen-Ciphertext Attacks against MOSQUITO

Antoine Joux'? and Frédéric Muller?

' DGA
2 HSBC-France
Frederic.Muller@m4x.org
3 Université de Versailles-Saint-Quentin, France
Antoine.Joux@méx.org

Abstract. Self-Synchronizing Stream Ciphers (SSSC) are a particular
class of symmetric encryption algorithms, such that the resynchroniza-
tion is automatic, in case of error during the transmission of the cipher-
text.

In this paper, we extend the scope of chosen-ciphertext attacks against
SSSC. Previous work in this area include the cryptanalysis of dedi-
cated constructions, like KNOT, HBB or SSS. We go further to break
the last standing dedicated design of SSSC, i.e. the ECRYPT proposal
MOSQUITO. Our attack costs about 27° computation steps, while a
96-bit security level was expected. It also applies to I'T (an ancestor
of MOSQUITO) therefore the only secure remaining SSSC are block-
cipher-based constructions.

1 Introduction

Symmetric encryption algorithms are generally split in two parts : stream ciphers
and block ciphers. On the one hand, stream ciphers manipulate the plaintext by
short packets of data (for instance bit per bit), using a time-dependent
transform. Typically the output of a PRNG (Pseudo-Random Number Gener-
ator) is XORed to the plaintext. On the other hand, block ciphers manipulate
the plaintext by larger packets of data (typically 128 bits for AES [17]) using
a fixed transform.

Self-Synchronizing Stream Ciphers (SSSC) are a special primitive : they are
often considered as a simple subclass of stream ciphers, but there are also some
similarities with block ciphers. Their main property is that, when some error
occurs in the transmission of the ciphertext, the decryption algorithm eventually
corrects it, after a short sequence of incorrectly decrypted bits. Hence a SSSC
achieves the features of an encryption algorithm and resynchronization after
transmission errors in one single primitive. They are suitable in situations where
encryption is needed, but no additional bandwidth is possible for error-correction
(see Maurer’s paper for a nice survey on the use of SSSC [14]). In practice,
few SSSC’s are actually used and it is not clear that such algorithms will be
important in the future [3]. However, from a theoretical point of view, it is a very
challenging subject, because no dedicated SSSC has yet been built, that resists

all known attacks. Some block-cipher-based constructions are possible, but it
would be nice to have a dedicated solution, that is both secure and efficient.
To guarantee the automatic resynchronization, it is a requirement that the
encryption of the i-th bit of the plaintext depends only on the key and a small
part of the previous ciphertext bits. We denote by K the secret key, { P; }i>0
the plaintext bits and {C;};>0 the ciphertext bits. Typically, a SSSC is such that :

Ci=P,®F(K,Ci_1,...,Ci_7)

for some function F and some integer T which is called the memory of the
SSSC. It is clear that such an encryption scheme is invertible. Besides, if an
error occurs in the ciphertext transmission, the decryption algorithm automati-
cally resynchronizes after transmitting 7" correct ciphertext bits. It is possible to
realize a SSSC with a dedicated design, or with a block cipher in an appropriate
mode, like the Cipher FeedBack (CFB) mode [9].

From a bitwise point of view, SSSC operate as stream ciphers, since every
plaintext bit can be encrypted separately using the time-dependent transform
x— 2@ F(K,Ci_1,...,Ci_r). On the other hand, looking at the ciphertext, a
fixed-transform is applied to each T-bit block, which is more similar to a block
cipher. The difference is that a block cipher is an invertible mapping on n-bit
inputs, while the F' function is a n-to-1 mapping. ;From the designer’s point
of view, a dedicated SSSC is often looked at as a special mode of operation
for stream ciphers with ciphertext feedback (see HBB [20] among others), while
cryptanalysis methods are often related to the field of block cipher.

First, we review the usual design methods for SSSC. Secondly, we review
the existing attacks against dedicated SSSC, like KNOT, HBB or SSS. Finally,
we extend the scope of these attacks, in order to break the only standing ded-
icated design, MOSQUITO. The complexity of our attack is 270 steps, while
the expected security level was 96 bits. To summarize, we observe that only
block-cipher-based constructions remain secure in this area.

2 Design Methods for SSSC

Following the terminology introduced previously, all SSSC operate by
Ci=P®F(K,Ci_1,...,Ci_7)

The difference between the designs lie in the way F' is built and in the value of
T. Figure 1 presents the general description of a SSSC.

2.1 Block-cipher-based constructions

A typical solution is to start from a block cipher Ej that operates on n bit
inputs, using a secret key K. Then, one builds a SSSC with memory of n bits
by :

F(K,Ci—1,...,Ci_n) = Ex(Ci_1,...,Ci_pn)&l;

K ‘ memory of T ciphertext bits F ﬂ memory of T ciphertext bits ‘ K

F F
w
Plaintext bit /T Ciphertext bit | T Plaintext bit
N N
ENCRYPTION DECRYPTION

Fig. 1. General description of a SSSC

In other terms, F is applied and only the Least Significant Bit (LSB) of the
output is kept. This is called the Cipher FeedBack (CFB) mode, with 1-bit
feedback [9]. More generally, the CFB mode can be extended to ¢-bit feedback
for any t between 1 and n (see Figure 2), but only the 1-bit version is self-
synchronizing. The CFB mode with 1-bit feedback is very inefficient, as one full
application of E' must be processed to encrypt one plaintext bit. However, there
exists more efficient alternatives, like the OCFB mode of operation [1].

- - 1 thits tbits_ - -
‘ memory of n ciphertext bits | | _memory of n ciphertext bits ‘
K —— E K — E

' '
Mpher output (n bits) Mpher output (n bits)

t bits t bits
t plaintext bits /T tciphertext bits b t plaintext bits
N N
ENCRYPTION DECRYPTION

Fig. 2. The CFB mode of operation with ¢-bit feedback

There is no generic attack against CFB or OCFB, provided the underlying
block cipher is secure. Preneel et al. pointed out some possible attacks when one
reduces the number of rounds of the block cipher to improve the efficiency of the
CFB mode [18]. Actually, there exists a security proof for the CFB mode with

n-bit feedback, against chosen plaintext attacks [10]. It is also widely believed
that the CFB mode with ¢-bit feedback is secure for any ¢, although no generic
security proof has yet been published.

2.2 Dedicated constructions

Dedicated constructions of SSSC were first introduced by Maurer [14]. Later,
Daemen et al. reconsidered the design of dedicated SSSC, from a practical per-
spective [5]. They pointed out that it was not very efficient to recompute the
whole function F' for each new ciphertext bit introduced. Therefore, they sug-
gested to split the design of the SSSC into two parts :

— An updatable part Q which is generally a register with an internal state
of size m bits. The state of the register at time 7, denoted @;, should depend
on the last T" ciphertext bits, and possibly the key :

Qi = CTY(.[(-7 Cifl, .. .,Ci,T)

Then an update function is specified, in order to compute efficiently @Q;1
from @; and C;. The function G is never actually computed in practice,
since the register () is generally initialized with a m-bit constant, and then
the update function is applied as many times as necessary. Note that the
memory 7' and the register length m are not necessary equal, however it is
necessary that m > T, in order to store enough information in the register.

— An output filter f which takes the state of the register Q); and computes
the output bit,

F(K,Ci-1,...,Ci—7) = f(K,Q:)
This filter f often looks like a “light” block cipher.

Figure 3 represents the general framework of such constructions. To guarantee
the self-synchronization, it is necessary that the “old” ciphertext bits are “for-
gotten” after T' updates. This constraint is often satisfied using a shift register-
oriented design (this is the case for SSS and for the KNOT-MOSQUITO family).
Concerning the role of the secret key, at least f or G must use K as input, but it
is rare that both do. Block-cipher-based constructions are the limit case of this
framework, with a very simple (unkeyed) shift register as the updatable part, and
a complicated (keyed) block cipher as the output filter. Dedicated constructions
try to reach a better trade-off with a more complicated (non-linear) updatable
part, but a lighter output filter.

2.3 The KNOT-MOSQUITO family

An interesting family of dedicated SSSC is the “KNOT-MOSQUITO family”.
KNOT was first proposed as an example of efficient dedicated design by Daemen
et al. in their paper of 1992 that dealt with SSSC in a more general perspec-
tive [5]. In 1995, Daemen discovered a statistical imbalance in the output of

l l

— (Qi—1 —1 Update — (); — Update

%

A A
\d \d

B & P Cing

Fig. 3. General Framework of Dedicated SSSC

%

KNOT [4], which was further investigated later [12]. This weakness of the out-
put filter motivated a switch to a tweaked version of KNOT called I'T which
was proposed in Daemen’s PhD thesis [4].

In 2003, a new weakness of KNOT was pointed out by Joux and Muller, which
allows to recover the secret key with complexity of 262 steps [12]. Their idea
is to apply methods from differential cryptanalysis in order to detect internal
collisions in the updatable register. This attack does not apply against I'T.
Recently, as part of the eSTREAM competition for stream ciphers [8] launched
by the European project ECRYPT, Daemen and Kitsos proposed a new self-
synchronizing stream cipher called MOSQUITO [6]. It is a close variant of I'T
which was designed to avoid the security problems of KNOT.

All algorithms in this family follow the framework introduced in Section 2.2,
with a memory of T'= 96 bits and an updatable register @ of size m = 128 bits,
which is non-linear and key-dependent. The type of register used in this fam-
ily are also called Conditional Complementing Shift Registers (CCSR).
See [5] or [6] for more details. The output filter is an unkeyed iterative construc-
tion, which gradually reduces the state from 128 bits to 1 bit, after 8 rounds*. The
difference between the 3 algorithms in this family (KNOT, I'Y and MOSQUITO)
lies in the way @ is updated, and in the details of the 8 rounds of the filter. All
algorithms in the family are designed to use of a 96-bit secret key.

To summarize, the KNOT-MOSQUITO family is an interesting family of
dedicated SSSC, since it is not a “tweaked” mode of operation of a stream cipher,
like SSS or HBB. Therefore, it is very interesting from a research perspective.
However, all the algorithms of the family are subject to differential attacks, as
pointed out in Section 4.

! The authors mention 7 rounds, but it depends on whether the final XOR is counted
as an 8-th round or not.

2.4 SSS

SSS (Self-Synchronizing Sober) is a new dedicated SSSC, submitted to the eS-
TREAM competition [19] by Rose et al. It belongs to the SOBER family of
stream ciphers [11]. This family uses Linear Feedback Shift Registers (LFSR)
operating in GF(2") with n = 8,16 or 32. An output filter is applied to some
cells from the LFSR, in order to extract a pseudo-random output. This generally
relies on n-bit instructions as well, in order to obtain a software-efficient design.
Additional functionalities (like authenticated encryption or self-synchronization)
have been suggested in tweaked versions of the SOBER family. The general idea
is to add an auxiliary input in the LFSR to introduce either the plaintext (for
the integrity mode) or the ciphertext (for the self-synchronizing mode).

While few cryptanalysis results are known against the algorithms from the
SOBER family in encryption mode, it is well known that tweaking a stream
cipher in order to add integrity or self-synchronization completely modifies the
cryptanalysis scenario [16]. Indeed, an attacker potentially gains the ability to
control the content of the LFSR. A devastating attack against the integrity mode
of SOBER-128 was described in 2004 by Watanabe et al. [24].

SSS was also broken by Daemen, Lano and Preneel, shortly after its publi-
cation [7]. They described a chosen ciphertext attack which allows to retrieve
a key-dependent secret table. According to the designers of SSS, such attacks
fall outside the threat model, but Daemen et al. argued that chosen ciphertext
attacks are practical and that they are the standard way to evaluate SSSC.

2.5 HBB

HBB (Hiji-bij-bij) is a software-oriented stream cipher, proposed in 2003 by
Sarkar [20]. It is a new construction, where the usual LFSRs have been replaced
by cellular automata. In addition, an output filter operating on a 128-bit output
is used. This filter has some similarities with a block cipher design (use of S-
boxes and linear diffusion layers). The Basic (B) mode of operation of HBB is
a traditional stream cipher, for which some attacks faster than brute-force have
been published in 2005 [13, 15].

In addition, a Self-Synchronizing (SS) mode of operation for HBB was also
proposed by Sarkar. It is based on a slight modification of the cipher, where
the cellular automata is filled with ciphertext bits, instead of being evaluating
autonomously. While the primitives are unchanged, this modification completely
changes the cryptanalysis scenario. Joux and Muller showed a devastating key-
recovery attack against this SS mode, which requires only 2'2 bits of chosen
ciphertext [13]. Basically, they exploited the weak differential properties of the
output filter.

2.6 Other proposals

Another proposition of dedicated SSSC was made by Arnault and Berger [2],
as part of their work on Feedback with Carry Shift Registers (FCSR). Their
proposal was later broken [25] using a chosen ciphertext attack.

Like for SSS and HBB, it appears that building a SSSC by tweaking a con-
ventional stream cipher is not a good idea. Many devastating attacks have been
published : as soon as one considers chosen ciphertext attacks, the cryptanalyst
no longer looks at the SSSC as a stream cipher, but instead he analyzes the G
function directly (see Section 2.2). The properties of G can be considered under
chosen input attacks : either differential properties are used (case of HBB or
KNOT) or the possibility to guess and identify individually some portions of the
key (case of SSS).

3 The Cryptanalysis Framework against SSSC

3.1 Chosen Ciphertext Attacks against SSSC

We first observe that the “natural way” to cryptanalyze a SSSC is by considering
chosen ciphertext attacks. This is natural from a theoretical point of view, but
also from a practical point of view, as already pointed out by Daemen et al. [7].

Theoretically, we are comparing dedicated SSSC with block ciphers in CFB
mode. Block ciphers are built to resist both chosen plaintext and chosen cipher-
text attacks, so it would be unfair to compare two algorithms that do not take
into account the same attack scenarios. In addition, the existence of chosen ci-
phertext attacks generally reveals design weaknesses that could later be extend
to much more realistic scenarios.

Moreover, there are still some scenarios where an attacker could have access
to a decryption oracle. This is not necessarily much more difficult than accessing
an encryption oracle. For instance, one could consider an active attacker that
modifies the communication channel (in order to obtain the ciphertext he wants)
and then observes the result of the decryption.

3.2 Chosen Plaintext Attacks against SSSC

In some attack scenarios against SSSC, chosen ciphertext attacks can even be
turned into chosen plaintext attacks. Assume that the attacker needs to obtain
a chosen ciphertext sequence equal to (Cq,...,C;) in order to attack a SSSC.
He can achieve it with chosen plaintext only, assuming an adaptive chosen
plaintext attack.

In such a scenario, we assume that the attacker can reset the encryption
algorithm to its initial state, at any point?. Then, he tries both value of the
bit P; and resets the algorithm if the value of C is not what he wants. Then,
the process is repeated as long as necessary. On average, this requires about /2
resets, where ¢ is the length of the needed ciphertext sequence, (C1,...,C;).

This gives an example of a classical scenario, where there exists a bridge
between chosen plaintext and chosen ciphertext attacks against SSSC. In the
following, we focus on chosen ciphertext attacks.

2 If he has access to several copies of the algorithm using the same key, a similar
attack applies. The idea is to throw away a copy of the algorithm and use a new
copy, instead of doing the reset.

4 Differential Attacks against MOSQUITO

4.1 A short overview of the design

Describing in details the MOSQUITO stream cipher is a long task, since a large
number of equations should be stated. We invite the reader to check the details
in the original specification [6]. Here, we only give a short overview of the design.

The register Q

As mentioned in Section 2.3, MOSQUITO uses a non-linear shift register as
the updatable part : @ has a length of 128 bits. Its content is noted in the later
as (1,...,2128). At time 7, the content of @ is updated by introducing the i-th
ciphertext bit, and also the secret key. More precisely, each bit x; is updated
by applying a simple boolean function h; : {0,1}* — {0, 1}, whose inputs are
chosen among (z1,...,%;_1), the key bits, and the introduced ciphertext bit.

One can observe that the propagation goes always in the direction of increas-
ing indexes. This guarantess that the influence of “old” ciphertext bits eventually
vanishes, which makes the resynchronization possible.

Actually, one could also express directly the content of register @) at time ¢
has a function of the last 96 ciphertext bits and the key. However, this would
lead to a very complicated expression. It is much clearer to describe @@ by the
update equations (i.e. the hj). See [6] for the expression of all these equations.

The output filter f

After the update of register @, the (i + 1)-th ciphertext bit is obtained by
XORing the (i + 1)-th plaintext bit to the output of the filter f. This filter is a
fixed, unkeyed transform applied to the state of the register Q. Therefore it is a
boolean function from 128 bits to 1 bits.

In order to be computed efficiently, f can be written as the composition of

8 simple transforms (also called rounds) applied to internal states of decreasing
size. For instance, the first round, noted 1, is applied to the content of @ (i.e.
128 bits), but its output size is only 53 bits. Therefore ¢, is a transform from
{0,1}128 to0 {0,1}%3. After the 8 rounds, the final output is simply one bit. Like
for the update of the register), each round can be represented by a small set
of boolean functions from 4 bits to 1 bit. The reader should refer to [6] for the
expression of all these equations.

4.2 Overview of the new attack

Our attack is similar to a differential cryptanalysis of a block cipher : we find
differential characteristics for both parts of the cipher? :

3 Regarding the mathematical tools, there are also relations with linear cryptanalysis
since we are interested in small statistical deviations called bias, as it will appear
later.

— First, we find a differential characteristic for the output filter f. In the case
of MOSQUITO, f is an unkeyed 8-round transform. We are looking for a
128-bit difference A such that

fQieA) o f(Q)

is equal to 0 with probability p = 0.5-(1+¢) and |¢| as large as possible. In the
case of KNOT, Joux and Muller [12] exploited A = 0 which implied that ¢ =
1. Such collisions on @ could be obtained from two distinct ciphertexts (i.e.
the function G' was not injective). In the newer algorithms of the family (I"T
and MOSQUITO), this attack has been countered by making G injective.
Therefore, the difference A = 0 is not reachable, unless the ciphertexts are
equal. We extend the scope of Joux-Muller’s attack to non-zero
differences.

— Secondly, we describe how to build two ciphertexts such that the two values
of the state Q; differ exactly by the previous difference A. This step will
require to guess some portion of the key. We consider £~2 such pairs, in
order to detect an imbalance on the outputs of the filter f.

4.3 Differential characteristic for f

The filter f of MOSQUITO looks like a block cipher with 8 simple rounds,
applied successively. Our analysis focuses on the differential properties of the
first round transform, ;. Since its output size is smaller than its input size, it
is not injective. Hence, we can expect to find an input difference A, such that,
after the first round

p1(z) = pr(z @ A)
with good probability. If such a collision occurs after applying ¢, this will
imply the equality of the outputs of f, since no new input is introduced in the

7 following rounds. As mentioned previously, each output bit of ¢ is computed
using a simple boolean function, written as :

7:(a,b,c,d) — a@b®e-(dpl)Dd1

applied to 4 among the input bits of ¢1, noted = = (x1,...,2128). Since 4 -
53 = 212 < 2-128 = 256, we know that at least 256 — 212 = 44 input bits
are processed only once by the function 7. A quick analysis shows that this
observation concerns :

(331, e .’1317), (J}547 e ,1‘60), (.]371, e ,J}75)7 (.23114, oo 737128)

which are all used only once in ;. Some of them are only used as 3-rd or 4-
th input bit of 7, so if we flip them, the output of 7 may be unchanged. This
observation concerns the set of bits :

S: {xl,...x17,x71,...,x75}

If we flip exactly one bit in this set .S, the output of ¢; is unchanged with proba-
bility 0.5. Consequently, the output of f is also unchanged with probability 0.75
(even when ¢ is changed, the output bit can still be the same with probability
0.5). Hence, we found differential characteristics on F' with bias ¢ = 0.5
and such that the input difference is non-zero.

4.4 Advanced differences

An advanced method consists in flipping two well-chosen input bits of ;. As an
example, consider the output bit number 29 and 33 of ;. They can be computed
by

Tg1 P Tes B Top - (Tas B 1) P 1
T80 ® o6 D Tes - (Ta9 1) D 1

The bits xg5 and xgs are used nowhere else in ;. If an attacker flips these two
bits simultaneously, there is a probability 0.25 that the output of ¢, is unaffected
(the condition is that x4g = 249 = 0). Hence the outputs of F' are equal with
probability 0.625, and we have a differential characteristic, with bias ¢ = 0.25
and such that the input difference is still non-zero (only the bits g5 and zgg
are flipped). There exists other strategies to flip 2 or more bits, while keeping a
reasonable bias. However, the difference we have just described will turn out to
be the most useful.

4.5 Analysis of the updatable part

Our goal is now to build two ciphertexts sequences that map to two register states
Q; and Q) such that A = Q; ® Q) is one of the “useful” differences identified in
the previous section. We may need to repeat this process £~2 times in order to
actually observe the predicted bias. Finding 2 appropriate ciphertext sequences
can be done using an exhaustive search on an appropriate portion of the
key.

4.6 Using the difference on ;7 only

We first describe an attack that targets the difference A;7, which is defined as
difference equal 0 on every input bit of f, except x17. At first glance, one could
envisage to work with the difference A; which has the same differential behavior
regarding f, however, the resulting complexity of the attack would be worse, as
it will appear below.

We focus on the updatable register, to obtain register states that differ from
Aq7 The state at time 7 is expressed as :

Qi=G(K,Ci—1,...,Ci_gg)

We denote the key bits by K = (k1,...,kes). The crucial observation, that we
refer to as observation O is that, for 1 <t < 88, the value of bit z; at time 7
depends only on the key bits ki, ..., k; and the ciphertext bits C;_1,...,C;_;.

The basic idea of our attack is to guess only the 79 least significant
bits of the key. This guess splits the register @) into a left part for which we
always know the internal values (thanks to observation Q) and a right part which
generally remains unknown.

At any time, we can control the differential behavior on the left part.
The only way we can have information about the right part is by letting the
“natural” propagation from left to right in) bring a zero-difference on the right
part (resynchronization effect). We combine these ideas in the following. More
precisely, our attack proceeds in three steps, represented in Figure 4 :

Input 2t 16 1718 79 80 128
Difference ‘?‘?‘ e ‘9‘ ?‘?‘ LI ‘ ? ? v s \ ?
S N
di?fgfiﬁge S S { Chosen Ciphertext

Intermediate

Difference 10l - . [0[0]0] - [ol2[. . .]?]
SN S
SN j 16 clockings =S unknown
Final ?iﬂergnce
nal maybe non-zerc
Difference @101+ - o [0[1]0] . .. [o[o] . . . [0 Y
(bit 17 only)
“controled"
difference
Fig. 4. The attack against MOSQUITO using A7
— First, we guess the key bits k1, ..., krg. Because of the observation O, we can
easily determine the value of V' = (z1, ..., z79) for any introduced ciphertext.

— Secondly, we pick at random two ciphertext sequences that yield the same
V', except that the bit z; is flipped. This step is easy to achieve in practice :
start from an arbitrary ciphertext sequence and compute the corresponding
value of V. Then, flip bit x; and clock 79 times backward the register @
(see Figure 3). So we find which ciphertext sequence should be introduced
in order to reach this modified state.

— Introduce 16 additional ciphertext bits and clock 16 times the register. The
difference will always propagate from position 1 to position 17 during these 16
clockings. But, observation O guarantees that there is no difference afterward
on bits x1,...,x16. Moreover, we can control the difference during these
16 extra clockings, in order for the difference not to propagate further than
position 17.

There are 2 ways to “control” the difference during these 16 extra clockings.
The first method consists in specifying a differential path and writing down
the boolean equations for this propagation to be satisfied. Here, about 20 such

conditions are needed, which remains reasonable in practice. A second method is
to test random ciphertexts, until a “good” one is found. Two tricks make this idea
quite efficient : First, we use “early-abort” in order to quickly eliminate the “bad”
candidates. Secondly, we observe that this propagation is almost independent on
our guess of key bits, kis, ..., k79, so we can tell if a ciphertext is good or not,
before guessing the whole key.

Both methods have been tested on a standard PC and are very efficient.
The bottleneck of this attack is the 2-nd step, where we need to repeat 279 the
execution of 79 clockings of). For comparison, the basic step in an exhaustive
search requires 96 clockings of). Overall, we need at least e =2 = 4 such plaintext
pairs, in order to detect the predicted bias. So we estimate the complexity to
about 28! steps (compared to 2°¢ for an exhaustive search).

4.7 Using the difference on xg5 and xgg

The idea of this attack is essentially the same as the previous one, except that
we guess only 66 key bits. Therefore, we can predict only the state of bit number
1 to 66 of the state @;. Then, we use 64 extra clockings and we hope to control
the difference, during these advances in order to obtain finally a difference on
cells number 65 and 66 only.

The approach based on specifying a differential path and writing the corre-
sponding boolean conditions seems very painful. Therefore, we adopted a purely
statistical approach : we tested random ciphertext sequences and used “early-
abort” : as soon as the difference starts to spread to several bits, we discard the
tested value.

Our implementation is very efficient and, for a given key guess, finds instantly
two satisfying ciphertext sequences, i.e. such that the final difference is only
located on the bits 65 and 66 of the state of). This needs to be repeated about
£72 times, so the complexity of our attack is about

966 o 42 _ 970

steps, compared to 2% steps for an exhaustive search.

4.8 Some comments

There are several interesting comments to make about these two attacks. First
the specific tricks needed to control the difference by specifying some set of
sufficient boolean conditions are related to the techniques developed against
hash functions like MD5 or SHA-1 by Wang et al. [21-23]. There could be further
improvements to the cryptanalysis of the KNOT-MOSQUITO family, by looking
in that area of research.

Secondly, our attacks also applies against I'7, since the underlying primi-
tives (register @) and filter f) are the same. Concerning KNOT, there are slight
differences in the primitives, but a similar attack should also apply. However the
result by Joux and Muller, exploiting internal collisions for @Q; are slightly more

efficient [12]. Actually, our attack can be viewed a generalization of this previous
result.

We used 4 pairs of ciphertext sequences in Section 4.6 and 8 pairs of cipher-
texts in Section 4.7. These are optimistic figures. It is well known that a small
security margin is generally needed above =2 to actually detect a bias ¢, with
a small false alarm probability. It is not necessary that this probability is 2726
here. Indeed, we have already guessed a large portion of the key, so 20 or 30
ciphertext pairs should probably be sufficient. Application of statistical tools is
needed to evaluate exactly how many ciphertexts are needed.

Finally, an important point is that the data complexity of our attacks is
very limited since we build the ciphertext sequences in an off-line computation
(described in Section 4.6 and Section 4.7). The data complexity is roughly of
4 x 96 x 2 ~ 210 ciphertext bits in the first attack and 8 x 96 x 2 ~ 2! for the
second attack.

5 Conclusion

All the dedicated Self-Synchronizing Stream Ciphers (SSSC) of the KNOT-
MOSQUITO family are subject to differential chosen ciphertext attacks. Our
results, combined with previous results on HBB, KNOT and SSS show that it is
extremely difficult to design a SSSC resistant against chosen-ciphertext attacks.

Some designers argued [19] that chosen ciphertext attacks should fall outside
the security model for SSSC. However, they are taken into account in block
cipher-based constructions, and could be more realistic than expected. Even the
authors of MOSQUITO [6] stressed out that dedicated SSSC should resist chosen
ciphertext attacks.

Since no dedicated SSSC still stands, we believe that block-cipher-based con-
structions should now be favored if one needs a self-synchronizing algorithm, for
practical purpose. An interesting direction would also be to see how much one
can “lighten” an existing block cipher (AES for instance), in order to obtain a
SSSC faster than the CFB (or OCFB) mode [1,9].

References

1. A. Alkassar, A. Geraldy, B. Pfitzmann, and A.-R. Sadeghi. Optimized Self-
Synchronizing Mode of Operation. In M. Matsui, editor, Fast Software Encryption
- 2001, volume 2355 of Lectures Notes in Computer Science, pages 78-91. Springer,
2002.

2. F. Arnault and T. Berger. A new class of stream ciphers combining LFSR and
FCSR architectures. In A. Menezes and P. Sarkar, editors, Progress in Cryptology
— INDOCRYPT 02, volume 2551 of Lectures Notes in Computer Science, pages
22-33. Springer, 2002.

3. S. Babbage. Stream Ciphers: What Does the Industry Want ? In State of the Art
of Stream Ciphers workshop (SASC’04), 2004.

4.

11.

12.

13.

14.

15.

Type of Attack Target Complexity| Data
Distinguisher [4] KNOT 218 218
Key Recovery [12] KNOT 209 236-6
Key Recovery [12] KNOT 262 238.6
Key Recovery [7] SSS 10 seconds |10 kBytes
Key Recovery [13] HBB 212 212
Key Recovery (this paper) MOSQUITO 281 210
Key Recovery (this paper) MOSQUITO 270 ot
Exhaustive Search MOSQUITO 296 96 bits

. J. Daemen,

Table 1. Summary of cryptanalysis results against some SSSC

J. Daemen. Cipher and Hash Function Design. Strategies based on Linear and Dif-
ferential Cryptanalysis. PhD thesis, Katholieke Universiteit Leuven, march 1995.
Chapter 9.

. J. Daemen, R. Govaerts, and J. Vandewalle. A Practical Approach to the Design

of High Speed Self-Synchronizing Stream Ciphers. In Singapore ICCS/ISITA 92,
pages 279-283. IEEE, 1992.

. J. Daemen and P. Kitsos. Submission to ECRYPT call for stream ciphers: the

self-synchronizing stream cipher Mosquito. eSTREAM, ECRYPT Stream Cipher
Project, Report 2005/018, 2005. http://www.ecrypt.eu.org/stream.

J. Lano, and B. Preneel. Chosen Ciphertext Attack on
SSS. eSTREAM, ECRYPT Stream Cipher Project, Report 2005/044, 2005.
http://www.ecrypt.eu.org/stream.

. eSTREAM - The ECRYPT Stream Cipher Project

http://wuw.ecrypt.eu.org/stream/.

. FIPS PUB 81. DES Modes of Operation, 1980.
10.

P-A. Fouque, G. Martinet, and G. Poupard. Practical Symmetric On-Line En-
cryption. In T. Johansson, editor, Fast Software Encryption — 2003, volume 2887
of Lectures Notes in Computer Science, pages 362—375. Springer, 2003.

P. Hawkes and G. Rose. Primitive Specification and Supporting Documentation
for SOBER-t32. In First Open NESSIE Workshop, 2000. Submission to NESSIE.
A. Joux and F. Muller. Loosening the KNOT. In T. Johansson, editor, Fast
Software Encryption — 2003, volume 2887 of Lectures Notes in Computer Science,
pages 87-99. Springer, 2003.

A. Joux and F. Muller. Two Attacks Against the HBB Stream Cipher. In H. Gilbert
and H. Handschuh, editors, Fast Software Encryption — 2005, volume 3557 of Lec-
tures Notes in Computer Science, pages 330-341. Springer, 2005.

U. Maurer. New Approaches to the Design of Self-Synchronizing Stream Ciphers.
In D.W. Davies, editor, Advances in Cryptology — Eurocrypt’91, volume 547 of
Lectures Notes in Computer Science, pages 458—471. Springer, 1991.

J. Mitra. A Near-Practical Attack against B mode of HBB. In Advances in Cryp-
tology - Asiacrypt’05, 2005. To appear.

16.

17.

18.

19.

20.

21.

22.

23.

24.

23.

F. Muller. Differential Attacks and Stream Ciphers. In State of the Art in Stream
Ciphers. ECRYPT Network of Excellence in Cryptology, 2004. Workshop Record.
National Institute of Standards and Technology (NIST). Advanced Encryp-
tion Standard (AES) FIPS Publication 197, November 2001. Available at
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf.

B. Preneel, M. Nuttin, R. Rijmen, and J. Buelens. Cryptanalysis of the CFB Mode
of the DES with a Reduced Number of Rounds. In D.R. Stinson, editor, Advances
in Cryptology — Crypto’93, volume 773 of Lectures Notes in Computer Science.
Springer, 1993.

G. Rose, P. Hawkes, G. Paddon, and M. Wiggers de Vries. Primitive Specifications
for SSS. eSTREAM, ECRYPT Stream Cipher Project, Report 2005/028, 2005.
http://www.ecrypt.eu.org/stream.

P. Sarkar. Hiji-Bij-Bij : A New Stream Cipher with a Self-Synchronizing Mode
of Operation. In T. Johansson and S. Maitra, editors, Progress in Cryptology —
INDOCRYPT’03, volume 2904 of Lectures Notes in Computer Science, pages 36—
51. Springer, 2003.

X. Wang, Y. Yin, and H. Yu. Finding Collisions in the Full SHA1. In V. Shoup,
editor, Advances in Cryptology — Crypto’05, volume 3621 of Lectures Notes in
Computer Science, pages 17-36. Springer, 2005.

X. Wang and H. Yu. How to Break MD5 and Other Hash Functions. In R. Cramer,
editor, Advances in Cryptology — Eurocrypt’05, volume 3494 of Lectures Notes in
Computer Science, pages 19-35. Springer, 2005.

X. Wang, H. Yu, and Y. Yin. Efficient Collision Search Attacks on SHAO. In
V. Shoup, editor, Advances in Cryptology — Crypto’05, volume 3621 of Lectures
Notes in Computer Science, pages 1-16. Springer, 2005.

D. Watanabe and S. Furuya. A MAC Forgery Attack on SOBER-128. In B. Roy
and W. Meier, editors, Fast Software Encryption — 2004, volume 3017 of Lectures
Notes in Computer Science, pages 472-482. Springer, 2004.

B. Zhang, H. Wu, D. Feng, and F. Bao. Chosen Ciphertext Attack on a New
Class of Self-Synchronizing Stream Ciphers. In A. Canteaut and K. Viswanathan,
editors, Progress in Cryptology — INDOCRYPT 04, volume 3348 of Lectures Notes
in Computer Science, pages 73-83. Springer, 2004.

