
Chosen-Ciphertext Secure Proxy Re-Encryption

Ran Canetti∗ Susan Hohenberger†

October 23, 2007

Abstract

In a proxy re-encryption (PRE) scheme, a proxy is given special information that allows it
to translate a ciphertext under one key into a ciphertext of the same message under a different
key. The proxy cannot, however, learn anything about the messages encrypted under either
key. PRE schemes have many practical applications, including distributed storage, email, and
DRM. Previously proposed re-encryption schemes achieved only semantic security; in contrast,
applications often require security against chosen ciphertext attacks. We propose a definition of
security against chosen ciphertext attacks for PRE schemes, and present a scheme that satisfies
the definition. Our construction is efficient and based only on the Decisional Bilinear Diffie-
Hellman assumption in the standard model. We also formally capture CCA security for PRE
schemes via both a game-based definition and simulation-based definitions that guarantee uni-
versally composable security. We note that, simultaneously with our work, Green and Ateniese
proposed a CCA-secure PRE, discussed herein.

1 Introduction

Encryption is one of the most fundamental cryptographic functions, and yet its practical adoption
is often hampered by key management problems. Suppose pk1 and pk2 are two independently
chosen encryption keys. As pointed out by Mambo and Okamoto [23], it is a common situation in
practice that data is encrypted under pk1 and an application requires that it be encrypted under
pk2. When the holder of sk1 is online, this translation is easy: E1(m) is decrypted using sk1 to
obtain m, then m is encrypted under pk2, resulting in E2(m). Yet in many applications— such as
encrypted email forwarding [6, 5], distributed file systems [1, 2], or the DRM of Apple’s iTunes [26]
—this translation is being performed by an untrusted party! As a demonstration of the email
forwarding scenario, imagine that Alice is going on vacation and wishes to have her mail server
forward all of her encrypted email to Bob, without giving her secret key to either the mail server
or Bob.

In 1998, Blaze, Bleumer and Strauss (BBS) proposed a solution to this widely-encountered key
management problem [6, 5]. They introduced proxy re-encryption, where a (potentially untrusted)
proxy is given a re-encryption key rk1,2 that allows it to translate a message m encrypted under
public key pk1 into an encryption of the same message m under a different public key pk2 – without

∗IBM T.J. Watson Research Center, Hawthorne, NY, USA, canetti@watson.ibm.com. Supported by NSF grants
CT-0430450 and CFF-0635297, and a US-Israel Binational Science Foundation Grant.

†Johns Hopkins University, Baltimore, MD, USA, susan@cs.jhu.edu. Research partially performed at IBM Zurich
Research Laboratory and supported by NSF grant CT-0716142.

1

being able to learn anything about the encrypted messages! I.e., the CPA-security of encryptions
under pk1 and pk2 hold even against an adversary possessing rk1,2.

BBS categorize two types of re-encryption schemes. If the re-encryption key rk1,2 necessarily
allows the proxy to translate ciphertexts under pk1 into ciphertexts under pk2 and vice versa,
then the scheme is called bidirectional. If the re-encryption key rk1,2 allows the proxy to translate
only from pk1 to pk2, then the scheme is called unidirectional. (Any unidirectional scheme can
be easily transformed to a bidirectional one, setting the bidirectional key rk1,2 to be the two
unidirectional keys between pk1 and pk2. We do not know if the converse holds.) BBS propose
the first bidirectional CPA-secure scheme, leaving the construction of a unidirectional scheme as
an open problem. In 2005, Ateniese, Fu, Green, and Hohenberger [1, 2] presented a unidirectional
CPA-secure scheme. Capturing this useful property comes at a price: the re-encryption algorithm
is single-hop; that is, a re-encrypted ciphertext cannot be further re-encrypted. In contrast, the
BBS scheme is multi-hop, namely a ciphertext can be re-encrypted from Alice to Bob to Carol and
so on. Constructing a multi-hop unidirectional PRE scheme remains open. Both of these PRE
algorithms are only CPA-secure, and CPA security is often not sufficient to guarantee security in
general protocol settings.

1.1 Our Contributions

We address the problem of obtaining PRE schemes that are secure in arbitrary protocol settings,
or in other words are secure against chosen ciphertext attacks. The concept of a CCA secure PRE
scheme sounds almost self-contradictory, since on the one hand we want the ciphertexts to be non-
malleable, and on the other hand we want to allow the proxy to “translate” the ciphertext from
one public key to another. Still, we formulate a meaningful definition of CCA-secure PRE schemes,
along with a construction that meets the definition in the standard model and under relatively mild
hardness assumptions for bilinear groups.

Definitions. We formalize definitions of security against CCA attacks for re-encryption schemes.
In fact, we provide three definitions: a game-based definition and two simulation-based defini-
tions that guarantee universally composable security. We then demonstrate that the game-based
definition lies in between the two simulation-based definitions.

The game-based definition gives the adversary access to the standard encryption and decryption
oracles, in addition to a re-encryption oracle (which translates ciphertexts) and a re-encryption key
oracle (which returns re-encryption keys). For the definition to make sense, one needs to define the
game so as to disallow decryption queries not only on the challenge ciphertext (as usual), but also
on any trivial derivative of the challenge ciphertext (e.g., derivatives obtained from a re-encryption).

The simulation-based definitions are formulated within the universally composable (UC) frame-
work [9]. They extend the ideal functionality for CCA-secure encryption [9] to the case of re-
encryption, using ideas from the UC definition of replayable CCA (RCCA) security [13]. (Indeed,
PRE security is somewhat reminiscent of RCCA security, in that both notions aim at guaranteeing
illegitimate “mauling” of ciphertexts, while permitting legitimate “re-encrypting” without modi-
fying the hidden message.) The need to provide two separate UC formulations (one that implies
the game-based definition and one that follows from it) stems from the difficulty in capturing the
adaptive nature of re-encryption queries. See more details within.

Constructions. We present a re-encryption scheme secure against chosen-ciphertext attacks.
Our scheme is bidirectional and multi-hop. Moreover, our scheme is efficient enough to be used

2

in practice. We prove it secure under the Decisional Bilinear-Diffie Hellman assumption. For
clarity, we present two constructions. First we present and analyze a scheme in the random oracle
model. This scheme is simpler and provides intuition into the techniques used. Next we modify
the scheme to work in the standard model. The modified scheme and its analysis are somewhat
more complicated, but only slightly less efficient.

As in other re-encryption schemes [6, 5, 1, 2, 21, 18], we work in a static adversary model and
require that users publicize public keys only if they have the corresponding secret keys. To make
this second requirement rigorous, we can either work in the trusted key generation model (where a
trusted party generates and distributes all key-pairs), or alternatively in a model where the parties
have to demonstrate knowledge of their secret keys when registering their public keys (such as the
key registration model of Barak et al. [3]).

We prove that the schemes satisfy the game-based definition. The proof turns out to be non-
trivial; in particular, in some cases, one must correctly answer re-encryption queries without knowing
the corresponding re-encryption key. In fact, the technique we use in the analysis of the scheme is
new and may be useful elsewhere.

We leave open many interesting problems in this area, such as designing: (1) unidirectional
CCA-secure schemes (without random oracles), (2) any construction that is simultaneously unidi-
rectional and multi-hop, (3) any unidirectional or CCA-secure scheme without bilinear groups, (4)
schemes that satisfy the notion of secure obfuscation for CCA-secure re-encryption or other key
translation schemes, (5) a CCA-secure PRE scheme that provides unlinkability for re-encrypted
ciphertexts, and (6) a definition of security that is equivalent to our game-based definition and also
guarantees secure composability properties.

Practical Impact. In 2005, the digital rights management (DRM) of Apple’s iTunes was com-
promised partially due to the fact that an untrusted party (i.e., the client’s resource) could obtain
the plaintext during a naive decrypt-and-encrypt operation, albeit with symmetric encryption [26].
This flaw could be prevented by using a secure PRE scheme.

Ateniese et al. [1, 2] built a secure distributed file system, using unidirectional PRE, where a
server can re-encrypt and send files to many different clients without ever gaining access to the
plaintext.

However, plain CPA-security is clearly not enough for some applications, such as encrypted
email forwarding. For instance, an adversary might hope to gain access to a “decryption oracle”
by mangling ciphertexts, emailing them to Alice, and then hoping that she responds with, “Did
you send the following to me? [Decrypted attachment.]” The present work fills this gap.

Theoretical Impact. Recently, the notion of re-encryption was considered in the more general
framework of program obfuscation. Hohenberger, Rothblum, shelat, and Vaikuntanathan [21] pre-
sented a unidirectional, CPA-secure re-encryption scheme, where the re-encryption key allows the
proxy to learn nothing more than black-box access to such a program. This positive result for
obfuscating an encryption functionality stands in contrast to a series of impossibility results [4]
for general obfuscation and negative improbability [20, 16] results for obfuscation of many cryp-
tographic functionalities. Here we relax this obfuscation notion and only require that the proxy
learn nothing about the encrypted messages (but the proxy might learn other things not exposed
by black-box access.) In particular, our notion of security allows for a deterministic re-encryption
procedure, whereas the obfuscation notion of [21] mandates that the re-encryption process be ran-
domized.

3

1.2 Intuition Behind the Construction

The idea behind our construction begins with the Canetti, Halevi, and Katz [11] paradigm for
transforming any selective-identity, CPA-secure identity-based encryption (IBE) scheme into a
CCA-secure cryptosystem. Recall the CHK transformation. Let (G,S,V) be a strongly-unforgeable
one-time signature scheme. Let (G, E, D) be a semantically-secure IBE scheme. Then a CCA-secure
cryptosystem can be created as follows. A user’s public key corresponds to the master public key
output by G. To encrypt a message m, an encryptor first runs G to obtain a signature keypair
(svk , ssk). The encryptor then generates the ciphertext c = E(svk , m), using svk as the identity,
and signs this ciphertext as s = S(ssk , c). The output of the encryption algorithm is the tuple
(svk , c, s). To decrypt, a user first checks that V(svk , c, s) verifies, and if so, proceeds to decrypt c
using the master secret key.

Now, there are many similarities between the Boneh and Franklin IBE [8] and the Ateniese et
al. PRE [1]. Can we simply apply the CHK paradigm to achieve CCA security? Unfortunately,
applying the CHK paradigm to the Boneh-Franklin IBE looks unwieldy at first. These IBE cipher-
texts have two parts: let c = (X, Y). If the encryptor signs (X, Y) in the CHK transformation, then
the proxy can’t re-encrypt (X, Y) without invalidating the signature. But if the encryptor only
signs, say, Y , then the adversary can arbitrarily mutate X, thus changing the decryption value.
Our solution is to add an element Z to the ciphertext, such that (Y, Z) will be signed and Z allows
anyone to check that the unsigned value X wasn’t mutated in any meaningful way.

The primary technical challenge is to prove this scheme secure via a reduction that can success-
fully answer the numerous oracle queries allowed to the re-encryption adversary. In Section 3.2, we
first show how to navigate these queries in the random oracle model, which simplifies the analysis.
Section 3.3 then shows how to replace the random oracles with specific concrete hash functions,
which will be carefully manipulated to (among other things) sometimes allow the reduction to de-
crypt or re-encrypt a ciphertext without knowing the correct keys. Our final scheme is only slightly
less efficient than its random oracle counterpart.

1.3 Related Work

There is a large related body of work with the very similar name proxy encryption (no “re-”) [22,
27, 14]. In proxy encryption, Alice allows Bob to decrypt ciphertexts meant for her with the
help of a proxy. In these schemes, Alice’s secret key is shared between Bob and the proxy. An
encryption for Alice is first partially decrypted by the proxy, and then fully decrypted by Bob.
However, this approach requires that Bob obtain and store an additional secret (for every decryption
delegation he accepts!). Proxy encryption schemes are currently realized under a broader class of
complexity assumptions than PREs. For example, Dodis and Ivan present both CPA and CCA
secure constructions based on RSA, Decisional DH, and bilinear assumptions [14]. PREs are a
(strict) subset of proxy encryption schemes [1], where Bob need only have his own decryption key.

In a concurrent and independent work, Green and Ateniese presented the first CPA and CCA-
secure identity-based PREs in the random oracle model [18]. They employ the above key sharing
technique, but alter it as follows: Alice gives one share of her key to the proxy in the clear and
the other share to the proxy encrypted under Bob’s public key. To perform re-encryption, the
proxy first partially decrypts the ciphertext and then attaches the ciphertext containing the secret
share so that Bob can decrypt the rest. In the CCA case, this requires carefully ensuring that the
composition of these ciphertexts results in a non-malleable joint-ciphertext. Their CCA IBE scheme

4

is unidirectional and single-hop in the random oracle model, whereas ours is bidirectional and multi-
hop in the standard model. Depending on the application, one may need one or the other. One
additional difference between the schemes is that our original and re-encrypted ciphertexts come
from the same distribution and thus when Bob receives a re-encrypted ciphertext he cannot tell
(based on the ciphertext) whether it is an original or re-encrypted one. In [18], original and re-
encrypted ciphertexts come from two separate distributions and moreover Bob must know who the
ciphertext was originally sent to in order to decrypt a re-encryption. Green and Ateniese [18] also
present a game-based unidirectional CCA IBE security definition, which shares many properties
with ours. They do not consider simulation-based definitions.

This work should not be confused with the “universal re-encryption” literature [17], which
re-randomizes ciphertexts instead of changing the underlying public key.

2 Definitions

Throughout this section we concentrate on defining bidirectional re-encryption schemes. The case
of unidirectional schemes, namely where a re-encryption key from pk1 to pk2 should not provide
the ability to re-encrypt from pk2 to pk1 can be inferred in a straightforward way. We allow re-
encryption proxies between uncorrupted parties to be corrupted adaptively during the course of the
computation. In contrast, we restrict the adversary to determine the identities of the corrupted key-
holders before the computation starts. Furthermore, do not allow adaptive corruption of proxies
between corrupted and uncorrupted parties.1

We first give the input-output specifications for a proxy re-encryption scheme (PRE). Section 2.1
gives a game-based security definition. Section 2.2 gives a security definition within the Universally
Composable security framework. Section 2.3 discusses the relationship between the definitions.

Definition 2.1 (Bidirectional PRE I/O) A bidirectional, proxy re-encryption scheme is a tuple
of algorithms (KeyGen,ReKeyGen,Enc, ReEnc,Dec):

• KeyGen(1k) → (pk , sk). On input the security parameter 1k, the key generation algorithm
KeyGen outputs a public key pk and a secret key sk.
• ReKeyGen(sk1, sk2) → rk1↔2. On input two secret keys sk1 and sk2, the re-encryption key

generation algorithm ReKeyGen outputs a bidirectional re-encryption key rk1↔2.
• Enc(pk , m) → C. On input a public key pk and a message m ∈ {0, 1}∗, the encryption

algorithm Enc outputs a ciphertext C.
• ReEnc(rk1↔2, C1) → C2. On input a re-encryption key rk1↔2 and a ciphertext C1, the re-

encryption algorithm ReEnc outputs a second ciphertext C2 or the error symbol ⊥.
• Dec(sk , C)→ m. On input a secret key sk and a ciphertext C, the decryption algorithm Dec

outputs a message m ∈ {0, 1}∗ or the error symbol ⊥.

Remark 2.2 (On generating re-encryption keys:) Here ReKeyGen is treated as an algorithm
that takes for input the two relevant secret keys and generates a re-encryption key. Alternatively,
a re-encryption key can be generated via a protocol involving the proxy and the two holders of
the secret keys. The requirements are that the proxy learns the re-encryption key as defined here
and nothing else. The holders of the secret keys learn nothing from the protocol. These security

1This limitation reflects the current state of the art: Unfortunately, we do not have notions of security that
adequately capture adaptive corruption of principals, and are at the same time realizable by realistic protocols.

5

requirements must hold only when at most one of the three parties is corrupted. When any two of
the parties are corrupted, we no longer have security requirements.

The input/output specification for a unidirectional PRE scheme would change as follows: instead
of taking two secret keys as input, the ReKeyGen algorithm would take as input a secret key sk1

and a public key pk2, and output a re-encryption key rk1→2. Here the protocol for providing a
proxy with a re-encryption key from pk1 to pk2 is simple: The owner of sk1 locally computes rk1→2

and sends it to the proxy. The owner of sk2 need not be part of this process.

2.1 Game-Based Definition of Security

We start by formulating the requirements for correctness of decryption.

Definition 2.3 (Bidirectional PRE Correctness) A bidirectional PRE scheme (KeyGen, ReKeyGen,
Enc, ReEnc, Dec) is perfectly correct with respect to domain D if:

• For all (pk , sk) output by KeyGen and all m ∈ D, it holds that Dec(sk, Enc(pk , m)) = m;
• For any n > 1, any sequence of pairs (pk1, sk1),...,(pkn, skn) output by KeyGen, any i < n,

all re-encryption keys rk i↔i+1 output by ReKeyGen(sk i, sk i+1), all messages m ∈ D and all
C1 output by Enc(pk1, m), it holds that Dec(skn,ReEnc(rkn−1↔n, ...ReEnc(rk1↔2, C1)...) = m.
If for any m ∈ D correctness holds only with probability 1 minus a negligible quantity, we say
that the scheme is correct with respect to D.

Next we define the game used for formulating the security requirement. The game defines
an interaction between an adversary and a number of oracles, representing the capabilities of the
adversary in an interaction with a PRE scheme. It proceeds as follows:

Definition 2.4 (Bidirectional PRE-CCA game)
Let k be the security parameter. Let A be an oracle TM, representing the adversary. The game

consists of an execution of A with the following oracles, which can be invoked multiple times in any
order, subject to the constraints below:

Uncorrupted key generation: Obtain a new key pair as (pk , sk)← KeyGen(1k). A is given pk.
Corrupted key generation: Obtain a new key pair as (pk, sk) ← KeyGen(1k). A is given

pk , sk.2

Re-encryption key generation Orkey: On input (pk , pk ′) by the adversary, where pk , pk ′ were
generated before by KeyGen, return the re-encryption key rkpk↔pk ′ = ReKeyGen(sk , sk ′) where
sk , sk ′ are the secret keys that correspond to pk , pk ′.
We require that either both pk and pk ′ are corrupted, or alternatively both are uncorrupted.
We do not allow for re-encryption key generation queries between a corrupted and an un-
corrupted key. (This represents the restriction that the identities of parties whose security is
compromised should be fixed in advance.)

Challenge oracle: This oracle can be queried only once. On input (pk∗, m0, m1), where pk∗ is
called the challenge key, the oracle chooses a bit b← {0, 1} and returns the challenge ciphertext

C∗ = Enc(pk∗, mb). (As we note later, the challenge key must be uncorrupted for A to win.)

2Alternatively, the adversary A could register her public key with an authority by proving knowledge of the
corresponding secret key, as in the registered keys model of Barak et al. [3].

6

Re-encryption Orenc: On input (pk , pk ′, C), where pk , pk ′ were generated before by KeyGen, if pk ′

is corrupted and (pk , C) is a derivative of (pk∗, C∗), then return a special symbol ⊥ which is
not in the domains of messages or ciphertexts. Else, return the re-encrypted ciphertext C ′ =
ReEnc(ReKeyGen(sk, sk ′), C). Derivatives of (pk∗, C∗) are defined inductively, as follows.
(See informal discussion immediately below.)

1. (pk∗, C∗) is a derivative of itself.
2. If (pk , C) is a derivative of (pk∗, C∗) and (pk ′, C ′) is a derivative of (pk , C) then (pk ′, C ′)

is a derivative of (pk∗, C∗).
3. If A has queried the re-encryption oracle Orenc on input (pk , pk ′, C) and obtained re-

sponse (pk ′, C ′), then (pk ′, C ′) is a derivative of (pk , C).
4. If A has queried the re-encryption key generation oracle Orkey on input (pk , pk ′) or

(pk ′, pk), and Dec(pk ′, C ′) ∈ {m0, m1}, then (pk ′, C ′) is a derivative of (pk , C).

Decryption oracle Odec: On input (pk , C), if the pair (pk, C) is a derivative of the challenge
ciphertext C∗, or pk was not generated before by KeyGen, then return a special symbol ⊥
which is not in the domain D of messages. Else, return Dec(sk , C).

Decision oracle: This oracle can also be queried only once. On input b′: If b′ = b and the
challenge key pk∗ is not corrupted, then output 1; else output 0.

We say that A wins the PRE-CCA game with advantage ε if the probability, over the random choices
of A and the oracles, that the decision oracle is invoked and outputs 1, is at least 1/2 + ε.

We motivate the above definition of derivatives, which is at the heart of the notion of secu-
rity. Informally, a pair (pk , C) is a derivative of (pk∗, C∗) if decrypting C with the secret key sk
that corresponds to pk would give the adversary “illegitimate information” on the hidden bit b.
The first three conditions are obvious. The fourth condition represents the fact that if the ad-
versary has the re-encryption key between pk∗ and pk (or alternatively a chain of re-encryption
keys (pk∗, pk ′′′), (pk ′′′, pk ′′), ..., (pk ′, pk)) then it is possible that C is the result of legitimately re-
encrypting C∗ to key pk , in which case decrypting C would give the adversary “illegitimate”
information on b.

A first attempt to prevent this may be to not allow the adversary to decrypt any ciphertext
with respect to key pk . However, such a rule would be too restrictive (resulting in an overly weak
definition), since C might be generated not as a re-encryption of C∗, in which case we want to
allow the adversary to obtain the decryption of C. So we would like to allow the adversary to
decrypt to key pk ciphertexts that were “not generated as a re-encryption of C∗”. However, telling
whether C was generated as a re-encryption of C∗ may be problematic, especially when the re-
encryption algorithm is randomized. In particular, requiring that C is not the result of running
the re-encryption algorithm on the challenge ciphertext C∗, for any randomness, would result in
an overly weak definition, since a re-encryption algorithm could artificially output any string in
{0, 1}∗ with negligible but positive probability. Restricting to non-negligible outputs does not seem
to suffice either.

We circumvent this difficulty by allowing the adversary to decrypt C, while making sure that
if C was generated as a re-encryption of C∗ then the adversary gains no information from the
decryption query. This definitional approach is reminiscent of the definition of Replayable CCA
security in [13]. In both cases we want to guarantee “CCA security” while allowing re-encryptions
that do not change the decrypted value.

7

This definition too results in a relaxation of plain CCA security, in the same way that RCCA
relaxes CCA security. That is, the present definition allows “harmless mauling” of the ciphertext
to a different ciphertext that decrypts to the same value (see discussion in [13].) We view this
relaxation as an additional feature of the present definition. In particular, it allows for potential
re-randomization and unlinkability of the re-encryption process along the lines of [13, 19, 24]. Such
re-randomization is ruled out by strict CCA security. The relations with the UC notions of security
provide additional justification for the adequacy of the definition.

Definition 2.5 (Bidirectional PRE-CCA security) A PRE scheme is Bidirectional PRE-CCA
secure for domain D of messages if it is correct for D as in Definition 2.3, and any p.p.t. adversary
wins the bidirectional PRE-CCA game only with negligible advantage.

Remark 2.6 (On Private Re-Encryption Keys)
This definition captures the important feature that, from a ciphertext and its re-encrypted value, the
adversary does not learn the re-encryption keys. Suppose the adversary could learn a re-encryption
key rk c↔d from queries to Orenc, then it could always win the PRE game by re-encrypting challenge
(c, Cb) to the pair (d, Db) using rk c↔d, and then querying the decryption oracle Odec on (d, Db).

2.2 UC Definitions of Security

We formulate a definition for proxy re-encryption within the universally composable (UC) security
framework, and investigate its relation with the game-based definition. In addition to providing
additional confidence in the adequacy of the notion, a definition in the UC framework carries with
it strong composability guarantees.

Providing a UC definition amounts to formulating an ideal functionality for proxy re-encryption.
However, precisely capturing the security guarantees provided by Definition 2.5 as an ideal function-
ality within the UC framework turns out to be non-trivial. We thus provide two such definitions,
namely two formulations of an “ideal proxy re-encryption functionality”, and show that one for-
mulation implies Definition 2.5, whereas the second formulation is implied by Definition 2.5. This
allows us to “sandwich” the security guarantees provided by Definition 2.5, when formulated in a
composable, simulation based framework.

In a nutshell, the difference between the two formulations is that the weak one does not guarantee
security to parties that have setup re-encryption keys with corrupted parties (or with other parties
that have setup re-encryption keys with corrupted parties), even if the corresponding proxies are
uncorrupted. The strong formulation guarantees security even for such parties, as long as the
corresponding proxies are uncorrupted.

We first describe the strong formulation, denoted FsPRE . Here we extend the ideal public-key
encryption functionality FPKE from [9] to handle re-encryption. To do so, we must allow a single
instance of FsPRE to handle multiple pairs of encryption and decryption keys, as well as multiple
re-encryption proxies. This is in contrast to the case of FPKE , where each instance handles only
a single pair of encryption and decryption keys. In addition, in order to simplify the presentation,
we assume that the size of the domain D of plaintexts is super-polynomial.

Specifically, as in the case of FPKE , FsPRE provides a key generation interface for primary
encryption and decryption keys, where the keys themselves are formal (“dummy”) values chosen
by the adversary, the encryption key (algorithm) is returned to the registering party, and the
decryption key (algorithm) is locally recorded. In addition, there is a re-encryption key generation

8

Functionality FPRE (with message domain D)

Key Generation: When receiving (KeyGen, sid) from some party P , send (KeyGen, sid , P)
to the adversary. When receiving algorithms (eP , dP) and a “corrupted” bit from the ad-
versary, register (P, eP , dP) and output (EncryptionAlgorithm, sid , eP) to P . In addition,
if the “corrupted” bit is set then record P as corrupted.

Re-Encryption Key Generation: When receiving (ReKeyGen, sid , P, P ′, X) from regis-
tered parties P and P ′, send (ReKeyGen, sid , P, P ′, X) to the adversary. When receiving
algorithm eP,P ′ and a “corrupted” bit from the adversary, record (P, P ′, X, eP,P ′) and
(P ′, P, X, eP,P ′). Output (Proxy, sid , P, P ′) to party X (the proxy). In addition, if the
“corrupted” bit is set then record X as corrupted.

A registered party P is called effectively corrupted if it is corrupted, or it has registered
a re-encryption key with an effectively corrupted party where the proxy is corrupted.

Encryption: When receiving (Enc, sid , m, e) from some party E, do: If m is not in the legit-
imate encryption domain, output an error message. Else, if e = eP for some registered
party P which is not effectively corrupted, then choose a random message rm ← D, run
algorithm eP (rm) (making the necessary random choices) and let c be the outcome. Else
(i.e., P is either effectively corrupted or not registered), let c = e(m), and let rm =⊥
where ⊥/∈ D. In either case, record (P,m, rm, c) and output (Ciphertext, sid , c) to E.

Re-Encryption: When receiving (ReEnc, sid , c, eP , eP ′) from party X, where (P, P ′, X, eP,P ′)
is recorded, compute c′ = eP,P ′(c), and return (Ciphertext, sid , c′) to X. In addition, if
there is a record (P,m, rm, c) then add the record (P ′, m, rm, c′).

Decryption: When receiving (Dec, sid , c) from a registered party P , do: If there is a recorded
entry (P,m, r, c) for some m and r, then set µ← m. Else, compute r = dP (c). If there
is a recorded entry (P ′, m′, r, c′) for some P ′, m′, c′, then set µ ← m′. (If there is more
than a single such entry then output an error message.) Else set µ ← r. Return
(Plaintext, sid , µ) to P ′.

Figure 1: The strong version of the ideal functionality for (bidirectional) proxy re-encryption,
FsPRE . The weak version, FwPRE , is identical except that a party is called effectively corrupted
whenever it has registered a re-encryption key with an effectively corrupted party, even when the
proxy is not corrupted. The unidirectional case is captured by modifying the re-encryption key
generation interface so that it registers proxies with the ability to re-encrypt only unidirectionally.

interface, where two registered parties P and P ′ can provide a proxy X with the formal capability
to re-encrypt ciphertexts from P to P ′ and vice versa. As part of this operation the adversary
provides FsPRE with a “dummy” re-encryption key eP,P ′ between P and P ′. These interfaces
also allow the adversary to determine the identities of corrupted parties and proxies, with effects
described below. It is assumed that the adversary specifies parties as corrupted only before the
encryption interface is used for the first time. This manifests the restriction of the modeling to
non-adaptive party corruption.

9

We say that a party P is effectively corrupted if it is corrupted, or if it has setup a re-encryption
key with a party P ′ that is either corrupted or effectively corrupted, and in addition the re-
encryption proxy for P, P ′ is corrupted. Essentially, if a party P is effectively corrupted then the
adversary can “by definition of the problem” freely learn any message encrypted to P . Indeed,
FsPRE will not guarantee secrecy for effectively corrupted parties.

The encryption interface allows arbitrary encryptors to “formally encrypt” messages, namely
to obtain “formal ciphertexts” that will decrypt to the correct message, while guaranteeing uncon-
ditional secrecy as long as the target party is not effectively corrupted. This is done as follows: If
the target party P is not effectively corrupted, then the formal ciphertext c for a message m is
computed by applying the dummy encryption algorithm provided by the adversary to a random
message r in the domain. Then, the tuple (P,m, r, c) is recorded. Recording the random value r is
done in order to correctly decrypt re-encrypted ciphertexts (see details below). If the target party
is effectively corrupted then c is computed by applying the dummy encryption algorithm to the
actual message m to be encrypted. This represents the fact that no secrecy is guaranteed in this
case.

In addition to encryption, FsPRE provides a re-encryption interface. This interface is simple,
and allows a re-encryption proxy between P and P ′ to transform a dummy ciphertext c to a dummy
ciphertext c′ in a way that guarantees that when P ′ decrypts c′ it will obtain the same value as that
obtained by P when decrypting c. The value of c′ is computed by applying the recorded algorithm
eP,P ′ to c.

The decryption interface allows a registered party P to decrypt ciphertexts c addressed to it. The
decryption values are computed as follows. First, FsPRE checks whether there is a recorded tuple
which contains ciphertext c and target party P . If so, the corresponding plaintext m is returned.
This case guarantees correct decryption for messages that were legitimately encrypted and re-
encrypted using FsPRE ’s interfaces. Next, FsPRE “helps” the adversary (namely, the simulator) by
proceeding as follows. First, the value r = dp(c) is computed, where dP is the dummy decryption
algorithm provided by the adversary when P registered. Next, if there is any recorded tuple where
the third field (i.e., the random value chosen at encryption time) is r, then the corresponding
plaintext m from that tuple is returned. This represents the case where c was generated by applying
the re-encryption algorithm not via the interface provided by FsPRE . (This situation is possible
when a re-encryption proxy gets corrupted and its key becomes exposed. In this case we’d like
to allow the adversary to create new ciphertexts that decrypt to the same value as existing ones,
while still maintaining the secrecy of the decrypted value. This situation is somewhat reminiscent
of the case of RCCA security. We note that for this step to be effective, the domain D of plaintexts
should be super-polynomial in order to avoid collisions.) Finally, if no matching tuple is found,
FsPRE outputs r as the decryption value. This step is similar to the case of plain FPKE , and
provides assistance to the simulator in the case where the ciphertext c was simply generated by the
environment as an encryption of r to party P , not via the legitimate encryption interface.

As stated more precisely below, functionality FsPRE captures the same security notion as Def-
inition 2.5, except for the following issue: Consider a party P that’s not effectively corrupted, but
has setup a re-encryption proxy X with a corrupted party P ′. (That is, X is not corrupted and the
re-encryption key between P and P ′ is secret.) Now, assume that a ciphertext c, that was generated
for P as an encryption of a message m, is being re-encrypted to a ciphertext c′ for P ′. Recall that,
since P is not effectively corrupted, the ciphertext c is a “dummy ciphertext” that’s statistically
unrelated to m. In contrast, c′ must be a value that decrypts to m under a key that’s known to

10

the adversary and the environment. Furthermore, c′ must look like a “plausible re-encryption” of
c. Thus, a scheme that realizes FsPRE must allow a “simulator” to “convincingly” transform a
ciphertext c that’s unrelated to m into a ciphertext c′ linked to m. This is a property that seems
to be an artifact of the simulation paradigm; it is not implied by Definition 2.5. In particular, our
scheme does not have this property.

The weaker proxy-re-encryption ideal functionality, noted FwPRE , bypasses this problem by con-
sidering any party that has a re-encryption key with an effectively corrupted party to be effectively
corrupted, regardless of whether the relevant proxy is corrupted. This provides a somewhat weaker
security guarantee, but the gain is that we can now show that this notion is implied by Definition 2.5,
thus providing a “lower bound” of the security provided by Definition 2.5 in a simulation-based
framework. Figure 1 presents the re-encryption functionalities, FsPRE and FwPRE .

Within the UC framework, security is defined via realizing the corresponding ideal functionality.
In our case, we make another restriction: We consider only environments that setup all the keys,
including the re-encryption keys, before encrypting messages. More precisely, we say that an
environment is non-adaptive corruption if, as soon as a message is encrypted or re-encrypted to a
party, no additional re-encryption keys are generated between this party and other parties (since
this may effectively corrupt parties).

UC-secure PRE schemes are then defined as follows:3

Definition 2.7 (UC-secure PRE schemes) A PRE scheme Σ is non-adaptively strongly (resp.,
weakly) UC-secure if the protocol πΣ UC-realizes FsPRE (resp., FwPRE) as defined in [9], with
respect to non-adaptive environments.

2.3 Relationships between Security Definitions

To formalize the relationship between realizing FsPRE ,FwPRE and Definition 2.5, we first describe
a natural transformation from a PRE scheme to a protocol geared towards realizing FsPRE ,FwPRE .
We only consider security of the protocol in a non-adaptive setting, where identities of the corrupted
parties, including the corrupted proxies, are fixed in advance. Formally, this is captured by defining
the protocol so that corruption requests by the adversary are honored only at the onset of the
computation, before any encryption request is made.

Let Σ = (KeyGen,ReKeyGen,Enc,ReEnc,Dec) be a bidirectional re-encryption scheme. The
protocol πΣ is defined as follows. It uses an ideal subroutine FRKG that takes as input the secret
keys sk , sk ′ of two parties and an identity X of a proxy, and outputs to X a re-encryption key
ReKeyGen(sk , sk ′).

1. On input (KeyGen, sid), party P computes (pk , sk) ← KeyGen and then outputs the tuple
(EncryptionAlgorithm, sid , pk). At this point, if P gets a corruption request from the adversary
then it forwards sk to the adversary. Corruption requests at a later point are ignored.

2. On input (ReKeyGen, sid , P, P ′, X), and if not corrupted, party P send (ReKeyGen, sid , P, P ′,
X, sk) to FRKG. When X receives output eP,P ′ from FRKG, it records this value. If at this

3An alternative way to define weak UC-security is to say that a PRE scheme is weakly UC-secure if it UC-realizes
the strong functionality, FsPRE , with respect to restricted environments that do not ask to re-encrypt ciphertexts
directed at parties that are not effectively corrupted, to parties that are effectively corrupted. We prefer the current
formulation since it makes the security degradation more explicit, and in particular minimizes the restrictions on the
environment.

11

point X gets a corruption request from the adversary then it forwards eP,P ′ to the adversary.
Corruption requests at a later point are ignored.

3. On input (Enc, sid , m, e), party E compute c = Enc(e, m) and output (Ciphertext, sid , c).
4. On input (ReEnc, sid , c, P, P ′), proxy X computes c′ = ReEnc(eP,P ′ , c), and outputs (Ciphertext,

sid , c′).
5. When receiving (Dec, sid , c), party P computes m = Dec(sk , c), where sk is the locally

recorded decryption key, and outputs m. (If there is no locally recorded key then output
an error message.)

Theorem 2.8 (Strongly UC implies Game-Based) Let Σ be a PRE scheme that’s non-adaptively
strongly UC-secure as in Definition 2.7. Then Σ is bidirectional PRE-CCA re-encryption scheme
(as in Definition 2.5).

Proof. We show that if a PRE scheme Σ = (KeyGen,ReKeyGen, Enc,ReEnc,Dec) is strongly UC-
secure (i.e., the protocol πΣ UC-realizes FsPRE for domain D and non-adaptive corruptions) then
it is PRE-CCA secure for domain D. This part of the proof holds for domains D of any size. The
proof follows the same general outline as the proof of equivalence between the game-based and UC
formulations for RCCA security [13].

Assume that there exists an adversary F that wins the PRE-CCA game against Σ with advan-
tage ε. We construct an environment E that distinguishes with probability at least ε between an
interaction with FsPRE with any adversary S, and a real-life interaction with the dummy adversary
and π = πΣ. Environment E invokes a copy of F , and proceeds as follows:

1. Invocations by F of the corrupted (resp., uncorrupted) key generation oracles are answered
by calling new corrupted (resp., uncorrupted) parties with a key generation request, and
forwarding the obtained keys to F .

2. Re-encryption key generation queries are answered by invoking the two relevant parties with
requests to provide a corrupted proxy X with a re-encryption key between them, and forward-
ing the obtained key to F . (Recall that F expects to obtain re-encryption keys only between
parties which are not effectively corrupted.)

3. Re-encryption queries are answered by invoking the corresponding proxy with a similar re-
encryption request and forwarding the obtained ciphertext to F . (Recall that re-encryption re-
quests can be made either between uncorrupted parties, or alternatively from an uncorrupted
party to a corrupted party. Furthermore, FsPRE provides a meaningful security guarantee
even in the latter case: Consider a ciphertext addressed at an uncorrupted party P . Then
secrecy of the plaintext is guaranteed until the point where this ciphertext is re-encrypted to
a corrupted party.)

4. The challenge query (pk∗, m0, m1) is answered by choosing a random bit b, invoking some
party to encrypt message mb with public key pk∗, and returning the response to F as the
challenge ciphertext C∗.

5. Decryption queries (pk , C) are answered as Odec does. That is, E checks, by making the
necessary decryption requests to parties, if C is a derivative of C∗. If so, then E responds
with ⊥. Else, E asks the holder of key pk to decrypt C and forwards the response to F .

12

6. When F invokes the decision oracle with a guess bit b′, if b′ = b then E outputs “real”; else
it outputs “ideal”.

Analyzing E , we first claim that in an interaction of E with π, the view of the simulated F is
identical to its view of a PRE-CCA interaction with scheme Σ; thus, in this case F will predict the
bit b with non-negligible advantage ε. Next, we claim that, in an interaction of E with FsPRE and
any adversary, the view of F is statistically independent of the bit b; thus F cannot predict b with
positive advantage. ✷

Theorem 2.9 (Game-Based implies Weakly UC) Let Σ be a bidirectional PRE-CCA secure
re-encryption scheme (as in Definition 2.5) over message space D, where |D| is super-polynomial
in the security parameter. Then it holds that Σ is non-adaptively weakly UC-secure as in Defini-
tion 2.7.

Proof. We show that if a PRE scheme Σ = (KeyGen,ReKeyGen, Enc, ReEnc,Dec) is PRE-CCA
secure then it is weakly UC-secure.

Let π = πΣ be the protocol constructed from Σ as defined above. We show that π securely
realizes FwPRE . That is, we construct an ideal-process adversary S such that no environment E can
tell with non-negligible probability whether it interacts with S and the ideal protocol for FwPRE ,
or with π and an adversary A. (In fact, as shown in [9], it suffices to consider the dummy adversary
Ã which fully follows the instructions of the environment.)

Recall that the only possible activities of S are, first, to give FwPRE encryption and decryption
algorithms (eP , dP) for each registering party P , and second, to give FwPRE a re-encryption key
eP,P ′ for each pair of parties P and P ′ that request it. These activities are carried out as follows:

1. To provide algorithms (eP , dP) for a registering party P , first run (pk , sk)← KeyGen. Algo-
rithm dP (·) is the decryption algorithm Dec(sk , ·). Algorithm eP (m) proceeds as follows: If
m =⊥ then choose a random message α← D and run Enc(pk , α). else, return Enc(pk , m).

2. To provide a re-encryption algorithm for parties P, P ′, where neither party is effectively cor-
rupted. Recall the corresponding secret keys skP , skP ′ , compute rkP↔P ′ = ReKeyGen(skP , skP ′)
and return algorithm ReEnc(rkP↔P ′ , ·).

Analyzing S, assume for contradiction that there is an environment E that distinguishes between
the real and ideal interactions. We use E to construct an adversary F that breaks the PRE-CCA
security of scheme Σ. More precisely, assume that for some value of the security parameter k we
have execFwPRE ,S,E(k) − execπ,Ã,E(k) > ε. We show that F guesses the bit b correctly in the
PRE-CCA game with probability at least 1/2 + e/4p, where p is the total number of messages
encrypted throughout the run of the system. (Without loss of generality, we assume that in each
execution of the protocol E asks to encrypt exactly p messages.)

Adversary F proceeds as follows. F first randomly chooses a number h ← {1, ..., p}. Next, F
runs E on the following simulated interaction with a system running π (and the dummy adversary
Ã). Let mi denote the ith message that E asks to encrypt in an execution.4

1. When E activates some uncorrupted party P with input (KeyGen, sid), then F calls the un-
corrupted key generation oracle, obtains a key pk and forwards pk to E .

4Without loss of generality we assume that E only asks to encrypt messages with registered public keys eP where
P is registered and uncorrupted. Indeed, when E asks to encrypt a message m with another public key e, it receives
a value c = Enc(e, m) that it can compute (or, sample) by itself.

13

2. When E activates some corrupted party P with input (KeyGen, sid), then F calls the corrupted
key generation oracle, obtains a key pair (sk , pk) and forwards (sk , pk) to E .

3. When E activates uncorrupted parties P and P ′ with input (ReKeyGen, sid , P, P ′, X), invoke
the re-encryption key generation oracle Orkey on input pkP , pkP ′ and record the returned
value rkP↔P ′ and send it to X. If X is corrupted then also return the value rkP↔P ′ to E .

4. Encryption queries are handled as follows:

(a) For the first h−1 times that E asks to encrypt some message, mi, with key ei, F returns
to E the ciphertext Ci = Enc(ei, mi).

(b) At the hth time that E asks to encrypt a message, mh, with key eh, F queries its
challenge oracle with the pair of messages (eh, mh, rh) where rh is chosen at random
from the domain D, obtains the test ciphertext Ch, and forwards Ch to E . Record the
tuple (eh, mh, rh, Ch).

(c) For the remaining p− h times that E asks to encrypt some message, mi, with key ei, F
lets the encrypting party return Ci = Enc(ei, ri) where ri is chosen at random from D.
Record the tuple (ei, mi, ri, Ci).

5. When E activates party X with input (ReEnc, sid , c, eP , eP ′), where none of P, P ′ or X
are corrupted, compute C ′ = ReEnc(rkP↔P ′ , C) and return C ′ to E . Record the tuple
(eP ′ , mi, ri, C

′).

6. When E activates party P with input (Dec, sid , C), do:

(a) If P is corrupted, return m = Dec(skP , C) to E , where skP is the decryption key gener-
ated for P .

(b) Else, invoke the decryption oracle Odec with input (pkP , C), and let r∗ denote the re-
sponse. (If the response is ⊥ then let r∗ = rh). Next, if there is a recorded tuple
(eP , m, r∗, C), return m to E ; else, return r∗ to E . (The rationale here is as follows: As
long as the ideal encryption procedure does not choose the same plaintext r twice, the
above procedure perfectly mimics the behavior of FwPRE .)

7. When E halts, F outputs whatever E outputs and halts.

Analyzing the success probability of F is done via a hybrid argument. Let the random variable
Hi denote the output of E from an interaction that is identical to an interaction with S and FwPRE ,
with the exception that the first i ciphertexts are computed as an encryption of the real plaintexts,
rather than encryptions of random values.

Let B denote the event that two activations of the encryption interface of FwPRE choose the
same random value r. It can be seen that, conditioned on the event that B never occurs, H0 is
distributed identically to the output of E in the ideal interaction. Also, Hp is statistically close to
the output of E in the interaction with Σ (this follows from the correctness of Σ). Furthermore, in
a run of F , if the value Ch that F obtains from its challenge oracle is an encryption of mh then
the output of the simulated E has the distribution of Hh−1. If Ch is an encryption of rh then the
output of the simulated E has the distribution of Hh. Since E distinguishes between Hh and Hh−1

with advantage ε/2p, we have that F predicts the hidden bit b with advantage ε/4p.

14

Note that we made crucial use of the distinction between FwPRE and FsPRE , more specifically
of the fact that the environment can never ask to transform a ciphertext directed at an uncorrupted
party into a ciphertext directed to a corrupted party. ✷

3 Constructions

Following some preliminaries on bilinear forms, we first present a simple construction in the random
oracle model, and then show how replace the random oracles with concrete hash functions.

3.1 Bilinear Forms

We write G = 〈g〉 to denote that g generates the group G. Let BSetup be an algorithm that, on input
the security parameter 1k, outputs the parameters for a bilinear map as (q, g, h, G, GT , e), where
G, GT are of prime order q ∈ Θ(2k) and 〈g〉 = 〈h〉 = G. The efficient mapping5 e : G × G → GT

is both: (Bilinear) for all g ∈ G and a, b ∈ Zq, e(ga, gb) = e(g, g)ab; and (Non-degenerate) if g
generates G, then e(g, g) 6= 1.

The security of our schemes depend only on this mild assumption:

Decisional Bilinear Diffie-Hellman (DBDH) [8]: Let BSetup(1k) → (q, g, G, GT , e), where
〈g〉 = G. For all p.p.t. adversaries A, the following probability is strictly less than 1/2 + 1/poly(k):

Pr[a, b, c, d← Zq; x0 ← e(g, g)abc; x1 ← e(g, g)d; z ← {0, 1}; z′ ← A(g, ga, gb, gc, xz) : z = z′].

It will simplify the reading of our proofs to use the following equivalent formulation of DBDH,
known as Modified DBDH [25]. The modified DBDH assumption is identical to the DBDH
assumption, except that x0 ← e(g, g)ab/c (instead of x0 ← e(g, g)abc).

Lemma 3.1 If mDBDH is solvable in (G, GT) with probability ε, then DBDH is solvable in (G, GT)
with probability ε; and vice versa.

Proof. (DBDH =⇒ mDBDH.) On DBDH input (g, ga, gb, gc, Q), query the mDBDH solver
on input (gc, ga, gb, g,Q) = (y, yA, yB, yC , Q) and output its response. Observe that when Q =
e(y, y)AB/C for the mDBDH solver, by substitution, we have e(gc, gc)(a/c)(b/c)/(1/c) = e(g, g)abc for
the DBDH solver.
(mDBDH =⇒ DBDH.) Omitted. ✷

3.2 PRE ΠRO in the Random Oracle Model

Notation and Configuration. Let 1k be the security parameter and (q, g, h, G, GT , e) be the
bilinear map parameters output by BSetup(1k). Let Sig = (G,S,V) be a strongly unforgeable one-
time signature scheme, where ℓ = ℓsig(k) denotes the length of the verification keys output by G(1k).
Moreover, we assume that the verification key space produced by G has super-logarithmic minimum

5As we’ve written our bilinear map above, we’ve restricted ourselves to certain implementations, e.g., supersingular
curves. This is done for clarity of exposition. We could implement our construction using a more general bilinear
mapping of the form e : G1 × G2 → GT , where efficient isomorphisms between G1 and G2 may not exist. A benefit
of using more general curves is that we could reduce the bits per ciphertext transmitted (see [15] for more details).

15

entropy; that is, any given key has a negligible chance of being sampled. Let H : {0, 1}≤ℓ → G and
F : {0, 1}≤ℓ → G be two independent hash functions, which we will treat as random oracles.

Define the algorithm Check on input a ciphertext tuple (A, B,C, D,E, S) and a key pk as
follows:

1. Run V(A, (C, D, E), S) to verify signature S on message (C, D, E) with respect to key A.
2. Check that e(B, F (A)) = e(pk , D) and that e(B, h) = e(pk , E).
3. If any of these checks fail, output 0; else output 1.

Scheme ΠRO = (KeyGen,ReKeyGen,Enc,ReEnc,Dec) is described as follows:

Key Generation (KeyGen): On input 1k, select random x ∈ Zq. Set pk = gx and sk = x.
Re-Encryption Key Generation (ReKeyGen): On input skX = x and skY = y, output the

bidirectional re-encryption key rkX↔Y = x/y mod q.
Encryption (Enc): On input pk and a message m ∈ GT :

1. Select a one-time signature keypair as G(1k)→ (svk , ssk). Set A = svk .
2. Select a random r ∈ Zq and compute

B = pk r , C = e(g, H(svk))r ·m,

D = F (svk)r , E = hr.

3. Run the signing algorithm S(ssk , (C, D, E)), where the message to sign is the tuple
(C, D, E), and denote the signature S.

4. Output the ciphertext (A, B,C, D,E, S).

Re-Encryption (ReEnc): On input a re-encryption key
rkX↔Y = x/y and a ciphertext K = (A, B,C, D, E, S) under key pkY , re-encrypt the cipher-
text to be under key pkX as:

1. Compute B′ = BrkX↔Y = g(yr)(x/y) = gxr.
2. If Check(K, pkY) = 1, output the new ciphertext (A, B′, C,D, E, S); otherwise, output
⊥.

Decryption (Dec): On input a secret key sk and any ciphertext K = (A, B,C, D, E, S), if
Check(K, gsk) = 1, then output the message C/e(B, H(A))1/sk ; otherwise, output ⊥.

Remark 3.2 Our KeyGen and ReKeyGen algorithms are the same as those originally proposed by
BBS [5]. Parties X and Y can compute rkX↔Y efficiently as: X selects a random r ∈ Zq and
sends rx to Y and r to the proxy. Y sends rx/y to the proxy, who computes x/y. (Operations
are modulo q.) Recall that in a bidirectional scheme, no security is guaranteed if the proxy colludes
with either party.

Theorem 3.3 If the DBDH assumption holds in (G, GT), then scheme ΠRO is Bidirectional PRE-
CCA secure for domain GT of messages in the random oracle model.

Proof sketch. Recall that DBDH and mDBDH are equivalent. (It will be less tedious to use mDBDH
here.) We begin by observing that if the mDBDH assumption holds in (G, GT), then there exist
strongly unforgeable one-time signature schemes. Let Sig = (G,S,V) be such a scheme, where G
has super-logarithmic minimum entropy. Let A be any p.p.t. adversary. Then, we show how to

16

construct a p.p.t. adversary B, with black-box access to A, that succeeds in breaking the mDBDH
assumption with probability:

Pr[B breaks mDBDH] ≥ 1/2 + Pr[A breaks Π]/2− Pr[A breaks Sig]− qO · δ,

where A makes qO oracle queries and δ is the maximum probability that any given verification
key is output by G (which by assumption is negligible). Also by assumption, Pr[A breaks Sig] is
negligible for any p.p.t. adversary A. Let us now describe how B operates.

On mDBDH input (g, ga, gb, gc, Q), where B’s goal is to decide if Q = e(g, g)ab/c or not, B sets
up the global parameters for A as follows: the description of the groups 〈g〉 = G, GT , their prime
order q, and the mapping e, which are implicit in the mDBDH input, will also be used in the
re-encryption game. Set h = gcw, where w ∈ Zq is chosen randomly. The system parameters are
(q, g, h, G, GT , e, H, F), where H and F are random oracles. The security parameter is k ≥ |q|.
B runs G(1k)→ (svk∗, ssk∗), and records these values. Oracle queries from A are handled as:

• Key Generation: B chooses a random xi ∈ Zq. If user i is uncorrupted, then B outputs
pk i = (gc)xi = gcxi . If user i is corrupted, then B outputs (pk i, sk i) = (gxi , xi).
• Hash H: On input m to hash function H, check to see if pair (m, Y) is recorded in database

DH . If not select random Y ∈ G, record (m, Y) in DH and do:

H(m) =

{

ga if m = svk∗

Y otherwise, where (m, Y) ∈ DH .
(1)

• Hash F : On input m to hash function F , check to see if pair (m, Z, s) is recorded in database
DF . If not select random s ∈ Zq, record (m, gs, s) in DF and do:

F (m) =

{

gc if m = svk∗

Z otherwise, where (m, Z, s) ∈ DF .
(2)

• Decryption: On input (i, K) to Odec, if Check(K, pk i) = 0, then the ciphertext is not well-
formed, so B halts and returns ⊥. Otherwise, B proceeds as follows.
If user i is corrupted, then sk i = xi and B returns Dec(sk i, K). If user i is uncorrupted, then
B parses K as (A, B,C, D,E, S). Since the ciphertext is well-formed, we know that B = pk r

i

and D = F (A)r for the same value of r ∈ Zq. Finally, B checks that A 6= svk∗ and aborts if
this is false. If all checks pass, then B finds (A, F (A), s) ∈ DF and decrypts the ciphertext
by computing C/e(D1/s, H(A)) = C/e(F (A)r/s, H(A)) = C/e(gr, H(A)).

• Re-Encryption Key: On input (i, j) to Orkey, if one of i and j is uncorrupted and the other
is corrupted, then this call is illegal. Otherwise, B outputs the re-encryption key xj/xi.

• Re-Encryption: On input (i, j, K) toOrenc, if the value Check(K, pk i) = 0, then the ciphertext
is not well-formed, so B halts and returns ⊥. Otherwise, B parses K = (A, B,C, D, E, S).

– If users i and j are both corrupted or if they are both uncorrupted, B computes the
re-encryption key xj/xi and executes ReEnc(xj/xi, K).

– If user i is corrupted and user j is uncorrupted, then B computes Exj/w = hrxj/w =
gcwrxj/w = gcrxj = pk r

j = B′ (where B = pk r
i) and outputs (A, B′, C,D, E, S).

– If user i is uncorrupted and user j is corrupted, if A = svk∗, then B outputs⊥. Otherwise,
B finds (A, F (A), s) ∈ DF and computes Dxj/s = F (A)rxj/s = grxj = pk r

j = B′ (where
B = pk r

i) and outputs (A, B′, C,D, E, S).

17

• Challenge: At some point, A will output a challenge tuple (i, m0, m1), where i is the index
of an uncorrupted user. B responds choosing a random d ∈ {0, 1} and setting:

A = svk∗ , B = (gb)xi = pk
b/c
i ,

C = Q ·md , D = gb = F (A)b/c,

E = (gb)w = hb/c , S = Sssk∗(C, D, E).

• Decision: Finally, A will output a guess d′ ∈ {0, 1}. If d = d′, then B outputs 1 (i.e., mDBDH
instance), otherwise B outputs 0 (i.e., not an mDBDH instance).

The setup, keys and hash responses of B are perfectly distributed according to a real instance of
re-encryption scheme ΠRO. The decryption and re-encryption queries are also perfect, except that
B cannot always answer them when A = svk∗. First, consider that before the challenge is given,
A has a qO · δ chance of querying either oracle on a ciphertext with A = svk∗. After the challenge
is given, A’s chance of querying these oracles on a well-formed ciphertext where A = svk∗ and yet
the ciphertext is not a derivative of the challenge is Pr[A breaks Sig]. Consider that a well-formed
ciphertext (A, B, C, D, E, S) decrypts uniquely regardless of the corresponding public key. That is,
C = e(g, H(A))r ·m and D = F (A)r uniquely fixes m. If we recall the definition of a derivative
from Definition 2.4, then we see by inspection that if A = svk∗ then for the ciphertext not to be
a derivative of the challenge (C, D, E) must not be identical to the challenge ciphertext. If the
ciphertext is well-formed, then S is a valid forgery against Sig.

When B receives an mDBDH instance as input, its challenge ciphertext is also a perfectly
distributed, proper encryption of message md. Thus, in this case, A guesses d′ = d with the same
advantage as it would in a real execution of ΠRO. To see this, recall that H(svk∗) = ga, and in this
case, Q = e(g, g)ab/c. Thus, C/e(B, H(A))1/ski = e(g, g)ab/c ·md/e(gbxi , ga)1/cxi = md.

When B does not receive an mDBDH instance, then the challenge ciphertext contains no infor-
mation about md, since ciphertext component C is uniformly distributed in GT independent of d,
and A succeeds in predicting d′ = d with exactly 1/2 probability.

Finally, from Lemma 3.1, if there exists a p.p.t. adversary that breaks mDBDH with probability
ε, then there exists a p.p.t. adversary that breaks DBDH with probability ε. ✷

The following is immediate from Theorems 2.9 and 3.3.

Corollary 3.4 If the DBDH assumption holds in (G, GT), then bidirectional re-encryption scheme
ΠRO is non-adaptively, weakly UC-secure with respect to Definition 2.7 in the random oracle model.

3.3 PRE Π without Random Oracles

Now, we will remove the random oracles from the construction in Section 3.2. To do so, we will
change the way hash functions H and F operate. Our setup is similar to that of ΠRO, except that:

Function H: We replace random oracle H with a universal one-way hash function family (follow-
ing Canetti, Halevi, and Katz [10] and Boneh and Boyen [7].) LetH be a pairwise independent
family of hash functions H : {0, 1}≤ℓ → G, where given an element x ∈ {0, 1}≤ℓ and y ∈ G,
there is an efficient algorithm for sampling H ∈ H such that H(x) = y.

Function F : While H can be replaced by any universal one-way hash satisfying the above
constraints, F will be replaced by the following specific one [10, 7]. Let g2, g3 be random

18

generators of G. Then we define the function F : Zq → G as F (y)
def
= gỹ

2 · g3, where ỹ is a
fixed one-to-one representation of y in Zq. (An additional hash function can be included in
the public key to implement this one-to-one mapping from y to ỹ.) For simplicity, we will
write y instead of ỹ.

To change from scheme ΠRO to scheme Π only the encryption algorithm changes as:

Encryption (Enc): On input pk and message m ∈ GT , do:

1. Select a one-time signature keypair as G(1k)→ (svk , ssk). Set A = svk .
2. Select a random r ∈ Zq and compute

B = pk r , C = e(g,H(svk))r ·m,

D = F (svk)r = (gsvk
2 · g3)

r , E = hr.

3. Run the signing algorithm S(ssk , (C, D, E)), where the message is (C, D, E), and denote the
signature S.

4. Output the ciphertext (A, B,C, D, E, S).

Efficiency comparison of Π and ΠRO. Scheme Π remains surprisingly efficient compared to
ΠRO. It requires two additional elements from G in the global parameters. The cost to compute a
ciphertext also increases by two multi-base exponentiations in G to cover the hashes.

We are now ready to present our main result. Removing oracle H is rather straight-forward,
because H was only programmed on one point in the proof of Theorem 3.3. Canetti, Halevi, and
Katz [10] present one method of designing a universal one-way hash function that satisfies a series
of polynomial constraints, i.e., pairs (x, y) such that H(x) = y. Removing oracle F , however, is
more involved, because F was programmed for exponentially many points. In particular, the proof
of Theorem 3.3 required that: (1) F satisfied one (x, y) constraint and (2) that for all other inputs
z 6= x, the discrete log of F (z) base g was known to the party B playing the security game with the
adversary. In scheme Π, we specially designed a function F such that: (1) F satisfies one constraint
(x, y) and (2) such that together with the other parts of the ciphertext, B can compute the necessary
information related to F (z) base g for all inputs z 6= x.

Theorem 3.5 If the DBDH assumption holds in (G, GT), then scheme Π is Bidirectional PRE-
CCA secure for domain GT of messages in the standard model.

Proof sketch. We now describe how to modify the proof of Theorem 3.3 to our new scheme without
random oracles by specifying a different algorithm B, with black-box access to A, that succeeds in
breaking the mDBDH assumption with probability:

Pr[B breaks mDBDH] ≥ 1/2 + Pr[A breaks Π]/2− Pr[A breaks Sig]− qO · δ,

where A makes qO oracle queries and δ is the maximum probability that any given verification key
is output by G (which by assumption is negligible.)

On mDBDH input (g, ga, gb, gc, Q), where B’s goal is to decide if Q = e(g, g)ab/c or not, B
sets up the global parameters for A as follows: B runs G(1k) → (svk∗, ssk∗). Next, B sets the
generators h = gcw, g2 = gα1 , and g3 = g−α1svk

∗

· gcα2 for a randomly chosen w, α1, α2 ∈ Zq.

19

Finally, B samples a pairwise independent hash function H ∈ H such that H(svk∗) = ga. The
system parameters are (q, g, G, GT , e, h, g2, g3, H). B runs G(1k) → (svk∗, ssk∗), and remembers
these values. Oracle queries from A to Orkey are handled the same as in the proof of Theorem 3.3.
The other oracles behave as follows:

• Key Generation: B chooses a random xi ∈ Zq. If user i is uncorrupted, then B outputs
pk i = (gc)xi = gcxi . Else, B sets sk i = xi, pk i = gxi , and outputs (pk i, sk i).
• Decryption: On input (i, K) to Odec, if Check(K, pk i) = 0, then the ciphertext is not well-

formed, so B halts and returns ⊥. Next, B checks that A 6= svk∗ and aborts if this is false.
Otherwise, B proceeds as follows. Notice that in a well-formed ciphertext, B = pk r

i and
D = F (A)r for the same value of r ∈ Zq. B decrypts the ciphertext by computing

t =
D

B
α2

xi

, λ =
1

α1(A− svk∗)
.

Then, B outputs the message C/e(tλ, H(A)).
Note that when A 6= svk∗, then B can solve for tλ = gr:

t =
F (A)r

(pk r
i)

α2

xi

=
grA
2 gr

3

pk
rα2

xi

i

=
(gα1)rA(g−α1svk

∗+cα2)r

(gcxi)
rα2

xi

=
grα1(A−svk∗)+rcα2

grcα2

= grα1(A−svk∗).

• Re-Encryption: On input (i, j, K) toOrenc, if the value Check(K, pk i) = 0, then the ciphertext
is not well-formed, so B halts and returns ⊥. Otherwise, B parses K = (A, B,C, D, E, S).

– If both users i and j are uncorrupted or both are corrupted, B computes the re-encryption
key xj/xi and executes the algorithm ReEnc(xj/xi, K).

– If user i is corrupted and user j is uncorrupted, then B computes Exj/w = hrxj/w =
gcwrxj/w = gcrxj = pk r

j = B′ (where B = pk r
i) and outputs (A, B′, C,D, E, S).

– If user i is uncorrupted and user j is corrupted, if A = svk∗, then B outputs⊥. Otherwise,
B solves for gr as it does in decryption (where B = pk r

i), computes grxj = pk r
j = B′ and

outputs (A, B′, C,D, E, S).

• Challenge: At some point, A will output a challenge (i, m0, m1), where i is the index of an
honest user. B responds choosing a random d ∈ {0, 1} and setting:

A = svk∗ , B = (gb)xi = pk
b/c
i ,

C = Q ·md , D = (gb)α2 = (gsvk∗

2 · g3)
b/c,

E = (gb)w = hb/c , S = Sssk∗(C, D, E).

• Decision: Finally, A will output a guess d′ ∈ {0, 1}. If d = d′, then B outputs 1 (i.e., mDBDH
instance), otherwise B outputs 0 (i.e., not an mDBDH instance).

This ends our description of B. The analysis follows the previous proof. ✷

The following is immediate from Theorems 2.9 and 3.5.

Corollary 3.6 If the DBDH assumption holds in (G, GT), then bidirectional re-encryption scheme
Π is non-adaptively, weakly UC-secure with respect to Definition 2.7.

20

4 Acknowledgments

We thank Matthew Green, Manoj Prabhakaran and Shengbao Wang for helpful comments and
discussions.

References

[1] Giuseppe Ateniese, Kevin Fu, Matthew Green, and Susan Hohenberger. Improved Proxy Re-
encryption Schemes with Applications to Secure Distributed Storage. In NDSS, pages 29–43,
2005.

[2] Giuseppe Ateniese, Kevin Fu, Matthew Green, and Susan Hohenberger. Improved Proxy Re-
encryption Schemes with Applications to Secure Distributed Storage. ACM TISSEC, 9(1):1–30,
Feb 2006.

[3] Boaz Barak, Ran Canetti, Jesper Buus Nielsen, and Rafael Pass. Universally composable
protocols with relaxed set-up assumptions. In FOCS ’04, pages 186–195, 2004.

[4] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P. Vadhan,
and Ke Yang. On the (im)possibility of obfuscating programs. In CRYPTO, vol. 2139, pages
1–18, 2001.

[5] Matt Blaze, Gerrit Bleumer, and Martin Strauss. Divertible protocols and atomic proxy
cryptography. In EUROCRYPT, vol. 1403, pages 127–144, 1998.

[6] Matt Blaze and Martin Strauss. Atomic proxy cryptography. Technical report, AT&T Re-
search, 1997.

[7] Dan Boneh and Xavier Boyen. Efficient selective-ID secure identity-based encryption without
random oracles. In EUROCRYPT ’04, vol. 3027 of LNCS, pages 223–238, 2004.

[8] Dan Boneh and Matthew K. Franklin. Identity-Based Encryption from the Weil Pairing. In
CRYPTO ’01, vol. 2139 of LNCS, pages 213–229, 2001.

[9] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols.
In FOCS, 2001. See Cryptology ePrint Archive: Report 2000/067.

[10] Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure public-key encryption scheme.
In EUROCRYPT, vol 2656 of LNCS, pp. 255–271, 2003.

[11] Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext security from identity-based
encryption. In EUROCRYPT, vol. 3027 of LNCS, pages 207–222, 2004.

[12] Ran Canetti and Susan Hohenberger. Chosen-ciphertext secure proxy re-encryption. Cryptol-
ogy ePrint Report 2007/171, 2007.

[13] Ran Canetti, Hugo Krawczyk, and Jesper B. Nielsen. Relaxing chosen-ciphertext security. In
CRYPTO ’03, vol. 2729 of LNCS, pages 565–582, 2003.

[14] Yevgeniy Dodis and Anca-Andreea Ivan. Proxy cryptography revisited. In NDSS ’03, 2003.

21

[15] Steven D. Galbraith, Kenneth G. Paterson, and Nigel P. Smart. Pairings for cryptographers,
2006. Cryptology ePrint Archive: Report 2006/165.

[16] Shafi Goldwasser and Yael Tauman Kalai. On the impossibility of obfuscation with auxiliary
input. In FOCS ’05, pages 553–562, 2005.

[17] Philippe Golle, Markus Jakobsson, Ari Juels, and Paul F. Syverson. Universal re-encryption
for mixnets. In CT-RSA, vol 2964 of LNCS, pages 163–178, 2004.

[18] Matthew Green and Giuseppe Ateniese. Identity-based proxy re-encryption. In ACNS ’07,
vol. 4521 of LNCS, pages 288–306, 2007.

[19] Jens Groth. Re-randomizable and replayable adaptive chosen ciphertext attack secure cryp-
tosystems. In TCC ’04, pages 152–170, 2004.

[20] Satoshi Hada. Zero-knowledge and code obfuscation. In ASIACRYPT, vol 1976 of LNCS,
pp. 443–457, 2000.

[21] Susan Hohenberger, Guy N. Rothblum, abhi shelat, and Vinod Vaikuntanathan. Securely
obfuscating re-encryption. In TCC, vol. 4392, pages 233–252, 2007.

[22] Markus Jakobsson. On quorum controlled asymmetric proxy re-encryption. In PKC ’99, pages
112–121, 1999.

[23] Masahiro Mambo and Eiji Okamoto. Proxy Cryptosystems: Delegation of the Power to De-
crypt Ciphertexts. IEICE Trans. Fund. Elect. Communications and CS, E80-A/1:54–63, 1997.

[24] Manoj Prabhakaran and Mike Rosulek. Rerandomizable RCCA encryption. In CRYPTO 2007.

[25] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In EUROCRYPT, pages
457–473, 2005.

[26] Tony Smith. DVD Jon: buy DRM-less Tracks from Apple iTunes, March 18, 2005. Available
at http://www.theregister.co.uk/2005/03/18/itunes_pymusique.

[27] Lidong Zhou, Michael A. Marsh, Fred B. Schneider, and Anna Redz. Distributed blinding for
El Gamal re-encryption. TR 1924, Cornell CS Dept., 2004.

22

