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Abstract: In this paper, the economically self-sufficient microgrid is planned to provide electric power
and heat demand. The combined heat and power-based microgrid needs strategic placement of
distributed generators concerning optimal size, location, and type. As fossil fuel cost and emission
depend mainly on the types of distributed generator units used in the microgrid, economic emission
dispatch is performed for an hour with a static load demand and multiple load demands over 24 h
of a day. The TOPSIS ranking approach is used as a tool to obtain the best compromise solution.
Harris Hawks Optimization (HHO) is used to solve the problem. For validation, the obtained results
in terms of cost, emission, and heat are compared with the reported results by DE and PSO, which
shows the superiority of HHO over them. The impact of renewable integration in terms of cost and
emission is also investigated. With renewable energy integration, fuel cost is reduced by 18% and
emission is reduced by 3.4% for analysis under static load demand, whereas for the multiple load
demands over 24 h, fuel cost is reduced by 14.95% and emission is reduced by 5.58%.

Keywords: microgrid; combined heat and power; economic emission dispatch; renewable integra-
tion; TOPSIS

1. Introduction

In the past decades, the attention toward microgrid (MG) operation has increased
with the integration of distributed generation (DG) units near the consumer end to fulfill
the power demand. The MG has been characterized as a small-scale, self-sustaining
cluster distribution power system architecture that combines multiple DG, combined heat
and power (CHP) units, energy storage systems (ESSs), and load, acting as a single and
controllable entity [1]. Integrating CHP units in the MG has attracted more attention with
the motivation to provide thermal energy with electric power by using the waste heat
generated during electricity generation [2]. The successful implementation of bio-inspired
evolutionary optimization techniques in solving many complex engineering problems has
attracted researchers to apply different optimization algorithms to solve the load dispatch
problems using several test cases of power systems.

The combined heat and power dispatch (CHPED) problem has been realized using
a real coded genetic algorithm [3], improved group search algorithm [4], oppositional
teaching-learning based optimization [5], modified particle swarm optimization (PSO) [6],
self-regulating PSO [7], cuckoo search algorithm (CSA) [8], gravitational search algo-
rithm [9], exchange market algorithm [10], group search algorithm [11], and grey wolf
optimization (GWO) [12] using different test cases. The demand-side management and
the optimal operational problem of the MG were studied using a hybrid genetic algo-
rithm (GA) and artificial bee colony (ABC) algorithm. Here, the objective is to minimize
overall running costs of the MG, demand-side management costs, and costs due to load
shifting [13]. A hybrid artificial neural network (ANN) and PSO model were used to
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solve the biomass gasification plant (BGP) problem. This model was used to estimate the
amount of biomass that was used to produce the required syngas, which is needed to
meet the energy demand [14]. To enhance power exchange, the two-round fuzzy-based
speed (TRFS) algorithm followed Stackelberg’s game theory, and the Quasi-oppositional
Symbiotic Organism Search Algorithm was used in a multi-MG environment to study the
power exchange problem [15].

The power generating units using fossil fuels emit pollutant gases in the environment.
These environmental concerns have pushed toward the integration of DGs based on clean
and renewable resources. At the same time, emission constraints have also been consid-
ered in the scheduling problem. The economic dispatch and emission dispatch are single
objectives to minimize the fuel cost and emission, respectively, by determining the optimal
generation of each unit in the system while satisfying the demand load and other opera-
tional constraints. However, the results showed conflict with each other, i.e., minimizing
fuel costs increases the emissions and vice-versa. Therefore, a multiobjective approach has
been used to deal with these two conflicting objectives in the combined CHP economic
and emission dispatch (CHPEED) problem. The CHPEED multi-objective problem has
been solved using numerical polynomial homotopy continuation (NPHC) [16], the normal
boundary intersection method [17], time-varying acceleration PSO [18], GWO [19], and
multiverse optimization [20].

Integrating renewable-based DG such as wind and solar power with conventional
units reduced environmental emissions. In Ref. [21], a comparative analysis was conducted
to solve the power dispatch problem using different BI optimization methods for various
test systems with the integration of wind units. The wind and fuel cell unit were integrated
with the thermal plant to analyze economic dispatch and the MG power dispatch problem
using CSA [22]. The solar and wind unit was incorporated with the thermal plant to
investigate the CHPED using the squirrel search algorithm [23]. The impact on cost and
emission with the integration of renewable-based DG was analyzed using an equilibrium
optimizer (EO) [24]. The EED problem in a wind power integrated system was analyzed
to estimate the impact of carbon trading prices on the reduction in carbon emission and
enhancing the efficiency of power generation efficiency improvements [25]. To achieve the
desired scenario of zero greenhouse gas emissions, the techno-economic feasibility analysis
was carried out under different scenarios of the combined usage of renewable-based DG
and storage systems [26]. The scheduling problem of MG having DG and wind units under
their respective limits was performed using the manta ray foraging algorithm (MRFO). The
effect on the cost due to the integration of solar power and energy storage systems was also
examined [27]. The MG was reconfigured to analyze the demand response program using
PSO to reduce the conventional DGs’ fuel cost and the cost of acquiring electricity from the
grid. The point estimate method was used to simulate the uncertainty of RESs, while the
uncertainty due to other parameters was ignored [28]. A multiobjective thermal unit-based
economic dispatch was carried out using binary and continuous PSO algorithms in Ref. [29].
To study the performance of MG under six distinct scenarios, the modified binary PSO
was used to solve the load dispatch problem. The uncertainty of RESs, demand, and the
market price was considered to neglect the system’s power loss and spinning reserve [30].
The uncertainty associated with wind power plants due to uncertain wind velocity can be
modeled using penalty and reserve cost to represent their under- and overestimation of
wind power, respectively [31]. In Ref. [32], DE and PSO were used to analyze the planning
problem in CHP-based MG. Here, the loss-sensitive approach was used to select the bus on
a 14-bus MG and to determine the optimal size of DGs using PSO for minimum loss in the
system, and CHPEED was further carried out using DE and PSO.

Wolpert and Macready, in the year 1997, proposed a No free lunch theorem, which
states that no single algorithm can guarantee to solve all types of optimization problems [33].
Harris Hawks Optimization (HHO) is a swarm intelligence-based optimization approach;
its analytical mode takes care of distinct foraging strategies such as tracing, sieging, and
surprise attacks during the optimization process [34]. HHO has been successfully applied
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for various real-world problems such as in cost management and the operation of multi-
source-based microgrids [35], and in relay coordination problems [36]. In this paper, HHO
was implemented for the solution of DG placement planning and optimum generation
scheduling of a CHP-based MG.

The main contribution is as follows:

• The HHO algorithm was implemented to analyze its effectiveness in solving the DG
placement and the load dispatch problem for an MG.

• Selection of optimal size and location of DGs for a 14-bus RDS.
• Load dispatch was conducted under two different scenarios (i.e., with and without

renewable energy for minimization of cost and minimization of emission.
• TOPSIS was implemented to obtain the best-compromised solution (BCS).

This paper is organized as follows: Section 2 contains the problem formulation that
combines the modeling of different types of DG units, the formulation of the CHPEED
problem, and operational constraints. The concept behind the HHO algorithm is presented
in Section 3. Section 4 deals with the description of test cases, simulation results, and
discussion. Finally, concluding remarks are discussed in Section 5.

2. Problem Formulation

This paper focuses on CHPEED-based optimal generation scheduling for effective
energy management planning in MG. Here, the objective is to minimize the cost and
emission due to on-site generation and the CHP system. Therefore, optimal siting and
sizing of DG units are essential in this context. Its formulations are added with the CHPEED
problem as below.

2.1. Optimal Placement of DG

The DG unit was placed in MG to minimize the power loss as [32]:

Minimum (Pl) = ∑Ng
i=1 Pi − Pd (1)

where Pl is the power loss in the system, Pd is the power demand, Pi is the power output of
ith DG unit, and Ng is the number of DG units in MG.

It is subject to the following constraints [32]:

Vmin ≤ |Vi| ≤ Vmax (2)

where Vi is the voltage at the ith bus, with minimum voltage Vmin= 0.95 p.u. and maximum
voltage Vmax = 1.05 p.u.

Pmin
i ≤ Pi ≤ Pmax

i (3)

where Pmin
i and Pmax

i are the minimum and maximum power output of the ith DG unit, respectively.

2.2. Economic Dispatch

The total operational cost of all committed DGs units expressed as [22]

f1 = FT
DG + FT

WPP + FT
FC (4)

where f1 is the cost function;FT
DG, FT

WPP, and FT
FC are the costs of conventional thermal

generators, wind power plant (WPP), and fuel cell (FC) units over a period of time T,
respectively [22,27].

2.2.1. Modeling of Conventional Thermal Generators

The fuel cost of conventional thermal generators is expressed as [32]

FT
DG = ∑T

t=1 ∑Ng
i=1

(
ai·
(

Pt
i
)2

+ bi·Pt
i + ci

)
(5)
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where ai, bi, and ci are the fuel cost coefficient of the ith DG unit. Pt
i is the power output of

the ith DG unit at the tth interval of time and Ng is the number of DG units [32].

2.2.2. Modeling of Wind Power Plant

As the power generation of a wind power plant (WPP) is governed by uncertain
wind velocity, its variable output characteristics are used to compute the cost of wind
power. The cost of wind power generation includes the cost due to the uncertainty in it,
expressed as [21,22,32].

FT
WPP = ∑T

t=1 ∑Nw
j=1 Ct

j

(
Pt

wj

)
(6)

where Nw is the number of WPP units and

Ct
j

(
Pt

wj

)
= βwj P

t
wj

+ kp

(
Pt

wj, av
− Pt

wj

)
+ kr

(
Pt

wj
− Pt

wj, av

)
(7)

where Pt
wj

and Pt
wj, av

are the scheduled output and available wind power of the jth unit

at the tth interval of time, respectively; βwj are the maintenance and operating cost in
USD/kW; kp and kr are the penalty cost (underestimation) coefficient and reserve cost
(overestimation) of the wind power plant, respectively [21,31]. These penalty costs and
reserve costs of the wind power plant are, respectively, represented as [21,31]:

kp

(
Pt

wj,av
− Pt

wj

)
= kp

∫ Pwr

Pt
wj

(
Pt

w − Pt
wj

)
fw(Pw)dPw (8)

kr

(
Pt

wj
− Pt

wj,av

)
= kr

∫ Pt
wj

0

(
Pt

wj
− Pt

w

)
fw(Pw)dPw (9)

where Pwr is the rated output of wind power and Pt
w is the output power of a wind power

plant at the tth time interval, determined as [21,31]:

Pt
w =


Pwr ×

(vt−vcin)
(vr−vcin)

kW, ; vcin ≤ vt ≤ vr

Pwr kW, ; vr ≤ vt ≤ vco
0, ; vt ≤ vcin and vt > vco

(10)

where vt is the wind velocity at the tth time in m/s; vcin,, vco, and vr are the cut-in velocity,
cut-out velocity, and rated velocity in m/s, respectively.

To determine the penalty and reserve costs, it is necessary to select the probability
distribution function (pd f ) for wind power output. The uncertainty and irregular nature of
wind speed closely follow the Weibull distribution and pd f given as [21,31]:

pd f (v, k, c) =
k
c

(v
c

)k−1
exp
(
−
(v

c

)k
)

(11)

where k and c are pd f parameters referred to as the shape factor and scale factor, respectively.
The corresponding cumulative distribution function (cd f ) is given as [21,31]

cd f (v, k, c) = 1− exp
(
−
(v

c

)k
)

(12)

The probability of wind power is calculated as [21,31]

fw(Pw)

{
Pt

w = Pwr ×
(vt – vcin)
(vr – vcin)

}
= pd f (Pw) =

klvcin
c

(
(1+ρl)vcin

c

)k−1
exp
(
−
(
(1+ρl)vcin

c

)k
)

(13)

where

ρ =
Pw

Pwr

, and l =
(vr − vcin)

vcin
(14)
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fw(Pw)
{

Pt
w = Pwr

}
= cd f (vco) + (1− cd f (vr)) = exp

(
−
(vr

c

)k
)
− exp

(
−
(vco

c

)k
)

(15)

fw(Pw)
{

Pt
w = 0

}
= cd f (vcin) + (1− cd f (vco)) = 1− exp

(
−
( vcin

c
)k
)
+ exp

(
−
( vco

c
)k
)

(16)

2.2.3. Modeling of Fuel-Cell Unit

The cost of an FC unit includes the cost of fuel and the efficiency of the fuel to generate
electricity expressed as [22]:

FT
FC = ∑T

t=1

(
βnatural ∑NFC

i=1

Pt
FC, i

ηFC, i

)
(17)

where βnatural is the operation and maintenance cost of FC in USD/kW; ηFC, i and Pt
FC, i are

the efficiency and output power at the tth time of the ith FC unit, respectively [22].

2.3. Emission Dispatch

The emission released due to the burning of fossil fuel in the thermal power plants is
expressed as follows [21,32]:

f2 = ∑Ng
i=1 Et

i
(

Pt
i
)
= ∑Ng

i=1

(
αi·
(

Pt
i
)2

+ βi·Pt
i + γi

)
(18)

where f2 is total emission output;αi, βi, and γi are the emission cost coefficient of the ith

DG unit [31].

2.4. Formulation of Multiobjective CHPEED Problem

The multiobjective cost function of the CHPEED problem is given as [32]:

minimize (F) = w ∗ f1 + (1− w) ∗ f2 ∗ P f n (19)

where F is the total cost, P f n is the price penalty factor, w is the weighting factor, and the
P f n is the ratio of fuel to the emission cost and is evaluated as:

P f ni =

(
ai·
(

Pmax
i
)2

+ bi·Pmax
i + ci

)
(

αi·
(

Pmax
i
)2

+ βi·Pmax
i + γi

) (20)

Equation (19) is minimized and subjected to operational constraints as follows [22,32].

2.5. Constraints

Total Power generation must be equal to sum of power demand and transmission loss.
It is expressed as:

∑Ng
i=1 Pt

i = Pt
d + Pt

l (21)

where Pt
l is the power loss and Pt

d is the power demand at the tth interval of time. Pl is
evaluated as (22) [32]:

Pt
l = ∑Ng

i=1 ∑Ng
j=1 Pt

i ·Bij·Pt
j + ∑Ng

i=1 B0i·Pt
i + B00 (22)

where Bij, B0i, and B00 are the loss coefficients.
Power generated by individual generator must vary within their minimum and maxi-

mum operating limit. It is expressed as:

Pmin
i ≤ Pt

i ≤ Pmax
i (23)

Pmin
w,j ≤ Pt

w,j ≤ Pmax
w,j (24)
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Pmin
FC,i ≤ Pt

FC, i ≤ Pmax
FC,i (25)

where Pmin
FC,i and Pmin

w,j are the minimum power output of FC and WPP units, respectively;
Pmax

w,j and Pmax
FC,i are the maximum power output of WPP and FC units, respectively.

The change in power generating unit between two consecutive times is limited by up
and down ramp limits, respectively, as follows [32]:

Pt
i − Pt−1

i ≤ URi (26)

Pt−1
i − Pt

i ≤ DRi (27)

where URi and DRi are up and down ramp limits of the ith generating units, respectively [32].

HR = ∑Ng
i=1 θi·Pt

i (28)

where HR is the total heat output and θi is the heat-to-power ratio of the ith DG unit [32].

∑Ng
i=1 θi·Pt

i ≥ HD (29)

where HD is the total heat demand.

2.6. TOPSIS

The technique of order preferences by the simulation to ideal solution (TOPSIS),
initially proposed by Hwang and Yoon in 1981 [37], is a method to determine the optimal
solution having the closest distance from the positive ideal solution and farthest distance
from the negative ideal solution. The steps of the TOPSIS method are as follows:

Step I: Construct a decision matrix R as:

R =
[
xij
]
, i = 1, . . . . . . , m; j = 1, . . . . . . , n. (30)

where xij is the value of the jth attribute of the ith alternative.
Step II: Normalize the decision matrix R as:

rij =
xij√

∑m
j=1 x2

ij

, i = 1, . . . . . . , m; j = 1, . . . . . . , n. (31)

Step III: Determine the weighted decision matrix as follows:

vij = wj × rij, i = 1, . . . . . . , m; j = 1, . . . . . . , n. (32)

Step IV: Determine the positive and negative ideal solution computed as follows:

A+ =
{

v+1 , v+2 , v+3 , . . . . . . , v+n
}

(33)

where
v+j =

{(
max(vij), i f j ∈ J1

)
and

(
min(vij), i f j ∈ J2

)}
(34)

A− =
{

v−1 , v−2 , v−3 , . . . . . . , v−n
}

(35)

where
v−j =

{(
min(vij), i f j ∈ J1

)
and

(
max(vij), i f j ∈ J2

)}
(36)

Step V: Determine the separation distance of each alternative from positive and nega-
tive ideal solutions computed as follows:

D+
i =

√
∑n

j=1

(
v+j − vij

)2
, i = 1, . . . . . . , m; j = 1, . . . . . . , n (37)
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D−i =

√
∑n

j=1

(
v−j − vij

)2
, i = 1, . . . . . . , m; j = 1, . . . . . . , n (38)

Step VI: Compute the relative closeness (RC) of each alternative as:

RCi =
D−i

D−i + D+
i

, i = 1, . . . . . . , m; (39)

An RC close to one indicates the superiority of the alternative.

3. Harris Hawks Optimization

Harris Hawks Optimization (HHO) is a population-based algorithm inspired by the
foraging behavior of Harris Hawks, proposed by Heidari et al. in 2019 [34]. The analytical
model of HHO simulates different foraging strategies such as tracing, sieging, and surprise
attacks to capture prey during optimization. The cooperative foraging behavior of Harris
Hawks is as follows:

• A prey for the Harris hawk is a rabbit having great escaping energy; therefore, several
hawks cooperatively attack to prey simultaneously from different directions.

• This attack can be completed quickly, but sometimes considering the escape ability
and behavior of the prey, it takes a few short-length, quick dives nearby the prey.

• The different phase of chasing a prey depends on the prey’s escaping pattern with
other dynamic conditions.

• The switching strategy occurs when the best hawk (leader) stops and becomes lost on
the hunt, and one of the other group members will pursue the chase.

• The Harris hawk can switch between these phases to confuse the prey, which leads to
their exhaustion, and increases its vulnerability.

• Furthermore, by confusing the escaping prey, it cannot recover its defensive abilities
and, in the end, it cannot escape from the team and encounter one of the hawks, which
is often the most powerful and experienced, easily grabs the tired prey, and shares it
with another group member.

Different phases of HHO are shown in Figure 1 [34].
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3.1. Exploration Stage

The hawks perch randomly to wait, observe, and monitor at some location to find
prey based on two strategies. These strategies are mathematically modeled as:

X(t + 1) =
{

Xrand(t)− r1 ∗ |Xrand(t)− 2 ∗ r2 ∗ X(t)|, q ≥ 0.5
Xrabbit(t)− Xm(t)− r3 ∗ (LB + r4(UB− LB)), q < 0.5

(40)

where X(t + 1) is the position in the (t + 1)th iteration; Xrabbit is the position of the rabbit
(prey); q, r1, r2, r3, andr4 are random numbers in the interval [0, 1]. UB and LB are
the upper and lower bounds, respectively. Xm(t) is the mean position of the population
evaluated as:

Xm =
1
N ∑N

i=1 Xi(t) (41)

where N is the population size, and Xi(t) is the position of the ith individual in the tth iteration.

3.2. Transition from Exploration to Exploitation

In HHO, the rabbit’s escaping energy ‘E’ is used to transit between exploration and
exploitation. The ‘E’ decreases with an increase in the iterations and is evaluated as:

E = 2E0

(
1 –

t
T

)
(42)

where E0 is the initial rabbit’s escaping energy lying in the interval [−1, 1]; t and T represent
the current and maximum number of iterations, respectively. As the iteration increases,
E decreases from [−2, 2] to 0. The exploration stage is used for |E| ≥ 1, and for |E| < 1,
the exploitation is carried out to search the prey.

3.3. Exploitation Stage

In the exploitation phase, four different strategies were adopted, and they were
switched between by using escape energy ‘E’; a random number r lies in the interval [0, 1],
representing successful prey escape. If r < 0.5, the prey escapes successfully, while r > 0.5
means the unsuccessful escape of the prey.

3.3.1. Soft Besiege

For soft besiege, |E| ≥ 0.5 and r ≥ 0.5 represent that the prey has enough energy to
escape by jumping. Hence, hawks will hunt via a soft besiege strategy modeled as:

X(t + 1) = ∆X(t)− E|J ∗ Xrabbit(t)− X(t)| (43)

where ∆X(t) represents the differences between the position of rabbits and current individ-
uals, as given in (45). J represents the strength of the rabbit for randomly jumping during
the escape and is evaluated with the random number r5 as:

J = 2(1− r5) (44)

∆X(t) = Xrabbit(t)− X(t) (45)

3.3.2. Hard Besiege

For hard besiege, |E| < 0.5 and r ≥ 0.5 represent that the prey’s energy has exhausted,
and hawks will hunt via a hard besiege strategy modeled as:

X(t + 1) = Xrabbit(t)− E|∆X(t)| (46)
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3.3.3. Soft Besiege with Progressive Rapid Dives

For soft besiege with progressive rapid dives, |E| ≥ 0.5 and r < 0.5 represent that
the prey has enough energy. Hence, hawks will hunt via soft besiege with the progressive
rapid dives strategy modeled as:

Y = Xrabbit(t)− E|J ∗ Xrabbit(t)− X(t)| (47)

Z = Y + S× LF(D) (48)

where D is the dimension of the problem, S is a random vector of size 1 ∗ D, and LF is the
levy distribution defined as

LF(x) = 0.01× µ× σ

|ϑ|1/β
, σ =

 Γ(1 + β)× sin
(

πβ
2

)
Γ
(

1+β
2

)
× β× 2(

β−1
2 )

1/β

(49)

where µ and ϑ are random values that are between 0 and 1. β is the constant equal to 1.5.
The whole process at this stage is a mathematical model as:

X(t + 1) =
{

Y i f F(Y) < F(X(t))
Z i f F(Z) < F(X(t))

(50)

3.3.4. Hard Besiege with Progressive Rapid Dives

For hard besiege with progressive rapid dives, |E| < 0.5 and r < 0.5 represent that the
prey loses its energy and becomes exhausted, and hawks will hunt via hard besiege with
the progressive rapid dives strategy modeled as:

X(t + 1) =
{

Y i f F(Y) < F(X(t))
Z i f F(Z) < F(X(t))

(51)

where
Y = Xrabbit(t)− E|J ∗ Xrabbit(t)− X(t)| (52)

Z = Y + S× LF(D) (53)

The flow chart of HHO is shown in Figure 2.
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4. Simulation Results
4.1. Description of Test Cases

The HHO algorithm was applied to find out the optimal size, its location of DG, and
then the solution of the CHPEED problem in MATLAB R2016a, and it was executed on
a CPU with an i5 processor and 4 GB RAM with a speed of 2.50 GHz. The parameter of
HHO was considered, as the population size was 100 with a maximum iteration of 1000.

For this analysis, a hypothetical MG of a 14-bus RDS having 14 buses and 13 branches
was considered, as shown in Figure 3. The line and load data are shown in Table 1 [32]. The
utility providing the spinning reserve is represented as a virtual generator and connected
to slack bus 1.
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Table 1. Line and load data of 14-bus RDS.

Bus No. Start Bus End Bus R X Real Reactive

1 0 0 0 0 0 0
2 1 2 0.0133 0.042 20 6
3 2 3 0.0194 0.059 85 27
4 3 4 0.0312 0.16 40 1
5 2 5 0.023 0.12 20 6
6 5 6 0.023 0.12 20 6
7 6 7 0.0193 0.059 76 16
8 6 8 0.032 0.084 10 30
9 7 9 0.034 0.17 61 16

10 2 10 0.016 0.042 12 75
11 10 11 0.193 0.059 10 90
12 11 12 0.067 0.17 16 61
13 12 13 0.04 0.1 90 59
14 11 14 0.05 0.15 35 61

The total static load demand was considered as (495 + j454) kVA. The initial real power
loss without placement of DG units in RDS was 0.1995 kW with a minimum voltage of
0.9992 p.u. The simulation results for the placement of 4 DG units are given in Table 2.
The optimal size of the 4 DGs with their best-suited location was obtained as 90.3178 kW
(at bus 3), 187.9 kW (at bus 7), 114.9414 kW (at bus 13), and 44.8314 kW (at bus 14). The
system power loss was reduced by 34.99% with a minimum voltage of 0.9995 p.u.

Table 2. Simulation results for 14-bus RDS.

Parameters Without DGs With 4 DGs

Power Loss (kW) 0.1995 0.1297
Loss Reduction (%) - 34.99

DGs Size (kW) /Location - 90.3178/3, 187.9/7,
114.9414/13, 44.8314/14

Total DG Size (kW) - 437.9906
Vmin (pu) 0.9992 0.9995
Vmax (pu) 0.9998 0.9999

Analysis of the CHPEED was carried out for static load demand (SCHPEED)and for
the multiple loads(MCHPEED) over 24 hr of a day with the following assumptions:

(i) A two-diesel generator (Dg) with the sizes of 200 kW and 100 kW was selected and
placed on buses 7 and 13, respectively. Similarly, the two microturbines (MTs) were
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selected with the sizes of 80 kW and 30 kW and placed on buses 3 and 14, respectively.
A Dg with the size of 500 kW was selected as a virtual generator to cover the peak
demand of 495 kW.

(ii) To analyze the impact of renewable energy integration(REI), the Dg of capacity 100 kW
at bus 13 was replaced by a fuel cell (FC), the MT of 30 kW of bus 14 was replaced by
a wind turbine with a capacity of 40 kW, and rest was the same as above.

The parameters of the wind turbine were considered as follows [31]:
Cut-in speed vcin = 5 m/s; cut-out speed vco = 15 m/s; rated speed vr = 45 m/s.

Weibull shape factor k = 1.5; scale factor c = 5; penalty cost coefficient kp = 5; reserve cost
coefficient kr = 5.

The operational limits, fuel cost coefficient, emission coefficient, and heat rate data
are listed in Table 3 [22,32]. For the planning of MG, the utility generator should be kept
separately for participation in tracking the electric demand, i.e., at zero slack bus injection.

Table 3. Operational limits, fuel cost coefficient, emission coefficient, and heat rate data.

Type Size (kW) Pmin
i

(kW)
Pmax

i
(kW) ai bi ci αi βi γi

Heat Rate
(kj/kWh)

Dg 500 0.00 500 10.193 105.18 62.56 26.55 −16.1836 7.0508 10,314
Dg 200 40 200 2.035 60.28 44.0 14.4296 −64.1535 130.4094 11,041
MT 80 16 80 0.5768 57.783 −133.0915 3.0358 −57.3403 311.5728 11,373
Dg 100 20 100 1.1825 65.34 44.0 19.38 −176.6946 821.6573 10,581
MT 30 6.0 30 0.338 89.1476 −547.619 1.0346 −60.384 943.1898 12,186
FC 100 0 100 0 0.07 0 0 0 0 0

WPP 40 0 40 0 0.22 0 0 0 0 0

The B-loss coefficients are as follows [32]:

B1 = 0.001 ∗


0.4355− 0.1694 0.1482− 0.2684− 0.0925
−0.1694 0.2366− 0.0247− 0.0061− 0.0689
0.1482 − 0.0247 0.1636− 0.2391− 0.1046
−0.2684− 0.0061− 0.2391 0.6517 0.1987
−0.0925− 0.0689− 0.1046 0.1987 0.1864


B2 = 0.1 ∗ [−0.0326 − 0.0314 0.0057 − 0.0018 0.0050]

B3 = [0.0014];

4.2. Discussion
4.2.1. Best Cost Solution

For the SCHPEED problem, as in Table 4, the best cost solution of HHO35.8483 USD/h
is found to be better as compared to the reported result by DE [32]: 35.8974 USD/h and
PSO [32]: 35.897USD/h. Table 5 shows that for SCHPEED with REI, the operational cost
is found to be 29.3180 USD/h, which is lower as compared to SCHPEED by 18%, and all
operational constraints (21), (23)–(25) are also satisfied.

Table 4. Generation schedule and comparative results for SCHPEED with demands of 338 kW.

Scenarios Methods P1(Dg) P2(Dg) P3(MT) P4(Dg) P5(MT) Fuel Cost
(USD/h)

Emission
(g/kWh)

Heat
(kWh)

Loss
(kW)

Best Cost
HHO 0.00 157.09 80.00 73.1552 30.00 35.8483 45.4856 347.5639 2.2452
DE [32] 0.00 166.30 80.00 64.30 30.00 35.8974 45.8467 348.048 —
PSO [32] 0.00 166.68 80.00 63.89 30.00 35.897 45.870 348.000 —

Best
Emission

HHO 0.00 168.8009 57.1848 96.0540 21.0526 36.9396 44.8121 329.3694 5.0922
DE [32] 0.00 166.50 58.30 96.10 21.50 36.851 44.820 329.790 —
PSO [32] 0.00 166.20 58.64 96.07 21.66 36.840 44.820 330.070 —

BCS
HHO 0.00 146.4312 80.00 89.92 24.7656 35.9695 45.0773 344.0685 3.1168
DE [32] 0.00 150.54 80.00 90.92 20.55 36.0720 45.020 341.7225 —
PSO [32] 0.00 150.20 80.00 89.86 21.95 36.0600 45.030 342.7200 —-

BCS: Best Compromise Solution.
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Table 5. Generation schedule and comparative results for SCHPEED with REI with demands of
338 kW.

Scenario P1(Dg) P2(Dg) P3(FC) P4(Dg) P5(WPP)
Total
Cost

(USD/h)

Fuel Cost
(USD/h)

Wind
Cost

(USD/h)

Emission
(g/kWh)

Heat
(kWh)

Loss
(kW)

Best Cost 0.00 174.8425 95.6318 33.2694 39.8741 29.3180 27.5252 1.7928 48.1604 171.1845 5.6179

Best
Emission 0.00 200.00 50.1720 100.00 0.4670 34.4114 34.2040 0.2074 43.2924 244.9725 12.6390

BCS 0.00 155.0687 92.0436 88.6900 9.1448 30.3835 29.9638 0.4197 44.3393 198.7907 6.9470

For the MCHPEED problem, the best cost solution is found to be USD 1203.0999, while
USD 1023.3403 is for MCHPEED with REI as in Table 6. Their generation schedules are
presented in Figures 4 and 5, respectively.

Table 6. Comparative results for MCHPEED and MCHPEED with REI.

Scenario
MCHPEED MCHPEED with REI

Total Cost
(USD)

Emission
(g/kW)

Heat
(kW)

Loss
(kW)

Total Cost
(USD)

Fuel Cost
(USD)

Wind Cost
(USD)

Emission
(g/kW)

Heat
(kW)

Loss
(kW)

Min.Cost 1203.0999 1089.9256 15,587.8723 203.5641 1023.3403 1003.2465 20.0938 1085.8532 15,528.2799 167.1917
Min. Emis 1250.0066 1068.1567 15,918.5405 309.1087 1384.1995 1361.902 22.2975 1008.5490 17,674.5642 555.1573

BCS 1211.5507 1077.6050 15,588.9110 212.6814 1094.9539 1070.9602 23.9937 1050.8518 15,579.2478 253.8731
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4.2.2. Best Emission Solution

The best emission solution, 44.8121 g/kWh, was obtained by HHO as in Table 4. It
was found to be lower than 44.820 g/kWh reported using DE [32] and 44.820 g/kWh by
PSO [32], which was further reduced to 43.2924 g/kWh for SCHPEED with REI as in Table 5.
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For the MCHPEED problem, the best emission solution was found to be 1068.1567 g/kW
and 5.58% lower than1008.5490 g/kW for MCHPEED with REI as in Table 6. Figures 6 and 7
represent the generation schedule corresponding to the best emission solution.
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4.2.3. Best Compromise Solution

PPF is the weighted sum method to convert a multiobjective function into a single
objective function. TOPSIS is used as a tool to rank the solution on the basis of the distance
between positive and negative distance from the ideal solution. Tables 7 and 8 show the
top ten optimal front solutions for SCHPEED and MCHPEED problems. The elite solution
was selected on the basis of top rank, and the corresponding Pareto fronts are shown in
Figure 8, and Figure 9, respectively. Table 4 shows that for SCHPEED, the BCS in terms of
the fuel cost of 35.9695 USD/h and the emission of 45.0773 g/kWh was also found to be
superior to the reported results by DE [32] and PSO [32]. Considering Table 5, the BCS of
30.3835 USD/h and 44.3393 g/kWh was found to be lower due to REI with a topsis rank of
0.7886 as in Table 7.
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Table 7. Top ten Pareto optimal solution for SCHPEED.

S. No.
SCHPEED SCHPEED with REI

Fuel Cost
(USD/h)

Emission
(g/kWh) Mu1 Mu2 TOPSIS Total Cost

(USD/h)
Emission
(g/kWh) Mu1 Mu2 TOPSIS

1 35.9695 45.0773 0.002 0.0079 0.796 30.3835 44.3393 0.0111 0.0415 0.7886
2 36.0148 45.0389 0.002 0.0077 0.7941 30.5396 44.2242 0.0117 0.041 0.7784
3 35.8766 45.1944 0.0026 0.0083 0.7613 30.0147 45.1952 0.014 0.0407 0.7433
4 36.1974 44.96 0.0028 0.0067 0.7039 30.2459 45.2667 0.0153 0.0388 0.7172
5 35.8483 45.4856 0.0046 0.0083 0.6436 30.3843 45.336 0.0163 0.0376 0.698
6 36.4597 44.8753 0.0046 0.0056 0.5464 31.5101 43.9487 0.0182 0.0368 0.6697
7 36.6261 44.8394 0.0059 0.0051 0.4633 31.4086 44.444 0.0185 0.0349 0.6531
8 36.7405 44.8232 0.0068 0.0048 0.4177 31.8543 44.1804 0.0213 0.0339 0.6146
9 36.8258 44.8157 0.0074 0.0047 0.3901 29.6449 47.2935 0.0272 0.0388 0.5877
10 36.9396 44.8121 0.0083 0.0047 0.3614 29.318 48.1604 0.0329 0.041 0.5542

Table 8. Top ten optimal front solutions.

S. No.
MCHPEED MCHPEED with REI

Fuel Cost
(USD)

Emission
(g/kW) Mu1 Mu2 TOPSIS Total Cost

(USD)
Emission

(g/kW) Mu1 Mu2 TOPSIS

1 1211.551 1077.605 0.0342 0.1084 0.7602 1094.954 1050.852 0.1551 0.5313 0.7741
2 1216.566 1072.838 0.0381 0.1015 0.7268 1137.664 1039.921 0.2188 0.4576 0.6765
3 1216.921 1074.578 0.0406 0.0988 0.709 1175.755 1033.977 0.2841 0.3924 0.58
4 1203.1 1089.926 0.0561 0.1241 0.6888 1199.708 1030.557 0.3263 0.3522 0.5191
5 1221.714 1073.912 0.0509 0.0891 0.6365 1228.073 1028.583 0.3772 0.3045 0.4467
6 1222.0187 1082.3297 0.044 0.0578 0.5677 1260.982 1023.543 0.4362 0.2537 0.3677
7 1223.182 1087.8793 0.0522 0.0542 0.5093 1280.761 1022.409 0.4721 0.2236 0.3214
8 1227.4204 1086.4162 0.056 0.0471 0.4568 1306.819 1015.037 0.519 0.1947 0.2728
9 1230.0698 1089.8465 0.0635 0.0421 0.3983 1347.69 1013.701 0.5934 0.1521 0.204
10 1250.007 1068.157 0.1173 0.057 0.3272 1384.2 1008.549 0.6598 0.1465 0.183
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For the MCHPEED problem, the BCS with the highest rank of 0.7602 (Table 8) in terms
of cost and emission was found to be USD 1211.5507 and1077.6050 g/KW, respectively.



Fluids 2022, 7, 248 16 of 19

In the case of MCHPEED with REI, total cost refers to the sum of operational costs due
to fossil fuel and renewable energy resources or both. Here, the total cost of USD 1094.9539
and the emission of 1050.8518 g/kW achieved the highest topsis rank of 0.7741, considered
as BCS, as shown in Table 8. Here, it was observed that the operational cost was reduced
by USD 113.5980 (9.4%), and the emitted emission was reduced by 26.7532 g/kW (2.5%)
due to REI. The comparison of Pareto fronts is shown in Figure 8.

4.2.4. Heat Output

As shown in Table 9, considering the hourly load demand and corresponding heat
output, it was observed that heat outputs were sensitive to changes in load demand. For
the MCHPEED problem, heat output was seen to be increasing and fulfilled by energy
resources with an increase in load demand.

Table 9. Optimal generation scheduling for MCHPEED under BCS.

Hr. P1(Dg) P2(Dg) P3(MT) P4(Dg) P5(MT) Load (kW) Heat (kW)

1 0.1742 43.8226 18.95 28.9484 13.7722 105 107.6286

2 0.0439 100.2222 20.8996 57.2967 15.1846 190 181.4153

3 7.9917 106.5203 41.9026 82.8549 15.4974 250 257.7412

4 34.6496 86.6041 79.7197 95.8914 16.1365 310 375.0671

5 79.0714 122.3964 76.6417 98.9171 25.9711 400 532.2534

6 111.5772 186.8943 79.5952 91.3479 24.9627 490 666.1347

7 146.7594 199.9927 78.8478 99.8593 29.8921 550 780.8991

8 256.9116 199.6686 77.2061 99.9982 29.1331 650 1061.2783

9 300.363 199.9386 79.9998 99.7264 28.9461 690 1177.0124

10 364.7395 199.1256 78.1749 99.9798 28.6631 740 1339.5097

11 377.7434 200 79.9864 98.3194 27.7766 750 1373.6715

12 353.816 197.5439 79.9687 100 27.3565 730 1310.6095

13 292.299 196.903 78.4594 99.9998 30 680 1153.3381

14 232.1257 199.7308 80 99.892 28.6524 630 1000.5748

15 183.5236 198.0663 78.5526 97.0593 29.4762 580 870.8251

16 173.3918 175.3966 64.5036 99.9331 27.4251 535 805.1119

17 137.2064 147.8064 78.3677 79.0651 21.3752 460 682.8948

18 99.7382 139.1221 67.8092 85.6515 20.4403 410 567.8843

19 59.8613 75.3932 79.433 89.8884 17.4494 320 427.6205

20 1.3002 129.0986 56.3055 76.8063 11.8101 270 269.2425

21 6.216 92.0592 22.5511 77.3491 11.2522 205 202.8413

22 2.9803 72.9563 33.5925 52.3411 10.0549 170 172.7066

23 0 58.0973 31.3545 53.8645 8.5012 150 148.3782

24 4.6627 41.2238 27.9014 23.5275 12.9832 110 124.272

However, considering Table 10 of MCHPEED with REI, it was observed that heat
outputs remained increasing with load demand but were found to be lower as compared to
MCHPEED. It may be due to sharing the particular range of load demand by renewable
energy resources such as fuel cells and wind turbines.
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Table 10. Optimal generation scheduling for MCHPEED with REI under BCS.

Hr. P1(Dg) P2(Dg) P3(FC) P4(Dg) P5(WPP) Load (kW) Heat (kW)

1 0.4602 55.8001 0.0026 38.1092 12.2087 105 77.6358

2 0.0014 67.2099 32.6849 76.9633 16.9728 190 116.7346

3 16.6051 76.3607 49.985 97.6993 13.7738 250 183.5804

4 43.8702 95.4026 65.24 86.5622 21.4451 310 260.8134

5 2.0257 193.1514 84.1992 99.9095 31.4198 400 244.4528

6 137.9878 156.3819 94.3015 81.5604 23.9735 490 550.0218

7 172.6773 181.9743 83.4654 84.7427 33.0027 550 663.1865

8 248.3451 198.6839 88.2413 97.6099 29.5584 650 882.3438

9 339.0121 193.143 90.55 73.6115 23.326 690 1092.496

10 389.558 193.4966 93.7557 85.5281 17.9975 740 1232.578

11 372.8658 192.9266 95.0478 96.2457 27.3994 750 1197.57

12 365.0877 198.1613 72.7586 87.811 37.2745 730 1175.156

13 288.2583 183.1858 95.2879 96.5362 34.9216 680 971.5743

14 238.2183 198.1671 83.9061 83.2904 37.8205 630 844.4403

15 198.0663 199.9986 68.8349 84.5582 35.8806 580 743.4311

16 161.1864 184.6829 70.2232 89.7806 34.1974 535 639.7981

17 98.8017 154.436 88.2272 92.8929 28.9415 460 456.3623

18 33.2158 174.0753 76.4767 99.9994 33.2225 410 309.1514

19 16.428 103.6468 67.9597 97.0659 39.9701 320 205.216

20 15.2292 136.6882 29.9529 62.3144 30.3556 270 201.9077

21 0 59.1014 39.9741 90.1443 20.5677 205 120.4767

22 9.5316 78.936 2.6982 64.9587 17.4007 170 141.4918

23 1.3006 47.4008 42.5158 51.3921 8.6482 150 83.3885

24 0.2675 60.3013 12.1609 36.1635 2.3829 110 79.3222

5. Conclusions

In this paper, HHO successfully implements the planning of an MG to determine the
optimal size and location of DGs and solve SCHPEED and MCHPEED problems to fulfill
the particular load demand and a corresponding range of heat demand by different energy
resources. The impact of REI is also investigated in both cases. Fuel cell and stochastic
wind power are considered for analysis. TOPSIS is considered as a tool to obtain BCS
based on the highest satisfaction level among the conflicting objectives. While comparing
simulation results for the SCHPEED problem, the results obtained by HHO are found to be
better compared to PSO and DE for minimum cost, minimum emission, and BCS for the
multiobjective problem. The key findings are summarized below:

• HHO is simple to implement and found to be impactful for the solution of both
SCHPEED and MCHPEED complex constrained optimization problems.

• With REI, fuel cost is reduced by 6.53 USD/h (18%) and emission is reduced by
1.519 g/kWh(3.4%) for SCHPEED, whereas fuel cost is reduced by USD 179.759
(14.95%) and emission is reduced by 59.60 g/kW (5.58%) for MCHPEED.

• Heat output is found to be sensitive to changes in load demand
• Operational cost, emission, and heat output are minimized with REI.
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Nomenclature

FC Fuel cell RDS Radial distribution system
DG distributed generators CHP Combined heat and power
MG microgrid EED Economic emission dispatch
WPP Wind power plant SCHPEED CHP under EED for static (fixed) load
MT Micro Turbine MCHPEED CHP under EED for Multiple (dynamic) load
REI Renewable Energy Integration BCS Best compromise solution
kp penalty cost due to underestimation of wind pd f Probability distribution function
kr reserve cost due to overestimation of wind Vmin , Vmax Minimum and maximum voltage
k shape factor FT

DG, FT
WPP, FT

FC cost of thermal units, wind power plant, and fuel cell, respectively
c scale factor vcin,, vco, vr Cut-in velocity, cut-out velocity, and rated velocity in m/s,

respectively
HR Total heat output θi Heat-to-power ratio of ith DG unit
HD Total heat demand. f1, f2 Cost and emission function
P f n Price penalty factor w Weighting factor
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