

Repositorio Institucional de la Universidad Autónoma de Madrid

https://repositorio.uam.es

Esta es la versión de autor del artículo publicado en:
This is an author produced version of a paper published in:

IEEE Transactions on Evolutionary Computation 11.1 (2007): 77 – 90

DOI: http://dx.doi.org/10.1109/TEVC.2006.880327

Copyright: © 2007 IEEE

El acceso a la versión del editor puede requerir la suscripción del recurso

Access to the published version may require subscription

https://repositorio.uam.es/
http://dx.doi.org/10.1109/TEVC.2006.880327

Christiansen Grammar Evolution: grammatical evolution with semantics 1

Abstract— This paper describes Christiansen Grammar

Evolution (CGE), a new Evolutionary Automatic Programming

algorithm that extends standard Grammar Evolution (GE) by

replacing context-free grammars by Christiansen grammars. GE

only takes into account syntactic restrictions to generate valid

individuals. CGE adds semantics to ensure that both semantically

and syntactically valid individuals are generated. It is empirically

shown that our approach improves GE performance and even

allows the solution of some problems difficult to tackle by GE.

Index Terms— Genetic algorithms, Languages, Formal

languages, Automatic programming

I. INTRODUCTION

HE design of programming languages, compilers and
interpreters is one of the main topics in Theoretical

Computer Science. Chomsky grammars [1] provide a powerful
tool that allows the development of systematic algorithmic
techniques. The Chomsky hierarchy shows the relationship
between grammar types and their expressive power. For
example, type 2 (or context free) and type 0 grammars are
respectively related to pushdown automata and Turing
machines. Type 0 languages can be found for any computable
problem, while there is a proper subset of this set of problems
that may be represented by type 2 languages, because
pushdown automata cannot be considered universal computers.

Chomsky type 0 grammars are very difficult to handle
(design and parse). Therefore, in spite of their greater power,
they have been little used in computer science to formally
specify high level programming languages. Context free
grammars are used instead.

This approach poses a difficulty: since programming
languages must be able to describe algorithms for any problem
that a digital computer can solve (that is, any computable
problem) it seems clear that something must be added to
context free grammars to keep the expressiveness of Chomsky

AKNOWLEDGEMENT: This work has been sponsored by the Spanish

Ministry of Education and Science (MEC), project number TSI2005-08225-
C07-06. The authors want to acknowledgement Manuel Cebrián’s help in the
statistical analysis of the experiments.

Alfonso Ortega de la Puente, Marina de la Cruz Echeandía and Manuel
Alfonseca are with the Departamento de Ingeniería Informática de la Escuela
Politécnica Superior de la Universidad Autónoma de Madrid, España (e-mail:
{alfonso.ortega,marina.cruz,manuel.alfonseca}@uam.es).

type 0 grammars. This difficulty is the reason for the rather
artificial distinction between the syntax and the semantics of
high level programming languages. The mandatory
declarations of variables before their use, or the proper
correspondence of type and number in the arguments of a
function, are examples of constructions that depend on the
context.

Several approaches to efficiently express every computable
problem (that is, to reach the same expressive power as
Chomsky type 0 grammars) by means of extended context-free
grammars have been published since the sixties. They can be
grouped according to their possession of the adaptability

property: (a grammar is said to be adaptable if it can be

modified while it is being used). Attribute grammars [2] are the
best-known non-adaptable grammars more complex than
context free grammars. This paper uses Christiansen
grammars, which are adaptable. More detailed classifications
may be found in [3].

It is well known that all these formalisms have the same
expressive power as type 0 Chomsky grammars. Thus, which
one to use for a given problem depends only on the
preferences of the programmer, and the ease of use of the
formalism.

A. Christiansen grammars

Christiansen grammars [3, 4] are an extension of attribute
grammars where the first attribute associated to every symbol
is a Christiansen grammar.

The derivation relationship is redefined to make the model
adaptable: the first attribute contains the rules applicable to the
corresponding symbol. As with any other attribute, its value
can be computed while the grammar is being used, thus the
grammar may be changed on the fly.

Several formal notations have been used to describe
Christiansen grammars. This paper follows that used in [3],
which is very similar to typical attribute grammars and
extended attribute grammars [5]. It is slightly more
declarative, and explicitly specifies, for every attribute,
whether it is inherited (↓) or synthesized ().

The full syntax is as follows:
 -- Nonterminals are written in angled brackets and are

followed by the parenthesized list of their attributes.
 -- In the production rules, the names of the attributes are

implicit. Their values are used instead. This syntax is similar

Christiansen Grammar Evolution: grammatical
evolution with semantics

Ortega A., de la Cruz M., and Alfonseca M., Escuela Politécnica Superior, Universidad Autónoma

de Madrid

T

Christiansen Grammar Evolution: grammatical evolution with semantics 2

to that of variables in logic programming (Prolog, for
example), where the names actually used stand for constraints
between the variables. Semantic actions follow their
corresponding production rule in brackets, where {} stands for
no semantic action.

 -- is the empty word.
 -- As in logic programming, additional semantic actions,

which cannot be expressed by the values of the attributes,
follow the rule between brackets. These actions are usually
written in pseudo code.

Neither attribute grammars nor Christiansen grammars
restrict a priori the way in which their attributes may depend
on other attributes. Nevertheless, attribute grammars where no
inherited attribute depends on a synthesized attribute located at
its right are well-known. They are expressive enough and the
algorithms to handle them are easy to describe and to program.
This paper refers only to Christiansen grammars which satisfy
this condition.

The following example, borrowed from [3], describes a
Christiansen grammar for a toy programming language. The
following is a sample program in that language:

{
int i;
int j;
i=j;

}
A program in this language has two sections (which may be

empty) enclosed between brackets:
 --The declaration of all the variables used in the second

section. Only integer variables are allowed.
 --The sequence of statements. Each statement ought to be

an assignment between previously declared identifiers.
This context-dependent feature may be analyzed without

any auxiliary symbol table.
The preceding program can be described by the following

Christiansen grammar:
GC={
N={<program>(g),
<decl-list>(gi, go),
<dcl>(gi, go),
<alpha-list>(gi, word),
<alpha>(gi, word),
<stm-list>(g),
<stm>(g),
<id>(g)},
T={ “{”, “}”, int, a, · · · , z},
<program>(g),
P={
<program>(↓g0)→“{”<decl-list>(↓g0, ↑g1)
 <stmt-list>(↓g1)“}” {}
<decl-list>(↓g, ↑g) → {}
<decl-list>(↓g0, ↑g2)→ <decl>(↓g0, ↑g1)
 <decl-list>(↓g1, ↑g2){}
<decl>(↓g, ↑g{<id ↓gid>→w})→
 int <alpha-list>(↓g, ↑w){}

<alpha-list>(↓g, ↑w) → <alpha>(↓g, ↑w){}
<alpha-list>(↓g, ↑w1w2)→<alpha>(↓g, ↑w1)
 <alpha-list>(↓g, ↑w2){}
<alpha>(↓g, ↑a) → a{}
· · ·
<alpha>(↓g, ↑z) → z{}
<stmt-list>(↓g) → {}
<stmt-list>(↓g) → <stmt>(↓g)<stmt-list>(↓g)
<stmt>(↓g) → <id>(↓g) = <id>(↓g){} }
}
where
 --g0 is the initial grammar for the list of declarations.

Notice that g0 has no rule for the nonterminal symbol <id>.
 --g1 holds the changes made to g0 by the list of

declarations (each declaration of the form int <identifier>;
adds to g0 the rule <id> → <identifier>) and becomes the
initial grammar for the list of statements; for each declared
variable, g1 contains one rule for nonterminal <id>.

Notice that
 --The expression g{<id ↓gid>→w} is the way in which

rules for the declared variables are added. In the example, the
set of rules added is

{<id ↓gid> → i,
 <id ↓gid> → j }
where gid must be understood as a new attribute name (with

no associated value).
 --By means of the rules for <alpha-list>, the identifier

name used in the declaration is synthesized as the value of its
second attribute.

Figure 1 shows the semantically annotated parse tree for the
program. It only shows the value of the grammar attributes.
The word attribute for <alpha> and <alpha-list> does not
appear in figure 1. Continuous arrows are used for synthesized
attributes. Changes in the grammars are highlighted by means
of italic and underlined fonts. The initial value of the grammar
inherited by the axiom (GC) is the whole grammar itself.
Christiansen grammars vs. attribute grammars

Christiansen grammars, initially named Generative
Grammars, were proposed to describe extensible languages
(programming languages that allow the user to enrich them
with new concepts in the form of new linguistic constructs). In
[6] other formalisms to obtain this goal, including attribute
grammars, are compared with Christiansen grammars, and the
following conclusions are drawn:

 --Christiansen grammars have enough expressive power
to fully describe, in a natural and elegant way, this family of
languages.

 --Christiansen grammars are as suitable as attribute
grammars for describing the context-sensitive aspects of
traditional (non-extensible) programming languages.

 --Christiansen grammars are better for describing
extensible constructs: The context free rules of an attribute
grammar are fixed, hence too general; thus, extensibility tends
to be implemented in the form of very complex constrains on
attributes whose semantics become too loaded, resulting in not

Christiansen Grammar Evolution: grammatical evolution with semantics 3

very elegant descriptions. Christiansen grammars, on the other
hand, describe extensible constructs in a natural way. For
instance, new control structures can be coded as new syntactic
rules, and added and removed from the current grammar when
necessary; new types of expressions can be coded as new
nonterminals whose production rules can be treated in a
similar way. Christiansen grammars also handle in an elegant
way some difficult questions, such as the possible ambiguity of
the grammar after the user has extended it.

 --There are some constructs difficult to represent by
Christiansen grammars (such as forbidding the declaration of
entities with the same name in the same block, polymorphism
or recursive declarations); but they are also very difficult to
represent with attribute grammars.

B. Evolutionary Automatic Programming

Evolutionary Automatic Programming (EAP) [7] is the term
used to represent those systems that use evolutionary
computation to automatically generate computer programs.
EAP techniques can be grouped depending on the way
programs are represented: tree-based systems, which handle
the derivation trees of the programs, or string-based systems,
which represent the individuals as strings of symbols.
Tree-based systems

The best known tree-based system is Genetic Programming
(GP), proposed by Koza [8] in the nineties, to automatically
generate LISP programs that would solve given tasks. A few
GP extensions have used formal grammars in some way:
cellular encoding [9], which evolves neural networks;
Whigham’s approach [10], which adds biases (domain
dependent knowledge) to GP by means of context free
grammars, to ensure the syntactic correctness of the
individuals in the initial population; GPK (Genetic
Programming Kernel, developed by Horner [11]), which uses a
tree representation similar to that of Whigham.

Finally, we shall mention in more detail a few approaches to
handle context-sensitive constrains:

[12] proposes a tree-adjunct grammar guided genetic
programming (TAG3P). A tree-adjunct grammar is a grammar
which handles trees rather than strings, by means of the
adjunct operation, which takes two trees and generates a new
tree that can be used as a derivation tree. TAG3P uses two
kinds of related grammars: the context free grammar of the
target language and its corresponding lexicalized tree-adjunct
grammar (a tree-adjunct grammar with at least one terminal
node in every tree). TAG3P shows a good performance when
solving classical problems (symbolic regression, trigonometric
identities), due to its efficiency preserving and combining
building blocks.

In [13] Hussain et al. evolve artificial neural networks
encoded by means of attribute grammars, to increase the
expressive power and performance of the search, while
preserving syntactic correctness. In this method, genes are
translated into derivation trees; genetic operators also act
directly on derivation trees.

LOGENPRO [14, 15] and DCTG-GP [16], which can be

considered Prolog (logic) GP implementations. LOGENPRO
(LOgic grammar based GENetic PROgramming system)
combines GP and Inductive Logic Programming, and offers a
tool mainly used for data mining applications. LOGENPRO
and DCTG-GP (Definite Clause Translation Grammars
Genetic Programming) use DCG (Definite Clause Grammars),
the logic version of attribute grammars [17]; consequently,
both allow the description of context-free and context-sensitive
constraints. DCTG-GP is inspired by the LOGENPRO system,
but is not related to Inductive Logic Programming or to
machine learning and data mining. For the purposes of this
paper, LOGENPRO and DCTG-GP share two main
characteristics: both use a Prolog system and represent
programs by means of their parse trees.
String-based systems

String-based systems were initially discarded, because GP
gave better results. String-based systems try to take advantage
of the potential benefits of separating genotype and phenotype.
Tree-based systems do not distinguish both levels explicitly.
GE (Grammatical Evolution [7]) is the latest, most promising
string-based approach, which will be further described in more
detail. Other string-based approaches that use context-free
grammars have been proposed: Binary Genetic Programming
[18] contains some of the features fully exploited later by GE.
GADS [19] (Genetic Algorithm for Deriving Software) and
CFG/GP [20] (Context Free Grammars Genetic Programming)
both use context free grammars as their output language
specification. Other systems handle string-based systems
without grammars: DiscipulusTM (RML Technologies, 1998)
[21] is a commercial tool which implements the AIM-GP
system (Automatic Induction of Machine Code for Genetic
Programming [22]), greatly improving the performance of GP
by coding the individuals as low level machine programs.

This paper is not the first attempt to add semantics to GE.
The same authors have described previously Attribute
Grammar Evolution [23], a variant of GE that replaces context
free grammars by Attribute Grammars, one of the better known
non-adaptable extensions of context free grammars, that makes
them equivalent to type 0 Chomsky grammars. There are also
other works which use at the same time GE and attribute
grammars ([7] for the GAuGE algorithm and [24-25] for the
knapsack problem), GE and context-sensitive grammars [26],
or GE and some adaptive forms of grammars [27].
Comments

 Other approaches are difficult to classify in this way. In
[28], for instance, Paterson applies a similar approach to GE to
include a context free grammar in GP, to map the genotype
into a phenotype. Phenotypes can be expressed as strings or as
trees.
 [29] [30] and [31] describe PRODIGY (Program
distribution estimation with grammar model), a framework
which extends estimations of distribution algorithms (EDA) to
the Genetic Programming domain. The basic idea of EDA is to
estimate the probability distribution of optimal solutions by
means of evolutionary techniques: a first model of the
distribution is proposed and sampled to produce the initial

Christiansen Grammar Evolution: grammatical evolution with semantics 4

population. The model is iteratively refined and sampled until
satisfying a termination condition. Shan et al. use stochastic
context free parametric Lindenmayer grammars to include the
main properties of GP into the model: internal hierarchical
structure, locality of dependence, position independence,
modularity and non-fixed complexity. They use two
parameters: depth and location in the tree where the rules can
be applied. While evolving the model, the structure and the
probabilities of the grammar are modified (learned) separately.
PRODIGY has been successfully used with some classic GP
and learning problems such as symbolic regression and time
series prediction. This is not the only attempt to use stochastic
context free grammars in GP. [32], [33] and [34] propose
similar models that only modify the probabilities of applying
the rules of the grammar.

Reference [7] describes and shows theoretical and empirical
arguments indicating that GE may be more powerful, general
and suitable than other string and tree based systems. It is
worth noticing that approaches mixing logic and genetic
engines to automatically generate programs share a few
disadvantages: Christiansen [4] reports the large amount of
backtracking and the potentially infinite loops inherent to the
underlying resolution strategy of Prolog systems, and the
theoretical semi-decidability of first order logic. This
drawback could make Prolog incompatible with applications
where performance is important, such as most Evolutionary
Automatic Programming experiments. We are not comparing
our approach to those based on logic, because we intend to
keep our algorithm independent of the resolution engine. Other
EAP algorithms previously introduced have been exhaustively
compared to GE [7], thus we only have to compare our results
with those of GE. However, we have proposed two different
ways of adding semantics to GE (AGE [23] and CGE, the
topic of this paper), both approaches having been compared
with GE. The comparison between AGE and CGE, their
performance, their expressive power, the kind of problems
better tackled by each approach, and so forth, will be the
subject of our future research.

The advantages of CG over AG described in previous
paragraphs are inherited by CGE; so CGE provides the user
with a more flexible, natural and elegant formalism than AGE
to describe the candidate solutions. Our experiments suggest
also some performance advantage; it seems that this depends
on the way in which CGE moves across the search space.
Further experiments will be necessary to confirm and explain
these inklings.

C. Grammatical evolution (GE)

GE [7] is an EAP algorithm based on strings, independent
of the language used. Genotypes are represented by strings of
integers (each of which is named codon) and the context-free
grammar of the target programming language is used to
deterministically map each genotype into a syntactically
correct phenotype (a program). In this way GE avoids one of
the main difficulties in Evolutionary Automatic Programming
[7]: the results of genetic operators are guaranteed to be
syntactically correct, while allowing the inclusion of multiple

types.
The following scheme shows the way in which GE

combines traditional genetic algorithms with genotype-to-
phenotype mapping:
1) Generate at random an initial population of genotypes.
2) Translate each member of this initial set into its

phenotype.
3) Sort the genotype population by their fitness (computed

from the phenotypes).
4) If the best individual is a solution, the process ends.
5) Create the next generation: the mating-pool is chosen by

means of a fitness-proportional parent selection strategy.
Their genetically modified offspring is generated, and the
worst individuals are replaced by them.

6) Go to step 2.

II. MOTIVATION

GE being a general purpose stochastic search technique that
uses a context-free grammar to avoid syntactic mistakes, it
should be possible to improve its performance by adding some
semantics, so that only syntactically and semantically correct
programs are generated. In artificial intelligence, informed
search algorithms usually have more power than their blind
counterpart. It seems reasonable to hope that some of the
approaches proposed since the sixties to formally describe the
“semantics” of high level programming languages may be
useful to our purpose. Different approaches to expressing the
semantics of high level programming languages have
advantages and drawbacks, but provide the language designer
with a set of complementary tools. In the future, we will
perform a study as wide as possible, but this paper is only
focused in the use of Christiansen grammars.

III. CHRISTIANSEN GRAMMAR EVOLUTION (CGE)

Normal GE genotypes are deterministically translated by
applying to each codon the following process:
1) Choose the leftmost nonterminal symbol in the sentential

form being processed.
2) Number the n right hand sides of all the rules for this

nonterminal symbol (from 0 to n-1) where the rules are in
an arbitrary order which should be maintained during the
whole process.

3) Select the right hand side of the rule whose number equals
codon mod (number of right hand sides for this
nonterminal).

4) Derive the next word by replacing the nonterminal by the
selected right hand side.

Several GE variants try to make this mapping more flexible.
GE [35] is a position-independent variation on GE’s typical
genotype-phenotype mapping process. The non terminal
symbol changed is not necessarily the leftmost one, but is
computed from the codon by applying the function
mod(codon, number of non terminals in the sentential form).

Christiansen Grammar Evolution: grammatical evolution with semantics 5

Position independence seems to be an important feature to
increase the performance of evolutionary algorithms and has
also been considered by the same authors in Chorus [36] and
GauGE [37].

Christiansen grammar evolution makes the GE genotype-to-
phenotype mapping adaptive, by using a Christiansen grammar
in place of the context-free grammar normally used in GE. The
Christiansen grammar is designed to express both the syntactic
and the semantic conditions that a valid phenotype must
comply with.

The mapping of GE genotypes to their corresponding
phenotypes has two important properties:

 -- The mapping implicitly builds the derivation tree in
depth-first order (choosing each time the left deepest node).

 -- The mapping is deterministic: a given genotype has to
be translated into the same phenotype under all possible
circumstances. This is accomplished by numbering the
different right hand sides for the same nonterminal and
computing the “codon mod number of right hand sides”
operation.

A. Genotype-to-phenotype mapping

CGE adds the following tasks to the previous algorithm:
1.1) Evaluate the attributes.
1.2) Select the applicable rules from the first attribute in each

nonterminal.
The attributes are evaluated by means of the derivation tree.

Each time that a node of the tree is expanded, the values of all
the attributes that can be evaluated are computed in the
following way:

 --Attributes inherited from the parent symbol are
evaluated directly.

 --If the node symbol is prefixed by other symbols in the
right hand side where it appears, attributes inherited from the
left siblings are also evaluated.

 --After expanding the last child of a node, the parent
synthesized attributes are evaluated.

Our algorithm borrows a few interesting theoretical results
from syntactic analysis techniques. Reference [38] shows that
syntactically driven left-to-right translation schemes guarantee
the proper evaluation of the kind of attributes previously
described. The same reference also shows that this kind of
attributes can be considered complete (they can represent any
kind of attributes) and are compatible with a left to right depth-
first route across the derivation tree. Since the genotype-to-
phenotype mapping builds trees to derive words, rather than
to analyze them, backtracking is needed to ensure the proper
conclusion of the translation.

Notice that the main feature of Christiansen Grammars is the
modification of the set of rules applicable to each given
nonterminal. This is done by removing and adding rules to the
initial inherited grammar, keeping the initial order (new rules
are added to the end). Rules are numbered after changing the
grammar and before each derivation step, in this way ensuring
a deterministic genotype-to-phenotype mapping.

B. Example

The proposed algorithm has been used successfully to solve
the following sample problem: “given any logical function
with a given number of input variables, find a logically
equivalent symbolic expression that uses only the operators in
one of the three following complete sets: {and, or, not},
{nand}, {nor}.”

The set of logical operators: {and, or, not, nand, nor},
contains the following five complete subsets {and, or, not},
{nand}, {nor}, {and, not} and {or, not}, any of which is
capable of representing all the possible logic functions. In this
paper, we are interested in finding a symbolic expression that
represents a target logic function that uses only the operators
in one of the first three complete subsets. A more detailed
study, taking into account all the complete subsets, will be
performed in the future to better characterize the properties of
the CGE approach.

The following Christiansen grammar will be used to
represent logic expressions with six input variables in postfix
notation (the axiom <fb> stands for function of Boolean
values):

Gb= {{<fb>(gi, go), <op>(gi, go), <op1>(gi, go)},
{and, or, not, nand, nor, v0, v1, v2, v3, v4, v5},
<fb>(gi, go),
P={
<fb>(g0, g3)

<fb1>(g0, g1)<fb2>(g1,g2)<op>(g2,g3){}
<fb>(g0,g2) <fb1> (g0,g1)<op1>(g1,g2) {}
<fb>(g, g) v0{}
<fb>(g, g) v1{}
<fb>(g, g) v2{}
<fb>(g, g) v3{}
<fb>(g, g) v4{}
<fb>(g, g) v5{}
<op>(g, gm)

and{gm=g-{<op>nand, <op>nor}}
<op>(g, gm) or{gm=g-{<op>nand, <op>nor }}
<op>(g, gm)

nand {gm=g-

{<op>and,

<op>or,

<fb><fb><op1>,

<op1>not,

<op>nor} }
<op>(g, gm)

nor{gm=g-

{<op>and,

<op>or,

<fb><fb><op1>,

<op1>not,

<op>nand}}
<op1>(g,gm)not{gm=g-{<op>nand, <op>nor}}
}}
Notice that the only allowed modifications remove from the

Christiansen Grammar Evolution: grammatical evolution with semantics 6

grammar the operators that do not belong to the selected
complete set. This is highlighted with a bold and italic font in
the last five rules.

The first rule shows how the modifications in the grammar
are propagated. This rule represents the transformation of a
Boolean function into a binary operation.

 --The initial grammar inherited by the left hand side of
the rule g0 is also inherited by its first child as its initial
grammar.

 --The possible modifications made by the sub-expression
are recorded in the synthesized grammar g1, which is
inherited by the second sub-expression as its initial grammar.

 --Possible changes made during the analysis of <fb2> are
recorded in the synthesized grammar g2, which is inherited by
the binary operator term as its initial grammar.

 --The binary operator modifies its initial grammar by
removing the operators that do not belong to the same
complete set. These changes are recorded in the synthesized
grammar g3, which is passed back to the parent rule.

Figures 2-5 show the genotype-to-phenotype mapping. The
derived strings use an italic font for the terminal symbols and
an italic and underlined font for the current nonterminal
symbol. The tree shows attribute inheritance by means of
dotted arrows, synthesis by solid ones, and uses an italic and
underlined font to highlight synthesized attributes.

In the beginning (figure 2), no codon has been consumed,
the derivation tree has only the root, with the axiom of the
grammar, and the starting string is also the axiom.

Figure 3 shows the first derivation, where the rule numbered
0 (180 mod 6) is applied to the axiom. The root is expanded in
the tree, three new children nodes are created, but only the left
most one inherits its first grammar from its father.

Figure 4 shows the first change in the grammar: when the
node that contains symbol <op1> is expanded, and the leaf
with the terminal symbol not is added, the semantic actions
that compute the value of its second attribute remove from the
production rules the subset {<op>nand, <op>nor}. In this
way, the rules for logical operators are reduced to the set
{<op>and, <op>or, <op1>not}. This is the only

effective change over the grammar, because the generation of
any new valid operator (and, or and not) will remove again the
same subset of rules ({<op>nand, <op>nor}), changing
nothing.

Figure 5 shows the end of the derivation: there are only
terminal symbols in the current string, and all the nodes of the
derivation tree have computed the value of all their attributes.

C. Results

Table 1 shows the parameters used in this experiment.
Mutation is applied to every descendant. If the mutation ratio
randomly determines that the genotype has to be mutated, a
single codon (only one) is randomly chosen and replaced by
another value. This is not the only possible implementation: in
[7] mutation operates on bits, rather than individuals, which
allows multiple mutations in the same genotype (even multiple
mutations in the same codon). These differences must be taken
into account when comparing the actual values for the
mutation ratio: even the highest value in our experiments
corresponds to low values in the alternative implementation
described in [7].

This problem is increasingly difficult for a higher number of
input variables.

Figure 6 shows the results after 200 runs of the algorithm
for less than 400 generations. The number of generations is
represented in the x-axis while the y-axis corresponds to the
cumulative frequency of success.

 --The curve with circular marks shows the result of the
problem with four input variables. The target logic function
used was (v0 or v1) and (v2 or v3). 100% of the runs reached
success before 324 generations.

 --The curve with square marks shows the result of the
problem with five input variables. The target logic function
used was (v0 or v1) and (v2 or v3) and v4. 13% of the runs
reached success before 397 generations.

 --The curve with triangular marks shows the result of the
problem with six input variables. The target logic function
used was (v0 or v1) and (v2 or v3) and (v4 or v5). 1.5% of the
runs reached success before 391 generations.

D. Performance comparison

As previously indicated, we only have compared empirically
the performance of CGE with that of GE. Even in this case, it
is difficult to choose the appropriate problem for the
comparison, because:

-- Christiansen grammars are equivalent to type 0 Chomsky
grammars, but we decided to choose the target class of
phenotypes context free, since otherwise we would not be able
to compare CGE with GE, showing that the size of the search
space is not the only performance advantage of CGE over GE.

-- On the other hand, some syntactic features of the problem
have to be described as context sensitive constraints, otherwise
the Christiansen Grammar would have a trivially empty
semantics.

TABLE I
PARAMETERS FOR THE EXPERIMENT

Parameter Explanation

Input set All the possible inputs for the function
Fitness function Number of successes of the candidate

solution over the whole input set

Initial population Random
Population size 500 individuals
Replacement strategy Generational
Parent selection strategy Fitness-proportional probability.
Genotype size Variable length, initially within the range

[10,50]
Codon value Within [0,256]
Crossover One point crossover chosen at random

within [0, number of used codons]
Crossover ratio 0,9
Mutation ratio
(individual)

0,9

Maximum generation 400

Christiansen Grammar Evolution: grammatical evolution with semantics 7

The following decisions have been made:
-- We have used the Christiansen Grammar of the previous

example. It is well known that its language is context free.
-- We have designed two different context free grammars to

compare GE and CGE performance. One of them is the
context-free scheme of the Christiansen grammar (the context
free grammar one gets by removing the semantic actions and
attributes from the Christiansen grammar). The other is a
context free grammar for the same language: the union of the
grammars for the three context free languages of logical
expressions, each with a complete set of operands.

D.1 First experiment

The GE parameters used are the same as in the CGE
experiments, except for the grammar. The following context
free grammar has been used:

Gb= {{<fb>,<op>,<op1>},
{and, or, not, nand, nor, v0, v1, v2, v3, v4, v5},
<fb>,
P={<fb><fb><fb><op>,
<fb><fb><op1>,
<fb>v0,
<fb>v1,
<fb>v2,
<fb>v3,
<fb>v4,
<fb>v5,
<op>and,
<op>or,
<op>nand,
<op>nor,
<op1>not}
}
With this context-free grammar, there is no direct way to

express the restriction that the logic functions in different
complete sets cannot be mixed. Therefore, we have tried two
approaches: in the first one, the worst fitness value is assigned
to those individuals which merge operators in different
complete sets; in the second, the fitness value is not punished,
and solutions which merge operators are removed by hand
after the experiment finishes.

Figure 7 compares the results of these approaches for the
experiment with four variables. The circular marks represent
the CGE case (also shown in figure 6). The triangular marks
represent the GE results: only 16% of the runs reached success
after 400 generations, compared to 100% with CGE. The
square marks represent GE results without fitness penalties:
only 24% of the runs reached success after 400 generations,
compared to 100% with CGE.

It is worth noticing that the algorithm using standard GE
was unable to find a solution for the function with six input
variables in any of the runs we performed.

D.2 Second experiment

The context free grammar of this experiment is the
following:

Gb=

{{<fb>,<fb1>,<fb2>,<fb3>,<op>,<op_2>,<op_3>,<op1>},
{and, or, not, nand, nor, v0, v1, v2, v3, v4, v5},
<fb>,
P={<fb><fb1>,
<fb><fb2>,
<fb><fb3>,
<fb1><fb1><fb1><op>,
<fb1><fb1><op1>,
<op1>not
<op>or,
<op>and,
<fb1>v0,
<fb1>v1,
<fb1>v2,
<fb1>v3,
<fb1>v4,
<fb1>v5,
<fb2><fb2><fb2><op_2>,
<fb2>v0,
<fb2>v1,
<fb2>v2,
<fb2>v3,
<fb2>v4,
<fb2>v5,
<op_2>nand,
<fb3><fb3><fb3><op_3>,
<op_3>nor,
<fb3>v0,
<fb3>v1,
<fb3>v2,
<fb3>v3,
<fb3>v4,
<fb3>v5}
}
Figure 8 compares the results of both approaches for the

experiment with four, five and six variables after 200 runs of
the algorithm for less than 400 generations. Small marks are
used for the CGE results; big marks are associated to GE. The
circular marks represent the case with four variables. The
figure shows that the performance of CGE is the same as that
of GE in that case. Square marks represent the experiment with
five variables. In this case, CGE improves greatly the
performance of GE: many more runs find the solution, and the
maximum cumulative success frequency is also higher: 0.03%
of the runs reached success after 400 generations with GE,
compared to 13% with CGE. Triangular marks are used for the
case with six variables. Notice that the algorithm using
standard GE was again unable to find a solution for this case in
any of the runs we performed.

D.3 Third experiment

Actually, the previous experiment does not show a
remarkable performance improvement of CGE over GE in the
easiest case. Nevertheless, CGE seems to be better as the
problem becomes harder (five and six variables).

Christiansen Grammar Evolution: grammatical evolution with semantics 8

If it does not matter which complete set of logical functions
is used to solve this problem, GE could reduce its search space
by using a context free grammar for each of the possible sets.
This experiment is really made of three tests, each of which
uses only one set of logical functions.

The three context free grammars for this experiment are the
following:

Gand_or_not= {{<fb1>,<op>,<op1>},
{and, or, not, v0, v1, v2, v3, v4, v5},
<fb1>,
P={<fb1><fb1><fb1><op>,
<fb1><fb1><op1>,
<op1>not
<op>or,
<op>and,
<fb1>v0,
<fb1>v1,
<fb1>v2,
<fb1>v3,
<fb1>v4,
<fb1>v5}}
Gnand= {{<fb2>,<op_2>},
{nand, v0, v1, v2, v3, v4, v5},
<fb2>,
P={<fb2><fb2><fb2><op_2>,
<fb2>v0,
<fb2>v1,
<fb2>v2,
<fb2>v3,
<fb2>v4,
<fb2>v5,
<op_2>nand}}
Gnor= {{<fb3>,<op_3>},
{nor, v0, v1, v2, v3, v4, v5},
<fb3>,
P={<fb3><fb3><fb3><op_3>,
<op_3>nor,
<fb3>v0,
<fb3>v1,
<fb3>v2,
<fb3>v3,
<fb3>v4,
<fb3>v5}}
Figures 9, 10 and 11 compare the results of both CGE and

GE approaches for the experiments with four, five and six
variables after 200 runs of the algorithm for less than 400
generations. There are several important conclusions:

 --GE performance strongly depends on the complete set
of logical functions used. So, using a general grammar which
considers the three cases at the same time seems advisable,
even though the search space becomes greater. Therefore,
CGE has shown to be a better choice in this case.

 --CGE is actually better than GE in some cases. In fact,
for 4 variables, GE is better only for the nor set and worse for

the and_or_not set, while for the nand set GE never finds any
solution. For 5 variables, GE is better for the and_or_not case,
and never finds solutions for the nor and the nand cases.
Finally, for 6 variables, the CGE approach is about as good as
GE for the and_or_not case. Table 2 compares the mean and
the variance of the number of generations needed to reach a
solution using CGE, GE with fitness punishing, and GE
without penalties, for the problem with 4 variables, and the
first two for the problem with 5 variables. We have applied the
Welch-test [39] to our distributions to estimate the confidence
of the conclusion. The Welch-test is adequate for stochastic
variables with dissimilar variances. The default hypothesis is
that GE is better than CGE (CGE means would be greater or
equal than GE means). This hypothesis can be discarded,
because the Welch-test concludes that its confidence value is 0
in all the comparisons but one, where it is 1e-12. Therefore,
we may conclude that CGE solutions are faster than GE with
about a 100% confidence.

 --In conclusion, CGE provides a much better general
approach than GE, as it always finds a solution, while GE with
a single complete set may never find one.

IV. CONCLUSIONS

This paper proposes CGE, a new Evolutionary Automatic
Programming method that improves the expressive power of
GE by adding a way to add semantics to the rules that an
individual must comply with, before it can be generated.

The experiments we have performed provide an inkling that
this procedure is better than standard GE (which only uses
syntax), increasing the efficiency of the algorithms by orders
of magnitude. Obviously, more experiments should be
performed to confirm this inkling.

This paper shows that the performance of GE to solve
context free problems is clearly improved by CGE, and
suggests the way in which it is possible to find problems
difficult to solve by GE, but which are tackled naturally and
efficiently by CGE.

The performance comparison between GE and CGE also
suggests that the improvement does not actually depend on the
context dependent nature of constraints, but on the ease of the
formalism used to express them. This has been made clear by
us in a different publication [40], where we have attempted to
find a solution of the well-known P-median problem by means
of both GE and CGE.

In the future we plan to apply our approach to new problems
difficult to solve without adding some semantics to the
description of the candidate solutions. We shall also test other
ways to specify semantics different from Christiansen
grammars and attribute grammars. Our group also plans to
perform both theoretical and empirical studies to characterize
the properties of this technique, and to design a general
methodology to automatically solve given tasks by means of
variants of GE that include semantics.

One of the main questions that this methodology still has to
answer is how to decide in advance which EAP is more

Christiansen Grammar Evolution: grammatical evolution with semantics 9

suitable for a given problem. That is, if the problem under
consideration should be tackled with or without semantics and,
in the first case, if AGE or CGE should be used. At this point,
choosing CGE rather than AGE is a matter of taste, comfort
and ease of use.

REFERENCES

[1] A. N. Chomsky, “Formal properties of grammars,” in Handbook of

Math. Psych., vol. 2, John Wiley and Sons, New York, pp. 323–418,
1963.

[2] D. E. Knuth, “Semantics of Context-Free Languages,” in Mathematical

Systems Theory, vol. 2, nº 2, pp. 127–145, 1968.
[3] J. N. Shutt, “Recursive Adaptable Grammars. A thesis submitted to the

Faculty of the Worcester Polytechnic Institute in partial fulfillment of
the requirements for the degree of Master of Science in Computer
Science,” August 10, 1993 (emended December 16, 2003)

[4] H. Christiansen, “A Survey of Adaptable Grammars,” in ACM

SIGPLAN Notices, vol. 25, nº11., pp. 35–44. November 1990.
[5] Watt and Madsen. “Extended Attribute Grammars” The Computer

Journal. Online ISSN 1460-2067 - Print ISSN 0010-4620. 1983; 26:
142-153.

[6] Christiansen, H. “The syntax and semantics of extensible languages.”
Datalogiske Skrifter nº 14, 1988 (Technical report series) Computer
Science Section. Roskilde University. Roskilde. Denmark.

[7] M. O’Neill & R. Conor, “Grammatical Evolution, evolutionary
automatic programming in an arbitrary language,” Kluwer Academic
Publishers, 2003.

[8] J. R. Koza, “Genetic Programming: On the Programming of Computers
by Means of Natural Selection,” MIT Press, Cambridge, Massachusetts.
1992.

[9] Gruau, F. “Neural Network Synthesis using Cellular Encoding and the
Genetic Algorithm” PhD thesis, Laboratoire de l’Informatique du
Parallelisme, Ecole Normale Superieure de Lyon, France, 1994.

[10] Whigham, P.A., “Grammatical Bias for Evolutionary Learning.” PhD
thesis, School of Computer Science, University College, University of
NewSouth Wales, Australian Defence Force Academy. B. Grammatical
evolution, 1996.

[11] Horner, H., “A C++ class library for genetic programming: The vienna
university of economics genetic programming kernel.” Vienna
University of Economics, 1996.

[12] Nguyen Xuan Hoai, R.I. McKay, and D. Essam “Genetic programming
with context-sensitive grammars.”, EuroGP 2002, LNCS 2278, pp. 228-
237, 2002.

[13] Hussain, T.S. & Browse, R.A. “Network generating attribute grammar
encoding”, 1998 IEEE International Joint Conference on Neural
Networks, May 4-9, 1998 in Anchorage, Alaska.

[14] Wong, M. L. and Leung, K. S., “Evolutionary program induction
directed by logic grammars.” Evolutionary Computation, 5(2): 143-180,
1997.

[15] Wong, M. L. and Leung, K. S. “Data Mining Using Grammar Based
Genetic Programming and Applications.” Volume 3 of Genetic

Programming. Klower Academic Publishers, 2000.
[16] Brian J. Ross, “Logic-based genetic programming with definite clause

translation grammars”, New Generation Computing, vol. 19, n.4, pp.
313-337, 2001.

[17] Bratko, I., “Prolog programming for artificial intelligence” Addison-
Wesley Publishers Company, Inc. 1990.

[18] Keller, R. E. and Banzhaf, W. “Genetic programming using genotype-
phenotype maping from linear genomes into linear phenotypes.” In
Koza, J. R., Goldberg, D. E., Fogel, D. B., and Riolo, R. L., editors,
Genetic Programming 1996: Proceedings of the First Annual

Conference, pages 116-122, Stanford University, CA, USA. MIT Press,
1996.

[19] Paterson, N. R. and Livesey, M., “Distinguishing genotype and
phenotype in genetic programming.” In Koza, J. R., editor, Late

Breaking Paers at the Genetic Programming 1996 Conference Stanford
University July 28-31, pages 141-150, Stanford University, CA, USA.
Stanford Bookstore, 1996.

[20] Freeman, J. J. , “A linear representation for GP using context free
grammars.” In Koza, J. R., Banzhaf, W., Chellapilla, D., Deb, K.,
Dorigo, M., Fogel, D. B., Garzon, M. H., Goldberg, D. E., Iba, H., and
Riolo, R., editors, Genetic Programming 1998: Proceedings of the

Third Annual Conference, pages 72-77, University of Wisconsin,
Madison, Wisconsin, USA. Morgan Kaufmann, 1998.

[21] Register Machine Learning Technologies, Inc., “Discipulus Users
Manual, Version 3.0.”, 2002. Available from www.aimlearning.com.

[22] Nordin, P. “AIMGP: A formal description.” In Koza, J. R., editor, Late

Breaking Papers at the Genetic Programming 1998 Conference,
University of Wisconsin, Madison, Wisconsin, USA. Stanford
University Bookstore, 1998.

[23] M. de la Cruz, A. Ortega, M. Alfonseca, “Attribute Grammar
Evolution.” LNCS 3562, pp. 182-191. J. Mira and J.R. Álvarez (Eds.)
Springer-Verlag Berlin Heidelberg, 2005.

[24] O'Neill, Michael and Cleary, Robert and Nikolov, Nikola S. “Solving
Knapsack Problems with Attribute Grammars.” In Proceedings of the
Grammatical Evolution Workshop, GECCO 2004.

[25] Cleary R. and O'Neill M. “An Attribute Grammar Decoder for the 0/1
Multiconstrained Knapsack Problem.” In Proceedings of EvoCOP 2005.

[26] Keijzer, M., Babovic, V., Ryan, C., O'Neill, M., and Cattolico, M.
“Adaptive logic programming.” In Proceedings of GECCO 2001.

[27] Dempsey I., O'Neill M. and Brabazon A. “Meta-Grammar Constant
Creation with Grammatical Evolution by Grammatical Evolution.” In
Proceedings of GECCO 2005

[28] Paterson, N. “Genetic programming with context-sensitive grammars.”
PhD thesis. 2002

[29] Shan, Y. McKay, R. I. Abbass, H. A. Essam, D.: “Program distribution
estimation with grammar models.”

[30] Shan, Y., McKay, R., Baxter, R., Abbass, H., Essam, D., and Nguyen.,
H. (2004). “Grammar model based program evolution.” In Proceedings
of The Congress on Evolutionary Computation, Portland, USA. IEEE.

[31] Shan, Y., McKay, R. I., Abbass, H. A., and Essam, D. (2003). “Program
evolution with explicit learning: a new framework for program
automatic synthesis.” In Proceedings of 2003 Congress on Evolutionary
Computation, Canberra, Australia. University College, University of
New South Wales, Australia.

[32] Ratle, A. and Sebag, M. “Avoiding the bloat with probabilistic grammar
guided genetic programming.” In Collet, P., Fonlupt, C., Hao, J.K.,
Lutton, E., and Schoenauer, M., editors, Artificial Evolution 5th
International Conference, Evolution Artificielle, EA 2001, volume 2310
of LNCS, pages 255–266, Creusot, France. Springer Verlag.

[33] Tanev, I. “Implications of incorporating learning probabilistic context
sensitive grammar in genetic programming on evolvability of adaptive
locomotion gaits of snakebot.” In Proceedings of GECCO 2004, Seattle,
Washington, USA.

[34] Bosman, P. A. N. and de Jong, E. D. “Grammar transformations in an
eda for genetic programming.” In Special session: OBUPM
Optimization by Building and Using Probabilistic Models, GECCO,
Seattle, Washington, USA.

[35] O’Neill1, M. Brabazon, A. Nicolau, M. Mc Garraghy, S. and Keenan, P.
“Grammatical Evolution.” In K. Deb et al. (Eds.): GECCO 2004,
LNCS 3103, pp. 617–629, 2004. Springer-Verlag Berlin Heidelberg
2004

[36] Ryan, C., Azad, A., Sheahan, A., O’Neill, M. “No Coercion and No
Prohibition, A Position Independent Encoding Scheme for Evolutionary
Algorithms—The Chorus System.” Proc. of the 4th European
Conference on Genetic Programming, EuroGP 2002, LNCS 2278, pp.
132-142. Springer-Verlag.

[37] Ryan, C., Nicolau, M., O’Neill, M. “Genetic Algorithms Using
Grammatical Evolution.” Proc. of the 4th European Conference on

TABLE 2
STATISTICS FOR THE EXPERIMENT

CGE 4

vars
GE punishing

4 vars
GE 4
vars

CGE 5
vars

GE 5
vars

Mean

73.045

200.85

168.68

371.55

399.52

Variance

4016.6

12396.01

14351.0

6893.4

45.125

Christiansen Grammar Evolution: grammatical evolution with semantics 10

Genetic Programming, EuroGP 2002, LNCS 2278, pp. 279-288.
Springer-Verlag.

[38] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. “Compilers:
Principles, Techniques, and Tools.” Addison-Wesley, Reading, MA,
1986.

[39] Welch, B. L.. “On the comparison of several mean values.” Biometrika
38, 330-336 (1951)

[40] A.L.Abu Dalhoum, M. Al Zoubi, M. de la Cruz, A.Ortega,
M.Alfonseca: “A Genetic Algorithm for Solving the P-Median
Problem”, Proceedings of the 2005 European Simulation and Modeling
Conference (ESM2005), Oporto, Oct. 2005. In press.

Dr. Alfonso Ortega is currently a professor at the University. He formerly
lectured at the Universidad Pontificia de Salamanca and worked at LAB2000
(an IBM subsidiary) as a software developer. He holds a doctorate in
computer science from the Universidad Autónoma. Dr. Ortega has published
about 15 technical papers on computer languages, complex systems, graphics,
and theoretical computer science, and has collaborated in the development of
several software products.
Marina de la Cruz is a lecturer at the University (Universidad Autónoma
and Universidad Politécnica de Madrid). During about the last 15 years she
has been a researcher in CIEMAT where she has contributed in about 10
international projects. Currently, she is doing Ph.D. research at the
Universidad Autónoma, in genetic algorithms and formal complex systems
and she is an author of several papers and communications to international
journals and conferences on theoretical computer science.
Dr. Manuel Alfonseca is a professor at the University. He was formerly a
Senior Technical Staff Member at IBM, having worked from 1972 to 1994 at
the IBM Scientific Center in Madrid. Dr. Alfonseca was one of the developers
of the APL/PC interpreter and related products; he has worked on computer
languages, simulation, complex systems, graphics, artificial intelligence,
object orientation, and theoretical computer science, and has published
several books and about 180 technical papers, as well as 60 papers on popular
science in a major Spanish newspaper. He is an award-winning author of 22
published books for children. Dr. Alfonseca holds a doctorate in electronics
and an M.Sc. degree in computer science from the Universidad Politécnica de
Madrid. He is an emeritus member of the IBM Technical Expert Council and
a member of the Society for Computer Simulation (SCS), the New York
Academy of Sciences, the IEEE Computer Society, the ACM, the British APL
Association, and the Spanish Association of Scientific Journalism.

Christiansen Grammar Evolution: grammatical evolution with semantics 11

Figure 1: semantically annotated parse tree of the program

Christiansen Grammar Evolution: grammatical evolution with semantics 12

Figure 2: CGE genotype-to-phenotype mapping example, initial step

Christiansen Grammar Evolution: grammatical evolution with semantics 13

Figure 3: CGE genotype-to-phenotype mapping example, second step

Christiansen Grammar Evolution: grammatical evolution with semantics 14

Figure 4: CGE genotype-to-phenotype mapping example, third step

Christiansen Grammar Evolution: grammatical evolution with semantics 15

Figure 5: CGE genotype-to-phenotype mapping example, result

Christiansen Grammar Evolution: grammatical evolution with semantics 16

Figure 6: CGE performance for different instances of the function with boolean values problem

Christiansen Grammar Evolution: grammatical evolution with semantics 17

Figure 7: CGE vs. GE performance comparison for the first experiment

Christiansen Grammar Evolution: grammatical evolution with semantics 18

Figure 8: CGE vs. GE performance comparison for the second experiment

Christiansen Grammar Evolution: grammatical evolution with semantics 19

Figure 9: CGE vs. GE performance comparison for the third experiment: 4 variables

Christiansen Grammar Evolution: grammatical evolution with semantics 20

Figure 10: CGE vs. GE performance comparison for the third experiment: 5 variables

Christiansen Grammar Evolution: grammatical evolution with semantics 21

Figure 11: CGE vs. GE performance comparison for the third experiment: 6 variables

