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Abstract

One of the celebrated applications of Identity-Based Encryption (IBE) is the Canetti,
Halevi, and Katz (CHK) transformation from any (selective-identity secure) IBE scheme into
a full chosen-ciphertext secure encryption scheme. Since such IBE schemes in the standard
model are known from previous work this immediately provides new chosen-ciphertext secure
encryption schemes in the standard model.

This paper revisits the notion of Tag-Based Encryption (TBE) and provides security
definitions for the selective-tag case. Even though TBE schemes belong to a more general
class of cryptographic schemes than IBE, we observe that (selective-tag secure) TBE is
a sufficient primitive for the CHK transformation and therefore implies chosen-ciphertext
secure encryption.

We construct efficient and practical TBE schemes and give tight security reductions in
the standard model from the Gap Decisional Linear Assumption. In contrast to all known
IBE schemes our TBE construction does not directly deploy pairings. Instantiating the CHK
transformation with our TBE scheme results in an encryption scheme whose decryption can
be carried out in one single multi-exponentiation.

Furthermore, we show how to apply the techniques gained from the TBE construction
to directly design a new Key Encapsulation Mechanism. Since in this case we can avoid the
CHK transformation the scheme results in improved efficiency.

Keywords: Foundations, chosen-ciphertext security, KEM

1 Introduction

Since Diffie and Hellman proposed the idea of public key cryptography [15], one of the most
active area of research in the field has been the design and analysis of public key encryption
(PKE) schemes. In [17, 34] efficient primitives were suggested from which to build encryption
schemes. Formal models of security were developed in [21, 29, 33] and nowadays it is widely
accepted that security against chosen-ciphertext attacks provides the “right level of security”
for public-key encryption schemes.

There have been numerous efficient schemes that were shown to be chosen-ciphertext secure
in the random oracle model [2]. Unfortunately a proof in the random oracle model can only serve
as a heuristic argument and has proved to possibly lead to insecure schemes when the random
oracles are implemented in the standard model (see, e.g., [11]).



Dolev, Dwork, and Naor [16] were the first to come up with a public-key encryption scheme
provably chosen-ciphertext secure in the standard model (without random oracles). Later
Cramer and Shoup [13] presented the first really practical public-key encryption scheme. Their
approach was further generalized in [14] and later shown by Elkind and Sahai [18] to fit into
a more general framework. The nowadays most efficient chosen-ciphertext secure encryption
scheme in the standard model is the one due to Kurosawa and Desmedt [25, 1] itself being an im-
provement of the original Cramer-Shoup scheme. Both schemes, Cramer-Shoup and Kurosawa-
Desmedt are secure under the Decisional Diffie-Hellman (DDH) assumption.

FroMm IBE 1O PKE. One of the recent celebrated applications of Identity-Based Encryption
(IBE) is the work due to Canetti, Halevi, and Katz [12] showing an elegant black-box transfor-
mation from any IBE into a PKE scheme without giving up its efficiency. We will refer to this
as the CHK transformation. If the IBE scheme is selective-identity secure then the resulting
PKE scheme is chosen-ciphertext secure. Efficient constructions of IBE schemes in the standard
model were recently developed by Boneh and Boyen [3] so the CHK transformation provides
further alternative instances of chosen-ciphertext secure PKE schemes in the standard model.

Another fact worth mentioning about the CHK transformation is that it does not seem to
fall into the general framework characterized by Elkind and Sahai. Boneh and Katz [8] later
improve the CHK transformation resulting in shorter ciphertexts and more efficient encryp-
tion/decryption. Since the two IBE schemes from [3] employ pairing operations the resulting
schemes are still less efficient than the Kurosawa-Desmedt scheme.

TAG-BASED ENCRYPTION. MacKenzie, Reiter, and Yang [27] introduce the notion of tag-based
encryption (TBE) and show (independent from [12]) that the CHK transformation also trans-
forms any “weakly secure” TBE scheme into a chosen-ciphertext secure PKE scheme. However,
the only TBE schemes in the standard model mentioned in [12] are directly derived from known
PKE schemes (for example the Cramer-Shoup scheme) and the CHK transformation applied
to TBE schemes does not readily give us new instantiations of chosen-ciphertext secure PKE
schemes.

1.1 Ouwur Contribution

FroMm TBE 1O PKE. As pointed out in the last two paragraphs selective-identity secure IBE (or
weakly secure TBE) schemes are sufficient to construct chosen-ciphertext secure PKE schemes.
The natural question that arises is if in the transformation some of the security requirements
made to the IBE/TBE scheme can be dropped while still preserving security of the resulting
PKE scheme. One of our contributions is to answer this question to the affirmative.

We revisit the security definitions for TBE schemes and introduce the notion of selective-tag
secure TBE schemes. Selective-tag security for TBE can be seen as the selective-identity analog
for IBE and is weaker than the TBE definition from [27] and the IBE definition from [12]. One of
our main results is to show that selective-tag secure TBE is sufficient to build chosen-ciphertext
secure PKE. Our construction uses the CHK transformations.

On the theoretical side our result underlines that for the CHK transformation, an IBE
scheme is basically overkill since some of its functionality is superfluous. In particular, there is

! The underlying computational assumptions for the security reduction of the two IBE schemes from [3] are
both “pairing-assumptions,” i.e., the Bilinear Decisional Diffie-Hellman (BDDH) assumption and the g-strong
Decisional Bilinear Diffie-Hellman Inversion (g-strong BDDHI) assumption (in contrast to the Decisional Diffie-
Hellman assumption for the CS/KD scheme). We note that ¢-strong BDDHI is a stronger assumption than
BDDH.



no need to have an IBE key-derivation algorithm, which seems to be what distinguishes IBE from
all other public-key encryption primitives. The notion of TBE can be viewed as some sort of
“flattened IBE scheme” (i.e., as IBE without key-derivation) and therefore exactly captures the
above observation. Our contribution is to extract the best out of the afore mentioned papers:
we are able to combine the known CHK transformation with a security requirement that is
substantially weaker than the requirements that were believed to be necessary.

COMPARING DIFFERENT SECURITY NOTIONS OF TBE, IBE, AND PKE. What distinguishes
TBE from IBE is the IBE key-derivation algorithm. Indeed, as we will point out later, it
seems to be hard to transform (even particular instances of) TBE schemes into IBE schemes.
The difference between selective-tag TBE and weakly secure TBE schemes seems marginal at
first glance but (similar to the IBE case [3]) it turns our that the “selective-tag” property is
the key to make security proofs for TBE schemes much easier to construct. An even stronger
security definition of TBE schemes was already used by Shoup [38] (where the tag was called
“label”). Interestingly we show that such “strongly secure” TBE schemes are equivalent to
chosen-ciphertext secure PKE schemes. Since the CHK transformation is black-box, our results
imply that all the afore mentioned three flavors of TBE security together with chosen-ciphertext
secure PKE are in fact all equivalent through efficient black-box reductions.

TBE AND PKE ARE EQUIVALENT. SO WHAT IS TBE GOOD FOR? One may ask the question
why to make the long detour over TBE when designing PKE schemes at all? The answer is
simple. Since TBE is simpler and more general than PKE (and IBE) our hope is that TBE may
prove itself useful in the future to come up with more chosen-ciphertext secure encryption in
the standard model. In particular, we would like to have chosen-ciphertext secure PKE schemes
based on different intractability assumptions. (Different from the BDDH or DDH assumption,
hopefully even weaker or at least unrelated.)

AN EFFICIENT TBE SCHEME WITHOUT PAIRINGS. To underline the usefulness of our TBE
to PKE transformation we present an efficient TBE scheme that (in contrast to all currently
known IBE schemes) does not rely on pairing operations for encryption and decryption. In
particular, the decryption operation of our new TBE scheme is very efficient and (similar to the
KD scheme) only performs one single multi-exponentiation. The recently introduced decisional
linear (DLIN) assumption [5] states that, roughly, it should be computational infeasible to
decide if w = 2"1"2, given random (g1, g2, 2, 91", 952, w) as input. Our TBE scheme can be
proved to meet the necessary security properties under the gap DLIN assumption which is the
assumption that the DLIN problem is hard relative to a DDH oracle. In gap-groups [31], i.e.
groups in which CDH is believed to be hard even though they are equipped with an algorithm
that efficiently solves the Decisional Diffie-Hellman (DDH) problem (e.g., when an efficiently
computable bilinear pairing is available), this assumption is equivalent to the standard DLIN
assumption. The security reduction is tight, simple, and very intuitive.

Instantiating the scheme with our TBE to PKE transformation we obtain a new and rea-
sonably efficient chosen-ciphertext secure encryption scheme in the standard model based on
the Gap DLIN assumption. We remark that this is the first (practical) chosen-ciphertext secure
PKE based on the Gap DLIN assumption in the standard model.?

DIRECT KEY ENCAPSULATION. A key encapsulation mechanism (KEM) is a light PKE scheme
intended to encapsulate and decapsulate a random (symmetric) key. It is well known how to
transform any chosen-ciphertext secure KEM into a fully fledged chosen-ciphertext secure PKE

2The scheme contained in the preliminary version of this paper [24] relied on pairings for its security proof.
Here we shat that the Gap DLIN assumption is sufficient.



scheme using symmetric encryption (with appropriate security properties).

Our techniques from constructing the TBE scheme can also be exploited to directly build
a chosen-ciphertext secure KEM in the standard model. Our construction avoids the CHK
transformations and (similar to [13, 25]) only deploys a target collision-resistant hash function.
As a result the ciphertext size of the scheme is more compact compared to the PKE scheme
obtained using the above transformation. Furthermore encryption and decryption can be done
more efficiently. Our KEM construction is practical and enjoys a simple proof of security with
a tight reduction to the Gap DLIN assumption in the standard model.

We also propose a direct KEM construction whose chosen-ciphertext security is tightly re-
lated to the Bilinear Decisional Diffie-Hellman (BDDH) assumption in pairing groups. This
KEM is based on bilinear pairings and therefore results in a less efficient decryption algorithm
(one pairing and one exponentiation compared to one multi-exponentiation in our KEM). Com-
pared the our DLIN based KEM it is, is slightly more efficient in terms of encryption operations
and comes with smaller ciphertexts. In Section 7 we discuss efficiency of all known encryption
schemes in the standard model. Comparing the overall performance of all known encryption
schemes in the standard model the Kurosawa-Desmedt scheme [25] can still be considered as
the most efficient but our schemes allow for public verification of the ciphertexts.

1.2 Related Work

Independent of our work, Boyen, Mei, and Waters [10] recently look at some specific PKE
schemes obtained from the CHK transformation instantiated with the IBE schemes from [3, 39]
and show how to make the resulting schemes more efficient (in terms of computation time
and ciphertext length). In particular, their work also contains our BDDH-based KEM from
Section 6.1.

2 Notation

If x is a string, then |z| denotes its length, while if S is a set then |S| denotes its size. If k € N
then 1% denotes the string of k ones. If S is a set then s £ S denotes the operation of picking
an element s of S uniformly at random. Unless otherwise indicated, algorithms are randomized.
“PT” stands for polynomial time and “PTA” for polynomial-time algorithm or adversary. We
write A(z,y,...) to indicate that A is an algorithm with inputs z,y, ... and by z & Az, .. )
we denote the operation of running A with inputs (x,y,...) and letting z be the output. We

write AOLO?""(x,y, ...) to indicate that A is an algorithm with inputs z,y, ... and access to
oracles 01,02, ... and by z & AC1:O2:(g 4y ) we denote the operation of running A with
inputs (z,vy,...) and access to oracles O1,Os, ..., and letting z be the output.

3 Definitions

3.1 Public-Key Encryption

An public-key encryption (PKE) scheme PKE = (PKE.kg, PKE.Enc, PKE.Dec) consists of three
polynomial time algorithms (PTAs). Via (pk, sk) & PKE.kg(1*) the randomized key-generation

algorithm produces keys for security parameter k£ € N; via C & PKE.Enc(pk, M) a sender
encrypts a message M under the public key pk to get a ciphertext; via M « PKE.Dec(sk, C)
the possessor of secret key sk decrypts ciphertext C to get back a message. Associated to the



scheme is a message space MsgSp. For consistency, we require that for all £ € N and messages
M € MsgSp(k) we have Pr[PKE.Dec(sk, PKE.Enc(pk, M)) = M| = 1, where the probability is
taken over the coins of all the algorithms in the expression above.

Privacy. Privacy follows [33]. Let PKE = (PKE.kg, PKE.Enc, PKE.Dec) be an PKE scheme
with associated message space MsgSp. To an adversary A we associate the following experiment:

Experiment Expg)];é;ff(k)

(pk, sk) < PKE.kg(1%)

(Mo, My, St) & APECO)(£ind, pk)

b < {0,1}; C* & PKE.Enc(pk, M,)
b <& APECO) (guess, C*, St)

If b £ b then return 0 else return 1

where the oracle DEC(C) returns M « PKE.Dec(sk, C') with the restriction that in the guess
phase adversary A is not allowed to query oracle DEC(:) for the target ciphertext C*. Both
challenge messages are required to be of the same size (|My| = |Mi|) and in the message space
MsgSp(k). We define the advantage of A in the above experiment as

ke-cca ke-cca 1
Advhieea (k) = ‘Pr | Expli () = 1] - 2‘ .

PKE scheme PKE is said to be secure against chosen ciphertext attacks (CCA-secure) if the
advantage function Advg’;&fff is a negligible function in k for all PTAs A.

The weaker security notion of security against chosen-plaintext attacks (CPA-security) is
obtained in the above security experiment when depriving adversary A of the the access to the

decryption oracle.

3.2 Tag-based Encryption

Informally, in a tag-based encryption scheme [27], the encryption and decryption operations take
an additional “tag”. A tag is simply a binary string of appropriate length, and need not have any
particular internal structure. We define security for tag-based encryption in manners analogous
to security for standard encryption schemes. In particular, we define selective-tag security
against chosen-ciphertext attacks. The selective-tag variant is reminiscent to the selective-
identity variant of IBE schemes [12] and was not considered in [27].

More formally, a tag-based encryption (TBE) scheme TBE = (TBE.kg, TBE.Enc, TBE.Dec)
consists of three PTAs. Via (pk, sk) & TBE.kg(1*) the randomized key-generation algorithm
produces keys for security parameter k € N; via C & TBE.Enc(pk, t, M) a sender encrypts a
message M with tag ¢ to get a ciphertext; via M & TBE.Dec(sk, t, C') the possessor of secret
key sk decrypts ciphertext C' to get back a message or the symbol reject. Note that the tag ¢
must explicitly be provided as the input of the decryption algorithm and is usually not explicitly
contained in the ciphertext. We also stress that TBE.Dec may be probabilistic. Associated to the
scheme is a message space MsgSp. For consistency, we require that for all £ € N; all tags ¢ and
messages M € MsgSp(k) we have Pr[TBE.Dec(sk, t, TBE.Enc(pk,t, M)) = M] = 1, where the
probability is taken over the choice of (pk, sk) <~ TBE.kg(1*), and the coins of all the algorithms
in the expression above.

Privacy. To an adversary A we associate the following experiment:



tbe-stag-cca
mra ()

(t*, Sto) < A(1%,init)

(pk, sk) < TBE.kg(1¥)

(Mo, My, St) & APECC) (£ind, pk, Sto)
b {0,1}; C* < TBE.Enc(pk, t*, My)
b & APEC() (guess, C*, St)

If b # b then return 0 else return 1

Experiment Exp

where the oracle DEC(C, t) returns M « TBE.Dec(sk, t,C) with the restriction that A is not
allowed to query oracle DEC for tag t* (called target tag). Both messages must be of the same
size (|Mop| = |M;|) and in the message space MsgSp(k). We define the advantage of A in the
above experiment as
Advfll;_fsjjg(_ccak) = ‘Pr [Expgg’jg_cca(k) = 1} - ;‘ .

TBE scheme TBE is said to be selective-tag weakly secure against chosen ciphertext attacks if
the advantage function is negligible for all PTAs A.

In the security experiment adversary A is allowed to make decryption queries for any tag
t # t*, t* being the tag the challenge ciphertext is created with. In particular, this includes
queries for the target ciphertext C* (when queried with a different tag ¢ # t*). In other words,
the security notion offers chosen-ciphertext security for all tags ¢ # t* and chosen-plaintext
security for ¢t = t*. The target tag t* has to be output by A before even seeing the public key.
That means that a simulator may “tailor” the public-key to secure the scheme with respect to
the above definition.

DISCUSSION OF DIFFERENT TBE VARIANTS. Tags in public-key encryption were already con-
sidered by Shoup [38] (and were called “labels”) and later by MacKenzie, Reiter, and Yang [27].
While functionality is the same as in our definition, in terms of security there are small but
crucial differences between the definitions given in the different papers. We recall the two TBE
security variants from [38, 27] and point out the differences to our definition. Let C* be the
target ciphertext and t* be the target tag selected by the adversary A in the security experiment.

e To obtain the notion of weak CCA security for TBE schemes (as considered in [27]?) we
modify the above security experiment in a way such that A does not have to commit to
the target tag t* in the beginning of the experiment. Instead, A is allowed to choose t* at
the end of its f£ind stage, possibly depending on the public key and on its queries. Clearly,
this is a stronger security requirement.

e To get (full) CCA-security (as considered in [38]), we further modify the security exper-
iment (of weak CCA security) such that the adversary is allowed to ask any decryption
query suspect to (¢,C) # (t*,C*). In particular this includes queries for the target tag ¢*
as long as C' # C*.

The differences between the different TBE security notions are summarized in the following
table.

3Note that weak CCA-security for TBE schemes was called CCA-security in [27]. But for its relation to PKE
schemes we prefer to refer to it as weak CCA-security. This should become clear later.



TBE security Restriction to DEC(t, C') queries Selective-tag?

(full) CCA [38] (t,C) # (t*,C*) no
weak CCA [27] t#t* no
selective-tag weak CCA (ours) ¢ # t* yes

Clearly, the three definitions form a hierarchy of security notions, Shoup’s CCA security being
the strongest and our selective-tag weak CCA security being the weakest. We want to remark
that selective-tag weak CCA security is strictly weaker than weak CCA security, i.e. there
exists a TBE scheme that is selective-tag but not weakly CCA secure. (This can be shown by
an example recently used in [19] to show a similar separation related to IBE schemes.)

RELATION BETWEEN TBE AND PKE. It is easy to see that by identifying a message/tag pair
(M, t) with a message M]||t, any CCA-secure PKE scheme is also a CCA-secure TBE scheme.
On the other hand, by identifying a message M with message/tag pair (M, t) (for an arbitrary
tag t that is appended to the ciphertext in the plain) any CCA-secure TBE scheme can be used
as a CCA-secure PKE scheme. Note that the same trick is not possible anymore if we weaken the
security requirement to the TBE scheme to weak CCA security. (An adversary against the CCA
security of the PKE scheme could query the decryption oracle for (C*,t) for t # t* what would
give it the plaintext M;.) The above remarks show that the two notions of CCA-secure TBE
and CCA-secure PKE can in fact be seen as equivalent. Figure 1 in Section 4 is summarizing
the relations between PKE and the different security flavors of TBE.

3.3 Identity Based Encryption

An identity based encryption (IBE) scheme can be viewed as a special kind of tag-based en-
cryption scheme where the tag t is associated with an identity ¢d. The difference is that an
IBE scheme is equipped with an additional algorithm, the key derivation algorithm IBE.Keyder.
On input of the secret key sk and an identity id, IBE.Keyder generates a user secret key usk[id]
for identity ¢d. This secret key allows the identity to decrypt all messages that were encrypted
to identity id. In the terminology of TBE this means that usk[t] is a “wild-card” to decrypt
arbitrary ciphertexts that were encrypted with tag ¢, without knowing the secret key. A for-
mal definition of IBE, together with a security model for (selective-identity) chosen-plaintext
security, is given in Appendix A.2.

RELATION BETWEEN IBE AND TBE. By the above it is easy to see that every IBE scheme can be
transformed into a TBE scheme while maintaining its security properties. In the transformation
TBE tag t is identified with IBE identity id. The key generation and encryption algorithms are
the same. The TBE decryption algorithm first computes the secret key usk[t] for “identity” ¢
and then uses the public IBE decryption algorithm to recover the plaintext. It is easy to verify
that if the IBE scheme is (selective-identity) CPA-secure then the TBE scheme is (selective-tag)
weakly CCA-secure.* Furthermore, a CCA-secure IBE scheme translates to a CCA-secure TBE
scheme. (See Appendix A.2for exact IBE security definitions.)

To the best of our knowledge it is not known how to generically transform a TBE scheme
into an IBE scheme. This seems particularly difficult since it is not clear how, in general, the
user secret key usk[id] of the IBE scheme can be defined since in TBE there is no such concept
as the “user secret key”.

The above observations together with the discussion from Section 3.2 indicate that the
class of selective-tag weakly CCA-secure TBE schemes is more general than the class of weakly
CCA-secure TBE/selective-identity CPA-secure IBE schemes and gives furthermore hope that

4Note that CCA security for TBE schemes naturally corresponds to CPA security for IBE schemes.



TBE schemes in the weak selective-tag model are easier to construct. Figure 1 in Section 4 is
summarizing the relations between TBE and IBE.

3.4 One-Time Signatures

A public key signature scheme OZS = (S.Kg, S.Sign, S.Vfy) with associated message space MsgSp
consists of three PTAs. Via (verk, sk) < (S.Kg(1*) the randomized key-generation algorithm
produces a key-pair for security parameter k € N; via o < S.Sign(sk, M) the user signs a
message M € MsgSp(k) with his secret key sk to get a signature o; via S.Vfy(verk, M, o) the
signature o on the message M is verified with respect to the verification key verk. S.Vfy outputs
OK or L. For consistency we requite that for all £ € N and all messages M € MsgSp(k), we
have Pr[S.Vfy(verk, M,S.Sign(sk, M)) = OK] = 1, where the probability is taken over the choice
of (verk, sk) < (S.Kg(1¥), and the coins of all the algorithms in the expression above.

SECURITY. Let OZ8 be a signature scheme, let k& be a security parameter, and let A be an
adversary. We consider the following experiment:

Experiment Bxp{y;7; " (k)

(verk, sk) < S.Kg(1%)

(M*,0*) & ASSN(£ind, verk)

If S.Vfy(sk, M*,0*) = L then return 0
Return 1

where the oracle SIGN(M) is returns o < S.Sign(sk, M) and A may only make one single query
to oracle SIGN(-). The target pair (M*,0*) output by adversary .4 must be different from the
message/signature pair (M, o) obtained from the oracle query. We define the advantage of A in
the above experiment as

AAVEEI () = Pr [Bxpoir () = 1].

Signature scheme O75 is said to be a strong one-time signature scheme if the advantage function
Advoo%ej'for is a negligible function in k for all PTAs A.

4 Chosen-Ciphertext Security from Tag-Based Encryption

Canetti, Halevi, and Katz [12] demonstrate how to transform any selective-identity CPA-secure
IBE scheme into a CCA-secure PKE scheme by adding a one-time signature (we will refer to
this as CHK transformation). Independent of [12], MacKenzie, Reiter, and Yang [27] exploit
the same construction as [12] and describe how to convert any weakly CCA-secure TBE scheme
into a CCA-secure PKE scheme.

In this section we combine the above three papers [12, 27, 8] and show that a selevtice-tag
weakly CCA-secure TBE scheme is sufficient to construct an CCA-secure PKE scheme. More
precisely, we note that the CHK transformation may as well be instantiated with any TBE
scheme (the PKE decryption algorithm needs to be adapted to the TBE definition). If the TBE
scheme is selective-tag weakly CCA-secure then the resulting PKE scheme is CCA-secure.

4.1 The Transformation

Given a TBE scheme TBE = (TBE.kg, TBE.Enc, TBE.Dec) with tag-space TagSp we construct a
public-key encryption scheme PKE = (PKE.kg, PKE.Enc, PKE.Dec). In the construction, we use



a one-time signature scheme OZS = (S.Kg, S.Sign,S.Vfy) in which the verification key output
by S.Kg(1¥) is an element from TagSp. (If that is not the case we can apply a target colission
resistant hash function that maps the verification keys to TagSp.) We require that this scheme
be secure in the sense of strong unforgeability. The transformation defines the public/secret key
pair of the PKE scheme to be the public/secret key pair of the TBE scheme, i.e. PKE.kg(1%)
outputs whatever TBE.kg(1¥) outputs. The construction proceeds as follows:

PKE.Enc(pk, M) PKE.Dec(sk, C)
(verk, sigk) < S.Kg(1*) Parse C as (C, verk, o)
C & TBE.Enc(pk, verk, M) If S.Viy(verk, C, o) = L
o & S.Sign(sigk, C) then return j_
Return C « (C, verk, o) Else return M < TBE.Dec(sk, verk, C)

It is easy to check that the above scheme satisfies correctness.

Let us now give some intuition why the PKE scheme is CCA-secure. Let (C*, verk™, o) be
the challenge ciphertext output by the simulator in the security experiment. It is clear that,
without any decryption oracle queries, the value of the bit b remains hidden to the adversary.
This is so because C* is output by TBE.Enc which is CPA-secure, verk™ is independent of the
message, and ¢* is the result of applying the one-time signing algorithm to C*.

We claim that decryption oracle queries cannot further help the adversary in guessing the
value of b. Consider an arbitrary ciphertext query (C,verk,o) # (C*,verk™,c*) made by the
adversary during the experiment. If verk = wverk™ then (C,0) # (C*,0*) and the decryption
oracle will answer 1 since the adversary is unable to forge a new valid signature o with respect
to verk™. If verk # verk™ then the decryption query will not help the adversary since the actual
decryption using 7BE will be done with respect to a tag verk different to the target tag verk®.
A formalization of the above arguments leads to the following:

Theorem 4.1 Assuming the TBE scheme is selective-tag chosen-ciphertext secure, the OIS is
a strong, one-time signature scheme, then the above public-key encryption scheme is chosen-
ciphertext secure.

The security reduction is tight (linear) with respect to all the public-key components. The
proof follows along the lines of [12, 6] and is therefore omitted here. We note that the CHK
transformation can also be used to transform a (straight-forward definition of) tag-based KEM
into a full KEM.

For simplicity we only described the CHK transformation in this Section. We want to remark
that the more efficient BK transformation [8, 6] (which basically employs a MAC insteas of a
signature) works as well for TBE schemes. The use of a MAC instead of a one-time signature
somewhat complicates exposition and proof.

4.2 Classifying the different TBE security notions

Since from a complexity-theoretic point of view strong one-time signatures can be black-box
constructed from any one-way function [35, 26, 20] (and hence from any TBE scheme) we can
draw the following corollary.

Corollary 4.2 The class of public-key encryption schemes secure against chosen-ciphertext at-
tacks and the class of tag-based encryption schemes selective-tag secure against chosen plaintext
attacks are equivalent through a black-box polynomial-time reduction.
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Figure 1: Relation between IBE, TBE, and PKE with different security definitions. Solid arrows
indicate direct implications, dashed lines indicate relations through a black-box reduction. All
direct implications were discussed in Section 3. The upper left dashed black-box implication is
due to [27], the right one due to [12], and the one with the marker (x) shows our contribution.

This Corollary implies that all three TBE definitions from Section 3.2 are in fact equivalent
through a polynomial-time black-box reductions. We summarize the known relations among
TBE, PKE, and IBE in Figure 1. The results of this section settle the implication marked by

(x).

5 Constructions of TBE schemes

5.1 Generic construction from any IBE scheme

Given an IBE scheme I'BE = (IBE.kg, IBE.Enc, IBE.Keyder, IBE.Dec) with identity-space IDSp
we construct a TBE scheme TBE = (TBE.kg, TBE.Enc, TBE.Dec) with tag-space TagSp = IDSp.
The transformation defines the public/secret key pair of the TBE scheme to be the public/secret
key pair of the IBE scheme, i.e. TBE.kg(1¥) outputs whatever IBE.kg(1%) outputs. The construc-
tion proceeds as follows:

TBE.Enc(pk, id, M) TBE.Dec(sk, id, C)
C & IBE.Enc(pk, id, M) sk[id] < IBE.Keyder(sk, id)
Return C' M « IBE.Dec(pk, sk[id], C)

It is easy to check that the above scheme satisfies correctness.

Theorem 5.1 Suppose IBE is a {CCA, CPA, selective-id CPA}-secure IBE scheme. Then
TBE from the above construction is a {CCA, weakly CCA, selective-tag weakly CPA }-secure
TBE scheme.

5.2 Based on the Linear Assumption

In this section we demonstrate the usefulness of the TBE to PKE transformation of Section 4.
Whereas the only known IBE schemes are using pairings [3] we give a simple and practical TBE
scheme that does not perform any pairing operation.

5.2.1 The Decision Linear Assumption.

Our scheme will be parameterized by a parameter generator. This is a polynomial-time algorithm
G that on input 1* returns the description of a multiplicative cyclic group G of prime order p,
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where 2F < p < 2¥+1 4 generator g of G. We use G* to denote G \ {1}, i.e. the set of all group
elements except the neutral element. Throughout the paper we use GR = (G, g, p) as shorthand
for the description of the group.

A tuple (g,¢%, ¢¥,9%) € G* is called a Diffie-Hellman tuple if xy = z mod p. A DDH oracle
DDHVF is a PTA that for each input (g, g%, ¢%,9%?) € G* outputs 1 if (g, g%, ¢, ¢?) is a Diffie-
Hellman tuple and 0 otherwise. More formally we require that for each (G, p, DDHVF) < G(1%)
and for each (g, ¢%, ¢, g%) € G*,

Pr[DDHVF(g,9%, 9%, 97) = (vy = 2)] = 1 — neg(k)

where the probability is taken over all internal coin tosses of DDHVF and “xy = 2” is defined
as 1 is zy = z mod p and 0 otherwise.

A possible implementation of the DDH oracle is given by the Weil/Tate bilinear pairing
allowing to efficiently compute a bilinear pairing which can be used to solve DDH with probability
1 [7].

Let GR = (G, g,p) and let ¢1,92,2 € G be random elements from group G. Consider the
following problem introduced By boneh, Boyen, and Shacham [5]: Given (g1, g2, 2, 91", 952, w) €
GS as input, output yes if w = 2”72 and no otherwise, even with access to a DDH oracle
DDHVF. One can easily show that an algorithm for solving the Decision Linear Problem in G
gives an algorithm for solving DDH in G. The converse is believed to be false. That is, it is
believed that the Decision Linear Problem even relative to a DDH oracle. To an adversary A
we associate the following experiment.

Experiment Expéai_?hn 1%)

GR < G(1F); g1, 92,2 < G*; 1y 10,7 < I,
B<E{0,1}; if =1 then w «— 2772 else w « 2"
B & APPEVEC) (1K GR g1, g2, 2, g1, gh?, w)

If 3 # (3 then return 0 else return 1

We define the advantage of A in the above experiment as

AdvE (k) =

Pr [ Bxp dn1k) = 1] - ;‘ .
We say that the gap decision linear assumption relative to generator G holds if Advg‘rﬁ_dlin isa
negligible function in k for all PTAs A.

To put more confidence in the DLIN problem it was shown in [5] that the DLIN problem is
hard in bilinear groups.

Since it’s introduction the DLIN assumption (in bilinear groups) has already found some
interesting applications (e.g., see [5, 9, 30]). As noted in [5] the DLIN assumption readily gives
a CPA-secure PKE scheme (called linear encryption scheme) as follows: The public key consists
of random elements g1, g2,z € G, the secret key of elements x,z2 such that ¢gi* = g5 = 2.
Encryption of a message M is given by (c1,c2,e) < (1", g5°, 2772 - M), where 11,79 € Z are
random elements. Message M is recovered by the possessor of the secret key by computing
M e/ ().

5.2.2 The Scheme

The starting point of our scheme will be the (CPA-secure) linear encryption scheme from Sec-
tion 5.2.1. By adding two additional values to the ciphertext we can update it to a selective-tag
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CCA-secure TBE scheme. The values contain redundant information and also depend on the
tag. In the decryption algorithm the two values are used to check the ciphertext for “validity”
or “consistency”. We build a TBE scheme LTBE = (LTBE.kg, LTBE.Enc, LTBE.Dec) as follows:

LTBE.kg(1%)
g1 <& G5 w1, w0, y1, 92 < 7y
Chose g2,z € G with g7 = g5 = =
ut < gi' 5 ug — gy’
pk — (9179277«’:”17”2) 5 sk (I1,$27ylay2)
Return (pk, sk)

LTBE.Enc(pk, t, M) LTBE.Dec(sk, t,C)
1T Z, Parse C as (c1,c2,d1,d2, %)
1 — gyt c2 — gy? If c§$1+y1 %+ dy or ch2+y2 # dy then K & G*
dy «— 2'Mult; dy — 2'"2un? Else K « ¢{' - ¢3?
K« 2t qp e K- M Return M « ¢ - K1
C (01, ca,dy, dg,’lb) € G’
Return C

5.2.3 Correctness and Alternative Decryption

Let C = (c1,¢2,d1,d2,7) € G® be a (possibly malformed) ciphertext. The KEM part ¢ =
(c1,¢2,d1,d3) is called consistent with tag t if cizﬁyl = d; and c;mﬂ” = dy. Note that any
ciphertext that was properly generated by the encryption algorithm for tag ¢ is always consistent
with (the same) tag ¢, i.e. for i = 1,2 we have (g;*)"*it% = 2"iy? for any r; € Z,. In decryption
the ciphertext is first checked for consistency. If it is consistent the key is reconstructed as
K = ¢ c3?. Tt leaves to verify that, in case the ciphertext is consistent, K « c{' - ¢5? computes

the correct key. Indeed we have (g7')™* - (g52)*2 = 2™ - 2™ = 2"""2 This shows correctness.
tz;+

Yi
For i = 1,2, we define the two functions f;(c;,d;) = = 7 Then fi(c1,d1) = fa(ca,d2) =1
if and only if the ciphertext is consistent. Hence, the key K can be alternatively computed by
first uniform s1, so € Z; and then

K = ci'cy? - (filer,dr))™ - (fa(e, d2))™

tzy 4y \ °1 tzotyz \ %2
C C
AFrete . 1 i 2
1 =2
d1 d2

x1+s1(te14+y1) wo+sa(tra+ty2)
c Cy

1
S1 752
dl d2

This can be viewed as an implicit test if the ciphertext is consistent with tag t. If so the key
is computed as K = ¢j* - ¢5°. If not then at least one of the two function fi, fo in the above
equation is different from 1 € G and (since G has prime order) a random key K is returned,
completely independent of the “real key” ¢! - ¢52.

5.2.4 Public Verification

In this section we show that in groups providing a DDH oracle DDHVF, consistency (or validity)
of a given TBE ciphertext can be publicly verified. This is done by checking if (g1, z'u1, c1,dy)
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and (go, 2'ug, cg, ds) are Diffie-Hellman tuples. Both checks can be carried out using the Diffie-
Hellman verification algorithm DDHVF that we additionally have to provide in the public-
key. To verify correctness of the above public consistency check we have to show that for
i=1,2, cfxiﬂ” = d; iff (g, 2'u;, c;,d;) is a Diffie-Hellman tuple. Let ¢; = ¢g"i. Then (g;, 2'u; =

zit+yi

o ,¢; =g;',d;) is a proper Diffie-Hellman-tuple iff g(w"Hyi)'” = d; iff 'Y =d,.

i
5.2.5 Security

Theorem 5.2 Under the gap decision linear assumption relative to generator G, LTBE is
selective-tag secure against chosen-ciphertext attacks.

Theorem 5.2 is proved in Appendix B.

The intuition of the proof is as follows. In the security reduction the DDH oracle provided by
the Gap DLIN assumption is used to reject (as in the original scheme) every invalid ciphertext
submitted by the adversary to the decryption oracle. Suppose we only want to show one-way
security of LTBE i.e., the adversary’s goal is to compute the challenge message (instead of
deciding). The key idea of the reduction is based on an algebraic technique from [4]. An
attacker B against the Gap DLIN problem can use the target tag t* to setup the public-key for
the adversary A attacking the security of LTBE in a way that (i) B (without knowing the secret
key) can decrypt all ciphertexts with tag ¢t # ¢*; (ii) reconstructing the plaintext for a challenge
ciphertext created with tag t* can only be done by solving DLIN. If the adversary against LTBE
is successfull so this adversary can be used to break Gap DLIN using the above simulation.

More details. Adversary B inputs a Gap DLIN instance (g1, 92, 2, g?, ggs,w) and has to
distinguish if w = 2"11"2 or w=random. He picks a random values 61,0, and defines the
(correctly distributed) public key defined as pk = (g1, g2, z,u1 = 2t g%, uy = 27 ¢°2), where
t* is the target tag provided by A.

Note that this way a consistent KEM ciphertext (¢, ce, dy, d2) for tag ¢t properly created by
the encryption algorithm has the form

=g di= () = (") (i=1,2), (1)

1

for some randomness 71,72 € Zj,. Hence, in order to decrypt the challenge ciphertext C* =
(¢}, c3,dy,d5, ") for target tag t* defined as

=g, di=(E)"T g = (1=1,2),

% 7 7

(i.e., a ciphertext computed with unknown randomness 773, r5 from the DLIN instance), adversary
A has to compute the corresponding target key K* = 2"17"2 what is equivalent to breaking
DLIN. On the other hand, for decrypting ciphertext (c1,co,d1,d2,1) for tag t # t*, B first
checks for consistency using the DDH oracle DDHVF provided by the Gap DLIN assumption.
If the ciphertext is consistent the correct key K = 21772 = 2" . 2™ can be reconstructed by
Equation (1) as K = (dl/c‘lsl)l/(t*t*) : (dg/CgQ)l/(t*t*) and hence the decryption query can be
answered by computing M = - KL

5.3 Efficiency

Encryption requires three exponentiations (to compute ¢1, ¢a and K) and two multi-exponentiation
(to compute dj,ds) in G. Encryption may as well be carried out in 7 exponentiations what is
considerably faster when the receiver’s public key is considered to be fixed and precomputa-
tion for fixed-base exponentiation is used. Decryption is very fast and can be done with one
multi-exponentiation. Note that the scheme does not make use of bilinear maps.
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5.4 Based on the BDDH assumption
5.4.1 The BDDH assumption

The scheme will be parameterized by a bilinear parameter generator. This is a polynomial-time
algorithm Gp that on input 1* returns the description of a multiplicative cyclic group G of prime
order p, where 2F < p < 281 the description of a multiplicative cyclic group Gz of the same
order, a random element g generating G, and a bilinear pairing é : G x G — Gp. This bilinear
pairing should be efficiently computable and satisfy the conditions below.

Bilinear: For all g,h € Gy,x,y € Z, é(¢*, hY) = é(g, h)™Y
Non-degenerate: é(g,9) # lg,

except the neutral element. Throughout the paper we use BG = (G,Gr,p, ¢, g) (obtained by
running Gpg) as shorthand for the description of bilinear groups.

Let BG be the description of bilinear groups and let g € G; be a random element from group
G1. Consider the following problem formalized by Boneh and Franklin [7]: Given (g, g%, ¢°, g¢, W) €
G* x Gr as input, output yes if W = é(g, g)®° and no otherwise. More formally we associate
to an adversary B the following experiment:

Experiment Exp%%d}é (1k)

$
a,b,c,w — Z,

)2 else W« é(g,9)"

’y<i{0,1}; if v =0 then w «— é(g,¢
Y & B(1*,g,9% g% g% W)

If v # +/ then return 0 else return 1

We define the advantage of B in the above experiment as

1
Advgth k) = |Pr | Bxp 19 =1 - 2‘ |

We say that the Bilinear Decision Diffie-Hellman (BDDH) assumption relative to generator Gp
holds if Adv%dgd% is a negligible function in k for all polynomial-time adversaries B.

5.4.2 A TBE scheme based on BDDH

The following scheme is directly obtained by applying our generic transformation from IBE to
TBE to an IBE scheme by Boneh and Boyen [4]. Let BG be a public description of a biliear
group. We build a TBE scheme BTBE = (BTBE.kg, BTBE.Enc, BTBE.Dec) as follows.

BTBE kg(1") BTBE.Enc(pk, t, M) BTBE.Dec(sk, t,C)
1,79,y & Ly, r & Zy Parse C as (c,d, )
Ut — g% ug — g*2 3 v — g¥ ce—g";d— (udug)" If ¢®1+t2 £ d then reject
z «— é(g,v) K—z;¢9y—K-M Else K « é(c,v)
pk — (u1,us,2); sk — (x1,x2,0) C — (c,d,) M—- K1
Return (pk, sk) Return C € G3 Return M

The scheme’s security is implied by Theorem 5.1 and the security results from [4].

Theorem 5.3 Under the bilinear decision Diffie-Hellman assumption relative to generator G,
BTBE is selective-tag secure against chosen-ciphertext attacks.
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6 Direct Key Encpasulation

A key encapsulation mechanism [38] (KEM) KEM = (KEM.Kg, KEM.Encaps, KEM.Decaps) con-
sits of three PTAs can be seen as a light PKE scheme. Instead of encrypting messages, the
encapsulation algorithm KEM.Encaps generates a (random) symmetric key K and a correspond-
ing ciphertext C. The decapsulation algorithm inputs the secret key and a ciphertext and
reconstructs the symmetric key K. In practice the key K is usually fed to a symmetric encryp-
tion scheme. CCA-security of a KEM can be analogously defined as CCA-security security of a
PKE scheme; in the security game an adversary is given a ciphertext/key pair and has to decide
if the two pairs match or if the key is random and independent from the ciphertext. A formal
definition of a CCA-secure KEM can be looked up in Appendix A.1.

Given a KEM and a DEM (aka symmetric encryption scheme), a hybrid public-key encryp-
tion scheme can be obtained by using the KEM to securely transport a random session key
that is fed into the DEM to encrypt the plaintext message. It is well known that if both the
KEM and the DEM are chosen-ciphertext secure, then the resulting hybrid encryption is also
chosen-ciphertext secure [14, Sec. 7]. The security reduction is tight.

A DEM secure against chosen-ciphertext attacks can be built from relatively weak prim-
itives, i.e. from any one-time symmetric encryption scheme by essentially adding a MAC.
For concreteness we mention that a chosen-ciphertext secure PKE scheme can be built from
our KEM construction with an additional overhead of a DEM which consists of a (one-time
secure) symmetric encryption plus additional 128 bits for the MAC. Furthermore, Phan and
Pointcheval [32] showed that super pseudorandomn permutations directly imply redundancy-
free chosen-ciphertext secure DEMs that avoid the usual overhead due to the MAC. In practice,
the modes of operation CMC [22] and EME [23] (provided that the underlying block-cipher is a
strong pseudorandom permutation) can be used to encrypt large messages.

We note that for the natural task of securely generating a joint random session key, a KEM
is sufficient and a fully-fledged public-key encryption scheme is not needed.

6.1 Based on the Linear Assumption

We build a KEM scheme as follows. Let KEM.Kg(1*) be as in the TBE scheme of Section 5.2.2.
The public key pk additionally contains a target collision resistant hash function ter : GxG — Z,
(i.e. given t = ter(gi,g2) it should be hard to find (h1,hs) € G x G\ {(g1,92)} such that
ter(h, ho) = t; we refer to [13] for a formal definition).” The encapsulation/decapsulation
algorithms are as follows:

KEM.Encaps(pk) KEM.Decaps(sk, c)
$
1,72 — 2Ly Parse ¢ as (c1,co,d1,d2)
cL g1 2 — gy’ t « ter(er, c2)
$
t — ter(eq, c2) 51,80 & I
dy «— 2"ult; dy — 2M2un? GFLFs1(tr1+y1) | wotsa(tea+y)
K~ & 2
K «— zr1+r‘2 dil’dgg
C «— (017 ca,dq, dg) Return K
Return (¢, K)

Analogous to the TBE construction from Section 5.2 consistency of a ciphertext ¢ = (¢, ¢2,dy, d2)
can be publicly verified by computing ¢ « tcr(cy, c2) and checking if (g;, 2tu;, ¢;, d;) is a Diffie-

5More formally we need a family of hash functions indexed by some random key ¢, where ¢ is contained in the
public key and the description of the hash function is included in the scheme parameters.
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Hellman tuple for ¢ = 1, 2.

Theorem 6.1 Assume tcr is a target collision resistant hash function. Under the gap decision
linear assumption relative to the generator G the above KEM is secure against chosen-ciphertext
attacks.

The security reduction is tight and compared to the reduction from Theorem 5.2 there appears
an additional additive factor taking into account a possible collision in the hash function tcr.
The proof of Theorem 6.1 is similar to that of Theorem 5.2 and is given in Appendix C.

The way we use the target collision hash function is reminiscent to the Cramer-Shoup cryp-
tosystem [13]. Indeed, the intuition is the same. Given an adversary .4 against the security
of the KEM, we can build an adversary B that breaks the linear assumption with the same
success probability of A. Let (¢}, ch,dj,d%) be the challenge ciphertext given to adversary A
and let t* = ter(cf, ¢5). Consider a ciphertext (c1,c2,d1, d2) queried by adversary A during the
CCA experiment and let ¢ = ter(eq, ¢2). Similar to the proof of Theorem 5.2 we can setup the
public-key in a way such that B is able to correctly simulate all such decryption queries as long
as t # t* and the ciphertext is constentent. The latter one can be checked using the public
consistency algorithm. Assume ¢ = t*. On one hand, when (c1,c2) # (¢, c5) then B found a
collision in the hash function. On the other hand, when (c1,c2) = (¢, ¢5) then consistency of
the ciphertext also implies d; = dj and do = d5 and hence the queried ciphertext matches the
target ciphertext what is forbidden in the experiment.

6.2 Key Encapsulation based on the BDDH

We build a KEM scheme as follows. Let KEM.Kg(1*) be as in the TBE scheme of Section 5.2.2.
The encapsulation/decapsulation algorithms are defined as follows.

KEM.Encaps(pk)

8 *
T Ly,

KEM.Decaps(sk, )

Parse c as (c,d) € G
c—g";t—ter(e)

N t — ter(c)
d— (U}W) If ¢**Y £ d then L
Kz Elese return K « é(c,v)
¢ — (¢, d)

Return (¢, K)

Theorem 6.2 Assume tcr is a target collision resistant hash function. Under the BDDH as-
sumption relative to the generator G the above KEM is secure against chosen-ciphertext attacks.

7 Discussion

7.1 Efficiency considerations

An efficiency comparison of all previously known CCA-secure PKE schemes in the standard
model is assembled in Figure 2. The Cramer-Shoup scheme [13] and the Kurosawa-Desmedt
scheme [25] are listed for reference. BK/BBx refers to one of the two Boneh-Boyen IBE schemes
from [3] instantiated with the MAC based BK-transformation (since the signature-based CHK
transformation is less efficient we decided not to list it in our comparison). Our BDDH-based
KEM BMW from Section 6.2 equals the KEM by Boyen, Mei, and Waters [10]. To obtain a
fair comparison we equipped the two KEM schemes (the BMW-KEM and ours from §6) with a
hybrid encryption scheme to obtain a fully fledged PKE scheme.
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Scheme Origin Assumption Encryption Decryption Ciphertext Public

#pairings + #[multi,reg fix]-exp  Overhead Viy?
KD direct DDH 0+41[1,2,0] 0+4][1,0,0] 2|p|(+hybrid) —
CS KEM DDH 0+1[1,3,0] 0+[1,1,0] 3|p| —
BK/BB1 BK/IBE BDDH 0+[1,2,00 1+11,0,0] 2|p|4+com+mac —
BK/BB2 BK/IBE ¢-BDDHI 0+[1,2,00 1+10,1,1] 2|p|4+com+mac —
DLIN-TBE (§5.2) BK/TBE DLIN 0+12,3,0] 0+][1,0,0] 4|p|+com+mac —
DLIN-KEM (§6.1) KEM DLIN 0+12,3,0] 0+4][1,0,0] 4|p| yes
BDDH-TBE (§5.4) BK/TBE BDDH 0+[1,2,0] 1+410,1,0] 2|p|4+com+mac —
BDDH-KEM (§6.2) KEM BDDH 0+1[1,2,0] 1+410,1,0] 2|p| yes

Figure 2: Efficiency comparison for CCA-secure PKE schemes. Some figures are borrowed
from [8, 6, 10]. All “private-key” operations (such as hash function/MAC/KDF) are ignored.
Cipher overhead represents the difference (in bits) between the ciphertext length and the message
length, and |p| is the length of a group element. For concreteness one can think of mac = 128
and the commitment com = 512 bits. For comparison we mention that relative timings for the
various operations are as follows: bilinear pairing ~ 5 [36], multi-exponentiation ~ 1.5, regular
exponentiation = 1, fixed-base exponentiation < 0.2.

Together with the Kurosawa-Desmedt PKE, our proposed DLIN-based KEM offers the nowa-
days fastest decryption algorithm. Compared to all other schemes the obvious drawbacks of our
schemes are slower encryption and longer ciphertexts.

We note that the long ciphertexts are basically due to the different assumption; this is since
the basic (chosen-plaintext secure) linear encryption scheme from Section 5.2.1 already comes
with a ciphertext overhead of 2|p|.

In contrast to the comparison tables given in [6, 10] we do not consider the public-key
of the recipient in the encryption algorithm as fixed. For that reason we do not count the
exponentiations as (more efficient) fixed-base exponentiations. We think that this models more
the typical goal of PKE schemes/KEMs since usually you send ciphertexts to many different
recipients. If one really considers the receiver’s public-key as fixed we can use an on-line/offline
approach in all schemes as follows: the sender pre-computes and buffers some number of random
(symmetric) keys. At the time the actual message is sent the sender simply looks up one of the
buffered keys and encrypts the message with this key. In that case the online-part of the
encryption algorithm is basically for free.

7.2 Remarks

We hope that by having provided weaker sufficient conditions for the CHK/BK transformations
we make a step directed towards a better understanding and utilization of CCA-security in PKE
schemes. From a designer’s point of view the definition of selective-tag security means that the
scheme only has to be “secured” with respect to the target tag. Furthermore, in the security
reduction, the generated keys may depend on this tag. Having that designing concept in mind
it would be interesting to come up with new CCA-secure TBE/PKE schemes based on different
assumptions.

A very efficient TBE construction based on the Kurosawa-Desmedt encryption scheme [25] is
obtained by removing the target collission-resistant hash function and taking the former output
of the hash function as the tag. A straightforward question is if we can somewhat modify either
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this KD based TBE scheme or our proposal from Section 5.2 to obtain an IBE scheme that does
not use pairings.
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A Standard Definitions

A.1 Public Key Encapsulation Schemes

A public-key encapsulation (KEM) scheme [38] KEM = (KEM.Kg, KEM.Encaps, KEM.Decaps)
with key-space KeySp(k) consists of three PTAs. Via (pk, sk) & KEM.Kg(1¥) the random-
ized key-generation algorithm produces keys for security parameter k£ € N; via (K, C) &
KEM.Encaps(1¥, pk) a key K € KeySp(k) together with a ciphertext C is created; via K «
KEM.Decaps(sk, C') the possessor of secret key sk decrypts ciphertext C' to get back a key.
For consistency, we require that for all £ € N, and all (K, C) & KEM.Encaps(lk,pk) we have
Pr[KEM.Decaps(C') = K| = 1, where the probability is taken over the choice of (pk,sk) <
KEM.Kg(1*), and the coins of all the algorithms in the expression above.

Definition A.1 Formally, we associate to an adversary A the following experiment:
Exp];é”m:[iff'cca(k)

(pk, sk) < KEM.Kg(1%)

K; & KeySp(k); (K¥, C*) & KEM.Encaps(pk)

b< {01}

pE ADECAPS(pk,K;’ C)

If b # b then return 0 else return 1

where the oracle DECAPS(C) is returns K <~ KEM.Decaps(sk, C') with the restriction that A is
not allowed to query oracle DECAPS(-) for the target ciphertext C*. We define the advantage
of A in the CCA experiment as

. - 1
kem~-ind- _ kem~-ind- _
Advyra/m (k) = |Pr [ExpygngA k) = 1] - 2’ .

A KEM scheme KEM is said to be secure against adaptively-chosen ciphertext attacks if the

advantage functions Advl;%”ﬂ:[irf'cca(k) is a negligible function in & for all PTAs A.

A.2 Identity Based Encryption

An identity-based encryption (IBE) scheme [37, 7, 12] IBE = (IBE.kg, IBE.Keyder, IBE.Enc,
IBE.Dec) consists of four PTAs. Via (pk,sk) < IBE.kg(1*) the randomized key-generation
algorithm produces master keys for security parameter k € N; via sk[id] < IBE.Keyder(sk, id)
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the master computes the secret key for identity id; via C' < IBE.Enc(pk, id, M) a sender en-
crypts a message M to identity id to get a ciphertext; via M « IBE.Dec(sk,C') the possessor
of secret key sk decrypts ciphertext C to get back a message. Associated to the scheme is
a message space MsgSp. For consistency, we require that for all £ € N, all identities 4d and
messages M € MsgSp(k) we have Pr[IBE.Dec(IBE.Keyder(sk, id), |IBE.Enc(pk, id, M)) = M] =1,
where the probability is taken over the choice of (pk, sk) & IBE.kg(1¥), and the coins of all the
algorithms in the expression above.

Privacy. Following [12] we give the definition for selective-identity security of IBE schemes

where an adversary has to commit to the target identity in advance. Let IBE = (IBE.kg, IBE.Keyder, IBE.Enc, IBE
be an IBE scheme with associated message space MsgSp. To an adversary A and bit b € {0, 1}

we associate the following experiment:

Experiment Exp%;ii_md_q’a(k)

(id*, Sto) < A(1*,init)

(pk, sk) < IBE.kg(1%)

(Mg, M, St) & ABEKeyder(£inq pk. Sto)
b~ {0,1}; C* & IBE.Enc(pk, id*, M)
b AlBE-Keyder(gy1055. C*, St)

If b # b then return 0 else return 1

where the oracle IBE.Keyder(id) is defined as
sk[id] < IBE.Keyder(sk, id) ; Return sk[id]

and A is not allowed to ask oracle IBE.Keyder(-) for the target identity id*. Both messages must
be of the same size (|My| = |M;]) and in the message space MsgSp(k). We define the advantage
of A in the corresponding experiment as

Aavisztmn ) [or [Bxpiszt o 1] -1

IBE scheme IBE is said to be selective-identity secure against chosen-plaintext attacks if the
ibe-sid-ind-cpa

advantage function Adv g, is a negligible function in k for all PTAs A.

Similar to TBE we mention two known security variants of IBE schemes: (full) security
against chosen-plaintext attacks (CPA-secure) and security against chosen-ciphertext attacks
(CCA-secure). Let C* be the target ciphertext and id* be the target identity selected by the
adversary A in the security experiment.

e To obtain the notion of CPA security for IBE schemes we modify the above security ex-
periment in a way such that A does not have to commit to the target identity id* in
the beginning. Instead, A is allowed to choose id* at the end of its find stage, possi-
bly depending on the public key and on its queries. Clearly, this is a stronger security
requirement.

e To get CCA-security, we further modify the security experiment (CPA security) such that
the we give the adversary furthermore access to an oracle answering all decryption queries
suspect to (id, C) # (id*,C*).
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A.3 Target Collision Resistant Hash Functions

Let (tcrs)ses be a family of hash functions for security parameter k¥ and with seed s € S = S(k).
F is said to be collision resistant if, for a hash function tcr = ters (where the seed is chosen at
random from S), it is infeasible for any polynomial-time adversary to find two distinct values
x # y such that ter(z) = ter(y).

A weaker notion is that of target collision resistant hash functions. Here it should be infeasible
for an polynomial-time adversary to find, given a randomly chosen element x and a randomly
drawn hash function tcr = ter, a distinct element y # x such that ter(xz) = ter(y). (In collision
resistant hash functions the value z may be chosen by the adversary.) Such hash functions
are also called universal one-way hash functions [28] and can be built from arbitrary one-way
functions [28, 35]. We define

Advig, 4(k) = Pr[A finds a collision].

Hash function family tcr is said to be a target collision resistant if the advantage function
Advi, 4 is a negligible function in & for all polynomial-time adversaries A.

B Proof of Theorem 5.2

Adversary B inputs an instance of the decisional linear problem, i.e. B inputs the values
(1’“,G,gl,gg,z,gfl,ggz,w). B’s goal is to determine whether w = 27" or w is a random
group element.

Now suppose there exists an adversary A that breaks the selective-tag CCA security of the
TBE scheme with (non-negligible) advantage Advélf;;’tig_cca(k). We show that adversary B can
run adversary A to solve its instance of the decisional linear problem (i.e. to determine whether
w = 2"7"2 or if w is a random group element) with advantage

ap-dlin be-stag-cca
o5 > Advi :
AdvEZ (k) > Adv 7 8 (k) (2)

Now Eqn. (2) proves the Theorem. Adversary B runs adversary A simulating its view as in the
original TBE security experiment. We now give the description of adversary B.

Init Stage Adversary B runs adversary A on input 1*¥ and init. A outputs the target tag ¢*
that is input by B.
Find Stage B picks two random values ¢y, co € Z,, and sets

up — 27" g, ug — 271 - ge .

The public key pk is defined as (G, p, g1, g2, 2, u1,u2) and it is identically distributed as
in the original TBE scheme. Let z1 = log, z and xz = logg, z, as in the original TBE
scheme. This implicitly defines the values y1,y2 as

y1 = log,, up = —t"x1 + ¢y, Y2 = logy, uz = —t"z9 +ca .

Note that no value of the corresponding secret key TBE = (x1, x2,y1,y2) is known to B.

Now consider an arbitrary ciphertextC' = (Cy, Cy, D1, D7) and let t € Z,, be a tag. Recall
that C is consistent with tag ¢ if Cfi'“ryi = D; for i € {1,2}. The way the keys are setup
this condition can be rewritten as

D; = szi-&-yi — Cgﬁit—t*xﬁ-m — (ngvi)t—t* _Cicz" = {1,2} ) (3)
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By Equation (3), D;/C{* = (C{*)!="" and if ¢ # t* then the session key K = CJ' - C3? can
alternatively be reconstructed as

1
Dy - Dy \ =7
K — <Ccl Ccz) N (4)

Now adversary B runs A on input find and pk answering to its decryption queries as
follows: Let C' = (Cy,Cq, D1, D2) be an arbitrary ciphertext submitted to the decryption
oracle DEC(C, t) for tag t # t*. First B performs a public consistency check as explained
in Section 5.2.4 using the Diffie-Hellman verification algorithm DDHvVF. If C' is not con-
sistent then B returns a random message, as in the alternative (but equivalent) decryption
algorithm (Section 5.2.3) of the original TBE scheme. Otherwise, if the ciphertext is con-

1
sistent adversary B computes the session key by Equation (4) as K « ( C%g:g )= and
1 2

returns M « E - K~!. This shows that as long as ¢ # ¢* the simulation of the decryption
queries is always perfect, i.e. the output of oracle DEC(C, t) is identically distributed as
the output of TBE.Dec(sk,C, t).

Guess Stage A returns two distinct messages My, M7 of equal length. Adversary B picks
a random bit b and constructs the challenge ciphertext C* = (Cf,C5, D3, D5, E*) for
message M, as follows:

(CT=g1" G5 =g5°, Di = (g1")", D3 =(95°)% E" = Mp-w)

By Equation (3), C* is always consistent with target tag t*. If w = 2" 7"2, then £ = M,-w
is indeed a valid ciphertext of message M and tag t* under the public key TBE. On the
other hand, when w is uniform and independent in G then £ = w - M} is independent of
b in the adversary’s view.

Adversary A is run with challenge ciphertext C* answering to its decryption queries as in
the find stage.

Eventually, A outputs a guess b’ € {0,1}. Algorithm B concludes its own game by out-
putting a guess as follows: If b = &’ then B outputs 1 meaning w = 2772, Otherwise, it
outputs 0 meaning that w is random.

This completes the description of adversary B. We now analyze B’s success in breaking the
decisional linear problem.
When the value w input by B equals to w = 2772, then A’s view is identical to its view

in a real attack game and therefore A must satisfy |Pr[b = b'] — 1/2| > Advfgg;ﬁg'cca(k) On

the other hand, when w is uniform in G then Pr[b = '] = 1/2. Therefore Adv{'y dinggy >

‘( + Adv g.’;;ﬁg Ak )) — %‘ = Advggjg_cca(k). This proves Equation (2) and concludes

the proof.

C Proof of Theorem 6.1

The proof is similar to that of Theorem 5.2. We point out the differences.

Adversary B inputs an instance of the decision linear problem, i.e. B inputs the values
(1*,G, g1, 92, 2, 91", g5, w). Furthermore, B inputs the description of a target collision resistant
hash function tcr. B’s goal is to determine if w = 2"7"2 or if w is a random group element or
to find a collision in the hash function.
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In the beginning of the simulation adversary B computes the target tag itself by setting
t* = H(gy', 95%). Depending on ¢* the public key is computed as in the proof of Theorem 5.2.
The challenge ciphertext ¢* is computed as ¢* = (Cf,C5, D5, D3) — (91", 952, (97"), (952)°2),
and the target key as K* = w. With the same arguement as in the proof of Theorem 5.2 it can
be shown that ¢ is always consistent with target tag t* = ter(Cy,C5) and when w = 2" 772,
then K* = w is a correct key of ciphertext c*.

Adversary B runs A(pk, K*,c*) answering to A’s decryption queries as follows:
Let ¢ = (C1,C4, D1, D32) be a KEM ciphertext queried to the decapsulation oracle and let t =
ter(Cy, Cq) be its corresponding tag. Assume the ciphertext is consistent with tag ¢, otherwise
B returns a random key K. Now adversary B has to distinguish three cases:

Case 1: t # t*. Computation of the key K can be simulated as in the proof of Theorem 5.2.

Case 2: t = t* and (C1,Cy) # (CF, Cax). In this case B has found a collision in the hash func-
tion tcr, i.e. we have ter(Cy, Cy) = ter(C5, C3) for distinet inputs to the hash function.®

Case 3: t = t* and (C},C2) = (Cf,C3). Then ciphertext is consistent with tag ¢* if and only
if D1 = D} and D = D; (this is since for fixed C}, C and ¢t and assuming the ciphertext
is consistent with ¢, the values D;, Dy are uniquely defined). Then we have ¢ = ¢* and B
returns | since in this case A queried for the target ciphertext c*.

Note that this perfectly simulates the view of adversary A as in the real experiment.

The probability that B finds a collision in the hash function ter is Advig, (k). Assume
there were no hash collision found by B. When the value w input by H equals to w = 2”772,
then A’s view is identical to its view in a real attack game and therefore A must satisfy | Pr[b =
b'—-1/2| > Adv%ﬂm}iff‘cca(k). On the other hand, when w is uniform in G then Pr[b = b'] = 1/2.
From the above we summarize that the success probability of B breaking the decisional linear
assumption is bounded as as follows:

ap-dlin em~ind-cca cr
AdvER (k) > Advig (k) — Advig (k) , (5)

where Advi, (k) is the security of the target collision resistant hash function.

6 Note that since (Cj,C3) = (g}, gy>) were chosen at random from the outside of the experiment this contra-
dicts the target collision resistance of tcr.
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