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Christiansen Grammar Evolution: grammatical evolution with semantics 1 

 
Abstract— This paper describes Christiansen Grammar 

Evolution (CGE), a new Evolutionary Automatic Programming 

algorithm that extends standard Grammar Evolution (GE) by 

replacing context-free grammars by Christiansen grammars. GE 

only takes into account syntactic restrictions to generate valid 

individuals. CGE adds semantics to ensure that both semantically 

and syntactically valid individuals are generated. It is empirically 

shown that our approach improves GE performance and even 

allows the solution of some problems difficult to tackle by GE.  

 
Index Terms— Genetic algorithms, Languages, Formal 

languages, Automatic programming  

 

I. INTRODUCTION 

HE design of programming languages, compilers and 
interpreters is one of the main topics in Theoretical 

Computer Science. Chomsky grammars [1] provide a powerful 
tool that allows the development of systematic algorithmic 
techniques. The Chomsky hierarchy shows the relationship 
between grammar types and their expressive power. For 
example, type 2 (or context free) and type 0 grammars are 
respectively related to pushdown automata and Turing 
machines. Type 0 languages can be found for any computable 
problem, while there is a proper subset of this set of problems 
that may be represented by type 2 languages, because 
pushdown automata cannot be considered universal computers.  

Chomsky type 0 grammars are very difficult to handle 
(design and parse). Therefore, in spite of their greater power, 
they have been little used in computer science to formally 
specify high level programming languages. Context free 
grammars are used instead.  

This approach poses a difficulty: since programming 
languages must be able to describe algorithms for any problem 
that a digital computer can solve (that is, any computable 
problem) it seems clear that something must be added to 
context free grammars to keep the expressiveness of Chomsky 
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type 0 grammars. This difficulty is the reason for the rather 
artificial distinction between the syntax and the semantics of 
high level programming languages. The mandatory 
declarations of variables before their use, or the proper 
correspondence of type and number in the arguments of a 
function, are examples of constructions that depend on the 
context. 

Several approaches to efficiently express every computable 
problem (that is, to reach the same expressive power as 
Chomsky type 0 grammars) by means of extended context-free 
grammars have been published since the sixties. They can be 
grouped according to their possession of the adaptability 

property: (a grammar is said to be adaptable if it can be 

modified while it is being used). Attribute grammars [2] are the 
best-known non-adaptable grammars more complex than 
context free grammars. This paper uses Christiansen 
grammars, which are adaptable. More detailed classifications 
may be found in [3]. 

It is well known that all these formalisms have the same 
expressive power as type 0 Chomsky grammars. Thus, which 
one to use for a given problem depends only on the 
preferences of the programmer, and the ease of use of the 
formalism. 

A. Christiansen grammars 

Christiansen grammars [3, 4] are an extension of attribute 
grammars where the first attribute associated to every symbol 
is a Christiansen grammar. 

The derivation relationship is redefined to make the model 
adaptable: the first attribute contains the rules applicable to the 
corresponding symbol. As with any other attribute, its value 
can be computed while the grammar is being used, thus the 
grammar may be changed on the fly. 

Several formal notations have been used to describe 
Christiansen grammars. This paper follows that used in [3], 
which is very similar to typical attribute grammars and 
extended attribute grammars [5]. It is slightly more 
declarative, and explicitly specifies, for every attribute, 
whether it is inherited (↓) or synthesized ().  

The full syntax is as follows: 
 -- Nonterminals are written in angled brackets and are 

followed by the parenthesized list of their attributes. 
 -- In the production rules, the names of the attributes are 

implicit. Their values are used instead. This syntax is similar 
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to that of variables in logic programming (Prolog, for 
example), where the names actually used stand for constraints 
between the variables. Semantic actions follow their 
corresponding production rule in brackets, where {} stands for 
no semantic action. 

 --  is the empty word. 
 -- As in logic programming, additional semantic actions, 

which cannot be expressed by the values of the attributes, 
follow the rule between brackets. These actions are usually 
written in pseudo code. 

Neither attribute grammars nor Christiansen grammars 
restrict a priori the way in which their attributes may depend 
on other attributes. Nevertheless, attribute grammars where no 
inherited attribute depends on a synthesized attribute located at 
its right are well-known. They are expressive enough and the 
algorithms to handle them are easy to describe and to program. 
This paper refers only to Christiansen grammars which satisfy 
this condition. 

The following example, borrowed from [3], describes a 
Christiansen grammar for a toy programming language. The 
following is a sample program in that language: 

{  
int i; 
int j; 
i=j; 

} 
A program in this language has two sections (which may be 

empty) enclosed between brackets: 
 --The declaration of all the variables used in the second 

section. Only integer variables are allowed. 
 --The sequence of statements. Each statement ought to be 

an assignment between previously declared identifiers. 
This context-dependent feature may be analyzed without 

any auxiliary symbol table. 
The preceding program can be described by the following 

Christiansen grammar: 
GC={ 
N={<program>(g),  
<decl-list>(gi, go),  
<dcl>(gi, go),  
<alpha-list>(gi, word),  
<alpha>(gi, word),  
<stm-list>(g),  
<stm>(g),  
<id>(g)},  
T={ “{”, “}”, int, a, · · · , z},  
<program>(g),  
P={ 
<program>(↓g0)→“{”<decl-list>(↓g0, ↑g1) 
                                   <stmt-list>(↓g1)“}” {} 
<decl-list>(↓g, ↑g) → {} 
<decl-list>(↓g0, ↑g2)→ <decl>(↓g0, ↑g1) 
                                     <decl-list>(↓g1, ↑g2){} 
<decl>(↓g, ↑g{<id ↓gid>→w})→ 
                 int <alpha-list>(↓g, ↑w){} 

<alpha-list>(↓g, ↑w) → <alpha>(↓g, ↑w){} 
<alpha-list>(↓g, ↑w1w2)→<alpha>(↓g, ↑w1) 
                                          <alpha-list>(↓g, ↑w2){} 
<alpha>(↓g, ↑a) → a{} 
· · ·  
<alpha>(↓g, ↑z) → z{} 
<stmt-list>(↓g) → {} 
<stmt-list>(↓g) → <stmt>(↓g)<stmt-list>(↓g) 
<stmt>(↓g) → <id>(↓g) = <id>(↓g){} } 
} 
where 
 --g0 is the initial grammar for the list of declarations. 

Notice that  g0 has no rule for the nonterminal symbol <id>. 
 --g1 holds the changes made to g0 by the list of 

declarations (each declaration of the form int <identifier>; 
adds to g0 the rule <id> → <identifier>) and becomes the 
initial grammar for the list of statements; for each declared 
variable, g1 contains one rule for nonterminal <id>. 

Notice that  
 --The expression g{<id ↓gid>→w} is the way in which 

rules for the declared variables are added. In the example, the 
set of rules added is 

{<id ↓gid> → i, 
 <id ↓gid> → j } 
where gid must be understood as a new attribute name (with 

no associated value). 
 --By means of the rules for <alpha-list>, the identifier 

name used in the declaration is synthesized as the value of its 
second attribute. 

Figure 1 shows the semantically annotated parse tree for the 
program. It only shows the value of the grammar attributes. 
The word attribute for <alpha> and <alpha-list> does not 
appear in figure 1. Continuous arrows are used for synthesized 
attributes. Changes in the grammars are highlighted by means 
of italic and underlined fonts. The initial value of the grammar 
inherited by the axiom (GC) is the whole grammar itself. 
Christiansen grammars vs. attribute grammars 

Christiansen grammars, initially named Generative 
Grammars, were proposed to describe extensible languages 
(programming languages that allow the user to enrich them 
with new concepts in the form of new linguistic constructs). In 
[6] other formalisms to obtain this goal, including attribute 
grammars, are compared with Christiansen grammars, and the 
following conclusions are drawn: 

 --Christiansen grammars have enough expressive power 
to fully describe, in a natural and elegant way, this family of 
languages. 

 --Christiansen grammars are as suitable as attribute 
grammars for describing the context-sensitive aspects of 
traditional (non-extensible) programming languages. 

 --Christiansen grammars are better for describing 
extensible constructs: The context free rules of an attribute 
grammar are fixed, hence too general; thus, extensibility tends 
to be implemented in the form of very complex constrains on 
attributes whose semantics become too loaded, resulting in not 
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very elegant descriptions. Christiansen grammars, on the other 
hand, describe extensible constructs in a natural way. For 
instance, new control structures can be coded as new syntactic 
rules, and added and removed from the current grammar when 
necessary; new types of expressions can be coded as new 
nonterminals whose production rules can be treated in a 
similar way. Christiansen grammars also handle in an elegant 
way some difficult questions, such as the possible ambiguity of 
the grammar after the user has extended it. 

 --There are some constructs difficult to represent by 
Christiansen grammars (such as forbidding the declaration of 
entities with the same name in the same block, polymorphism 
or recursive declarations); but they are also very difficult to 
represent with attribute grammars.  

B. Evolutionary Automatic Programming 

Evolutionary Automatic Programming (EAP) [7] is the term 
used to represent those systems that use evolutionary 
computation to automatically generate computer programs. 
EAP techniques can be grouped depending on the way 
programs are represented: tree-based systems, which handle 
the derivation trees of the programs, or string-based systems, 
which represent the individuals as strings of symbols. 
Tree-based systems 

The best known tree-based system is Genetic Programming 
(GP), proposed by Koza [8] in the nineties, to automatically 
generate LISP programs that would solve given tasks. A few 
GP extensions have used formal grammars in some way: 
cellular encoding [9], which evolves neural networks; 
Whigham’s approach [10], which adds biases (domain 
dependent knowledge) to GP by means of context free 
grammars, to ensure the syntactic correctness of the 
individuals in the initial population; GPK (Genetic 
Programming Kernel, developed by Horner [11]), which uses a 
tree representation similar to that of Whigham.  

Finally, we shall mention in more detail a few approaches to 
handle context-sensitive constrains: 

[12] proposes a tree-adjunct grammar guided genetic 
programming  (TAG3P). A tree-adjunct grammar is a grammar 
which handles trees rather than strings, by means of the 
adjunct operation, which takes two trees and generates a new 
tree that can be used as a derivation tree. TAG3P uses two 
kinds of related grammars: the context free grammar of the 
target language and its corresponding lexicalized tree-adjunct 
grammar (a tree-adjunct grammar with at least one terminal 
node in every tree). TAG3P shows a good performance when 
solving classical problems (symbolic regression, trigonometric 
identities), due to its efficiency preserving and combining 
building blocks. 

In [13] Hussain et al. evolve artificial neural networks 
encoded by means of attribute grammars, to increase the 
expressive power and performance of the search, while 
preserving syntactic correctness. In this method, genes are 
translated into derivation trees; genetic operators also act 
directly on derivation trees.  

LOGENPRO [14, 15] and DCTG-GP [16], which can be 

considered Prolog (logic) GP implementations. LOGENPRO 
(LOgic grammar based GENetic PROgramming system) 
combines GP and Inductive Logic Programming, and offers a 
tool mainly used for data mining applications. LOGENPRO 
and DCTG-GP (Definite Clause Translation Grammars 
Genetic Programming) use DCG (Definite Clause Grammars), 
the logic version of attribute grammars [17]; consequently, 
both allow the description of context-free and context-sensitive 
constraints. DCTG-GP is inspired by the LOGENPRO system, 
but is not related to Inductive Logic Programming or to 
machine learning and data mining. For the purposes of this 
paper, LOGENPRO and DCTG-GP share two main 
characteristics: both use a Prolog system and represent 
programs by means of their parse trees. 
String-based systems 

String-based systems were initially discarded, because GP 
gave better results. String-based systems try to take advantage 
of the potential benefits of separating genotype and phenotype. 
Tree-based systems do not distinguish both levels explicitly. 
GE (Grammatical Evolution [7]) is the latest, most promising 
string-based approach, which will be further described in more 
detail. Other string-based approaches that use context-free 
grammars have been proposed: Binary Genetic Programming 
[18] contains some of the features fully exploited later by GE. 
GADS [19] (Genetic Algorithm for Deriving Software) and 
CFG/GP [20] (Context Free Grammars Genetic Programming) 
both use context free grammars as their output language 
specification. Other systems handle string-based systems 
without grammars: DiscipulusTM (RML Technologies, 1998) 
[21] is a commercial tool which implements the AIM-GP 
system (Automatic Induction of Machine Code for Genetic 
Programming [22]), greatly improving the performance of GP 
by coding the individuals as low level machine programs.  

This paper is not the first attempt to add semantics to GE. 
The same authors have described previously Attribute 
Grammar Evolution [23], a variant of GE that replaces context 
free grammars by Attribute Grammars, one of the better known 
non-adaptable extensions of context free grammars, that makes 
them equivalent to type 0 Chomsky grammars. There are also 
other works which use at the same time GE and attribute 
grammars ([7] for the GAuGE algorithm and [24-25] for the 
knapsack problem), GE and context-sensitive grammars [26], 
or GE and some adaptive forms of grammars [27]. 
Comments 

 Other approaches are difficult to classify in this way. In 
[28], for instance, Paterson applies a similar approach to GE to 
include a context free grammar in GP, to map the genotype 
into a phenotype. Phenotypes can be expressed as strings or as 
trees.  
 [29] [30] and [31] describe PRODIGY (Program 
distribution estimation with grammar model), a framework 
which extends estimations of distribution algorithms (EDA) to 
the Genetic Programming domain. The basic idea of EDA is to 
estimate the probability distribution of optimal solutions by 
means of evolutionary techniques: a first model of the 
distribution is proposed and sampled to produce the initial 
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population. The model is iteratively refined and sampled until 
satisfying a termination condition. Shan et al. use stochastic 
context free parametric Lindenmayer grammars to include the 
main properties of GP into the model: internal hierarchical 
structure, locality of dependence, position independence, 
modularity and non-fixed complexity. They use two 
parameters: depth and location in the tree where the rules can 
be applied. While evolving the model, the structure and the 
probabilities of the grammar are modified (learned) separately. 
PRODIGY has been successfully used with some classic GP 
and learning problems such as symbolic regression and time 
series prediction. This is not the only attempt to use stochastic 
context free grammars in GP. [32], [33] and [34] propose 
similar models that only modify the probabilities of applying 
the rules of the grammar. 

Reference [7] describes and shows theoretical and empirical 
arguments indicating that GE may be more powerful, general 
and suitable than other string and tree based systems. It is 
worth noticing that approaches mixing logic and genetic 
engines to automatically generate programs share a few 
disadvantages: Christiansen [4] reports the large amount of 
backtracking and the potentially infinite loops inherent to the 
underlying resolution strategy of Prolog systems, and the 
theoretical semi-decidability of first order logic. This 
drawback could make Prolog incompatible with applications 
where performance is important, such as most Evolutionary 
Automatic Programming experiments. We are not comparing 
our approach to those based on logic, because we intend to 
keep our algorithm independent of the resolution engine. Other 
EAP algorithms previously introduced have been exhaustively 
compared to GE [7], thus we only have to compare our results 
with those of GE. However, we have proposed two different 
ways of adding semantics to GE (AGE [23] and CGE, the 
topic of this paper), both approaches having been compared 
with GE. The comparison between AGE and CGE, their 
performance, their expressive power, the kind of problems 
better tackled by each approach, and so forth, will be the 
subject of our future research. 

The advantages of CG over AG described in previous 
paragraphs are inherited by CGE; so CGE provides the user 
with a more flexible, natural and elegant formalism than AGE 
to describe the candidate solutions. Our experiments suggest 
also some performance advantage; it seems that this depends 
on the way in which CGE moves across the search space. 
Further experiments will be necessary to confirm and explain 
these inklings. 

C. Grammatical evolution (GE) 

GE [7] is an EAP algorithm based on strings, independent 
of the language used. Genotypes are represented by strings of 
integers (each of which is named codon) and the context-free 
grammar of the target programming language is used to 
deterministically map each genotype into a syntactically 
correct phenotype (a program). In this way GE avoids one of 
the main difficulties in Evolutionary Automatic Programming 
[7]: the results of genetic operators are guaranteed to be 
syntactically correct, while allowing the inclusion of multiple 

types.  
The following scheme shows the way in which GE 

combines traditional genetic algorithms with genotype-to-
phenotype mapping: 
1) Generate at random an initial population of genotypes. 
2) Translate each member of this initial set into its 

phenotype. 
3) Sort the genotype population by their fitness (computed 

from the phenotypes). 
4) If the best individual is a solution, the process ends. 
5) Create the next generation: the mating-pool is chosen by 

means of a fitness-proportional parent selection strategy. 
Their genetically modified offspring is generated, and the 
worst individuals are replaced by them. 

6) Go to step 2. 
 

II. MOTIVATION 

GE being a general purpose stochastic search technique that 
uses a context-free grammar to avoid syntactic mistakes, it 
should be possible to improve its performance by adding some 
semantics, so that only syntactically and semantically correct 
programs are generated. In artificial intelligence, informed 
search algorithms usually have more power than their blind 
counterpart. It seems reasonable to hope that some of the 
approaches proposed since the sixties to formally describe the 
“semantics” of high level programming languages may be 
useful to our purpose. Different approaches to expressing the 
semantics of high level programming languages have 
advantages and drawbacks, but provide the language designer 
with a set of complementary tools. In the future, we will 
perform a study as wide as possible, but this paper is only 
focused in the use of Christiansen grammars. 
 

III. CHRISTIANSEN GRAMMAR EVOLUTION (CGE) 

Normal GE genotypes are deterministically translated by 
applying to each codon the following process: 
1) Choose the leftmost nonterminal symbol in the sentential 

form being processed. 
2) Number the n right hand sides of all the rules for this 

nonterminal symbol (from 0 to n-1) where the rules are in 
an arbitrary order which should be maintained during the 
whole process. 

3) Select the right hand side of the rule whose number equals 
codon mod (number of right hand sides for this 
nonterminal).  

4) Derive the next word by replacing the nonterminal by the 
selected right hand side. 

Several GE variants try to make this mapping more flexible. 
GE [35] is a position-independent variation on GE’s typical 
genotype-phenotype mapping process. The non terminal 
symbol changed is not necessarily the leftmost one, but is 
computed from the codon by applying the function 
mod(codon, number of non terminals in the sentential form). 
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Position independence seems to be an important feature to 
increase the performance of evolutionary algorithms and has 
also been considered by the same authors in Chorus [36] and 
GauGE [37]. 

Christiansen grammar evolution makes the GE genotype-to-
phenotype mapping adaptive, by using a Christiansen grammar 
in place of the context-free grammar normally used in GE. The 
Christiansen grammar is designed to express both the syntactic 
and the semantic conditions that a valid phenotype must 
comply with.  

The mapping of GE genotypes to their corresponding 
phenotypes has two important properties: 

 -- The mapping implicitly builds the derivation tree in 
depth-first order (choosing each time the left deepest node).  

 -- The mapping is deterministic: a given genotype has to 
be translated into the same phenotype under all possible 
circumstances. This is accomplished by numbering the 
different right hand sides for the same nonterminal and 
computing the “codon mod number of right hand sides” 
operation. 

A. Genotype-to-phenotype mapping 

CGE adds the following tasks to the previous algorithm: 
1.1) Evaluate the attributes. 
1.2) Select the applicable rules from the first attribute in each 

nonterminal. 
The attributes are evaluated by means of the derivation tree. 

Each time that a node of the tree is expanded, the values of all 
the attributes that can be evaluated are computed in the 
following way:  

 --Attributes inherited from the parent symbol are 
evaluated directly. 

 --If the node symbol is prefixed by other symbols in the 
right hand side where it appears, attributes inherited from the 
left siblings are also evaluated. 

 --After expanding the last child of a node, the parent 
synthesized attributes are evaluated. 

Our algorithm borrows a few interesting theoretical results 
from syntactic analysis techniques. Reference [38] shows that 
syntactically driven left-to-right translation schemes guarantee 
the proper evaluation of the kind of attributes previously 
described. The same reference also shows that this kind of 
attributes can be considered complete (they can represent any 
kind of attributes) and are compatible with a left to right depth-
first route across the derivation tree. Since the genotype-to-
phenotype mapping builds trees to derive words, rather than  
to analyze them, backtracking is needed to ensure the proper 
conclusion of the translation. 

Notice that the main feature of Christiansen Grammars is the 
modification of the set of rules applicable to each given 
nonterminal. This is done by removing and adding rules to the 
initial inherited grammar, keeping the initial order (new rules 
are added to the end). Rules are numbered after changing the 
grammar and before each derivation step, in this way ensuring 
a deterministic genotype-to-phenotype mapping.  

B. Example 

The proposed algorithm has been used successfully to solve 
the following sample problem: “given any logical function 
with a given number of input variables, find a logically 
equivalent symbolic expression that uses only the operators in 
one of the three following complete sets: {and, or, not}, 
{nand}, {nor}.” 

The set of logical operators: {and, or, not, nand, nor}, 
contains the following five complete subsets {and, or, not}, 
{nand}, {nor}, {and, not} and {or, not}, any of which is 
capable of representing all the possible logic functions. In this 
paper, we are interested in finding a symbolic expression that 
represents a target logic function that uses only the operators 
in one of the first three complete subsets. A more detailed 
study, taking into account all the complete subsets, will be 
performed in the future to better characterize the properties of 
the CGE approach. 

The following Christiansen grammar will be used to 
represent logic expressions with six input variables in postfix 
notation (the axiom <fb> stands for function of Boolean 
values):  

Gb= {{<fb>(gi, go), <op>(gi, go), <op1>(gi, go)}, 
{and, or, not, nand, nor, v0, v1, v2, v3, v4, v5}, 
<fb>(gi, go), 
P={ 
<fb>(g0, g3) 

<fb1>(g0, g1)<fb2>(g1,g2)<op>(g2,g3){}   
<fb>(g0,g2) <fb1> (g0,g1)<op1>(g1,g2) {}    
<fb>(g, g) v0{}         
<fb>(g, g) v1{}         
<fb>(g, g) v2{}         
<fb>(g, g) v3{}         
<fb>(g, g) v4{}         
<fb>(g, g) v5{}         
<op>(g, gm)  

and{gm=g-{<op>nand, <op>nor}}   
<op>(g, gm) or{gm=g-{<op>nand, <op>nor }} 
<op>(g, gm)  

nand {gm=g- 

{<op>and, 

<op>or, 

<fb><fb><op1>, 

<op1>not, 

<op>nor} } 
<op>(g, gm)  

nor{gm=g- 

{<op>and, 

<op>or, 

<fb><fb><op1>, 

<op1>not, 

<op>nand}} 
<op1>(g,gm)not{gm=g-{<op>nand, <op>nor}} 
}} 
Notice that the only allowed modifications remove from the 
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grammar the operators that do not belong to the selected 
complete set. This is highlighted with a bold and italic font in 
the last five rules. 

The first rule shows how the modifications in the grammar 
are propagated. This rule represents the transformation of a 
Boolean function into a binary operation. 

 --The initial grammar inherited by the left hand side of 
the rule g0 is also inherited by its first child as its initial 
grammar. 

 --The possible modifications made by the sub-expression 
are recorded in the synthesized grammar g1, which is 
inherited by the second sub-expression as its initial grammar.  

 --Possible changes made during the analysis of <fb2> are 
recorded in the synthesized grammar g2, which is inherited by 
the binary operator term as its initial grammar. 

 --The binary operator modifies its initial grammar by 
removing the operators that do not belong to the same 
complete set. These changes are recorded in the synthesized 
grammar g3, which is passed back to the parent rule. 

Figures 2-5 show the genotype-to-phenotype mapping. The 
derived strings use an italic font for the terminal symbols and 
an italic and underlined font for the current nonterminal 
symbol. The tree shows attribute inheritance by means of 
dotted arrows, synthesis by solid ones, and uses an italic and 
underlined font to highlight synthesized attributes.  

In the beginning (figure 2), no codon has been consumed, 
the derivation tree has only the root, with the axiom of the 
grammar, and the starting string is also the axiom.  

Figure 3 shows the first derivation, where the rule numbered 
0 (180 mod 6) is applied to the axiom. The root is expanded in 
the tree, three new children nodes are created, but only the left 
most one inherits its first grammar from its father.  

Figure 4 shows the first change in the grammar: when the 
node that contains symbol <op1> is expanded, and the leaf 
with the terminal symbol not is added, the semantic actions 
that compute the value of its second attribute remove from the 
production rules the subset {<op>nand, <op>nor}. In this 
way, the rules for logical operators are reduced to the set 
{<op>and, <op>or, <op1>not}. This is the only 

effective change over the grammar, because the generation of 
any new valid operator (and, or and not) will remove again the 
same subset of rules ({<op>nand, <op>nor}), changing 
nothing. 

Figure 5 shows the end of the derivation: there are only 
terminal symbols in the current string, and all the nodes of the 
derivation tree have computed the value of all their attributes. 

 

C. Results 

Table 1 shows the parameters used in this experiment. 
Mutation is applied to every descendant. If the mutation ratio 
randomly determines that the genotype has to be mutated,  a 
single codon (only one) is randomly chosen and replaced by 
another value. This is not the only possible implementation: in 
[7] mutation operates on bits, rather than individuals, which 
allows multiple mutations in the same genotype (even multiple 
mutations in the same codon). These differences must be taken 
into account when comparing the actual values for the 
mutation ratio: even the highest value in our experiments 
corresponds to low values in the alternative implementation 
described in [7]. 

This problem is increasingly difficult for a higher number of 
input variables. 

Figure 6 shows the results after 200 runs of the algorithm 
for less than 400 generations. The number of generations is 
represented in the x-axis while the y-axis corresponds to the 
cumulative frequency of success. 

 --The curve with circular marks shows the result of the 
problem with four input variables. The target logic function 
used was (v0 or v1) and (v2 or v3). 100% of the runs reached 
success before 324 generations. 

 --The curve with square marks shows the result of the 
problem with five input variables. The target logic function 
used was (v0 or v1) and (v2 or v3) and v4. 13% of the runs 
reached success before 397 generations. 

 --The curve with triangular marks shows the result of the 
problem with six input variables. The target logic function 
used was (v0 or v1) and (v2 or v3) and (v4 or v5). 1.5% of the 
runs reached success before 391 generations. 

 

D. Performance comparison 

As previously indicated, we only have compared empirically 
the performance of CGE with that of GE. Even in this case, it 
is difficult to choose the appropriate problem for the 
comparison, because:  

-- Christiansen grammars are equivalent to type 0 Chomsky 
grammars, but we decided to choose the target class of 
phenotypes context free, since otherwise we would not be able 
to compare CGE with GE, showing that the size of the search 
space is not the only performance advantage of CGE over GE. 

-- On the other hand, some syntactic features of the problem 
have to be described as context sensitive constraints, otherwise 
the Christiansen Grammar would have a trivially empty 
semantics. 

TABLE I 
PARAMETERS FOR THE EXPERIMENT 

Parameter Explanation 

Input set All the possible inputs for the function 
Fitness function Number of successes of the candidate 

solution over the whole input set 

Initial population Random 
Population size 500 individuals 
Replacement strategy Generational 
Parent selection strategy Fitness-proportional probability. 
Genotype size Variable length, initially within the range 

[10,50] 
Codon value Within [0,256] 
Crossover One point crossover chosen at random 

within [0, number of used codons] 
Crossover ratio 0,9 
Mutation ratio 
(individual) 

0,9 

Maximum generation 400 
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The following decisions have been made: 
-- We have used the Christiansen Grammar of the previous 

example. It is well known that its language is context free. 
-- We have designed two different context free grammars to 

compare GE and CGE performance. One of them is the 
context-free scheme of the Christiansen grammar (the context 
free grammar one gets by removing the semantic actions and 
attributes from the Christiansen grammar). The other is a 
context free grammar for the same language: the union of the 
grammars for the three context free languages of logical 
expressions, each with a complete set of operands. 

D.1 First experiment 

The GE parameters used are the same as in the CGE 
experiments, except for the grammar. The following context 
free grammar has been used: 

Gb= {{<fb>,<op>,<op1>}, 
{and, or, not, nand, nor, v0, v1, v2, v3, v4, v5}, 
<fb>, 
P={<fb><fb><fb><op>, 
<fb><fb><op1>, 
<fb>v0, 
<fb>v1, 
<fb>v2, 
<fb>v3, 
<fb>v4, 
<fb>v5, 
<op>and, 
<op>or, 
<op>nand, 
<op>nor, 
<op1>not} 
} 
With this context-free grammar, there is no direct way to 

express the restriction that the logic functions in different 
complete sets cannot be mixed. Therefore, we have tried two 
approaches: in the first one, the worst fitness value is assigned 
to those individuals which merge operators in different 
complete sets; in the second, the fitness value is not punished, 
and solutions which merge operators are removed by hand 
after the experiment finishes. 

Figure 7 compares the results of these approaches for the 
experiment with four variables. The circular marks represent 
the CGE case (also shown in figure 6). The triangular marks 
represent the GE results: only 16% of the runs reached success 
after 400 generations, compared to 100% with CGE. The 
square marks represent GE results without fitness penalties: 
only 24% of the runs reached success after 400 generations, 
compared to 100% with CGE. 

It is worth noticing that the algorithm using standard GE 
was unable to find a solution for the function with six input 
variables in any of the runs we performed. 

D.2 Second experiment 

The context free grammar of this experiment is the 
following: 

Gb= 

{{<fb>,<fb1>,<fb2>,<fb3>,<op>,<op_2>,<op_3>,<op1>}, 
{and, or, not, nand, nor, v0, v1, v2, v3, v4, v5}, 
<fb>, 
P={<fb><fb1>, 
<fb><fb2>, 
<fb><fb3>, 
<fb1><fb1><fb1><op>, 
<fb1><fb1><op1>, 
<op1>not 
<op>or, 
<op>and, 
<fb1>v0, 
<fb1>v1, 
<fb1>v2, 
<fb1>v3, 
<fb1>v4, 
<fb1>v5, 
<fb2><fb2><fb2><op_2>, 
<fb2>v0, 
<fb2>v1, 
<fb2>v2, 
<fb2>v3, 
<fb2>v4, 
<fb2>v5, 
<op_2>nand, 
<fb3><fb3><fb3><op_3>, 
<op_3>nor, 
<fb3>v0, 
<fb3>v1, 
<fb3>v2, 
<fb3>v3, 
<fb3>v4, 
<fb3>v5} 
} 
Figure 8 compares the results of both approaches for the 

experiment with four, five and six variables after 200 runs of 
the algorithm for less than 400 generations. Small marks are 
used for the CGE results; big marks are associated to GE. The 
circular marks represent the case with four variables. The 
figure shows that the performance of CGE is the same as that 
of GE in that case. Square marks represent the experiment with 
five variables. In this case, CGE improves greatly the 
performance of GE: many more runs find the solution, and the 
maximum cumulative success frequency is also higher: 0.03% 
of the runs reached success after 400 generations with GE, 
compared to 13% with CGE. Triangular marks are used for the 
case with six variables. Notice that the algorithm using 
standard GE was again unable to find a solution for this case in 
any of the runs we performed. 

D.3 Third experiment 

Actually, the previous experiment does not show a 
remarkable performance improvement of CGE over GE in the 
easiest case. Nevertheless, CGE seems to be better as the 
problem becomes harder (five and six variables).  
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If it does not matter which complete set of logical functions 
is used to solve this problem, GE could reduce its search space 
by using a context free grammar for each of the possible sets. 
This experiment is really made of three tests, each of which 
uses only one set of logical functions.  

The three context free grammars for this experiment are the 
following: 

Gand_or_not= {{<fb1>,<op>,<op1>}, 
{and, or, not, v0, v1, v2, v3, v4, v5}, 
<fb1>, 
P={<fb1><fb1><fb1><op>, 
<fb1><fb1><op1>, 
<op1>not 
<op>or, 
<op>and, 
<fb1>v0, 
<fb1>v1, 
<fb1>v2, 
<fb1>v3, 
<fb1>v4, 
<fb1>v5}} 
Gnand= {{<fb2>,<op_2>}, 
{nand, v0, v1, v2, v3, v4, v5}, 
<fb2>, 
P={<fb2><fb2><fb2><op_2>, 
<fb2>v0, 
<fb2>v1, 
<fb2>v2, 
<fb2>v3, 
<fb2>v4, 
<fb2>v5, 
<op_2>nand}} 
Gnor= {{<fb3>,<op_3>}, 
{nor, v0, v1, v2, v3, v4, v5}, 
<fb3>, 
P={<fb3><fb3><fb3><op_3>, 
<op_3>nor, 
<fb3>v0, 
<fb3>v1, 
<fb3>v2, 
<fb3>v3, 
<fb3>v4, 
<fb3>v5}} 
Figures 9, 10 and 11 compare the results of both CGE and 

GE approaches for the experiments with four, five and six 
variables after 200 runs of the algorithm for less than 400 
generations. There are several important conclusions: 

 --GE performance strongly depends on the complete set 
of logical functions used. So, using a general grammar which 
considers the three cases at the same time seems advisable, 
even though the search space becomes greater. Therefore, 
CGE has shown to be a better choice in this case. 

 --CGE is actually better than GE in some cases. In fact, 
for 4 variables, GE is better only for the nor set and worse for 

the and_or_not set, while for the nand set GE never finds any 
solution. For 5 variables, GE is better for the and_or_not case, 
and never finds solutions for the nor and the nand cases. 
Finally, for 6 variables, the CGE approach is about as good as 
GE for the and_or_not case. Table 2 compares the mean and 
the variance of the number of generations needed to reach a 
solution using CGE, GE with fitness punishing, and GE 
without penalties, for the problem with 4 variables, and the 
first two for the problem with 5 variables. We have applied the 
Welch-test [39] to our distributions to estimate the confidence 
of the conclusion. The Welch-test is adequate for stochastic 
variables with dissimilar variances. The default hypothesis is 
that GE is better than CGE (CGE means would be greater or 
equal than GE means). This hypothesis can be discarded, 
because the Welch-test concludes that its confidence value is 0 
in all the comparisons but one, where it is 1e-12. Therefore, 
we may conclude that CGE solutions are faster than GE with 
about a 100% confidence.   

   --In conclusion, CGE provides a much better general 
approach than GE, as it always finds a solution, while GE with 
a single complete set may never find one.  

IV. CONCLUSIONS 

This paper proposes CGE, a new Evolutionary Automatic 
Programming method that improves the expressive power of 
GE by adding a way to add semantics to the rules that an 
individual must comply with, before it can be generated. 

The experiments we have performed provide an inkling that 
this procedure is better than standard GE (which only uses 
syntax), increasing the efficiency of the algorithms by orders 
of magnitude. Obviously, more experiments should be 
performed to confirm this inkling. 

This paper shows that the performance of GE to solve 
context free problems is clearly improved by CGE, and 
suggests the way in which it is possible to find problems 
difficult to solve by GE, but which are tackled naturally and 
efficiently by CGE.  

The performance comparison between GE and CGE also 
suggests that the improvement does not actually depend on the 
context dependent nature of constraints, but on the ease of the 
formalism used to express them. This has been made clear by 
us in a different publication [40], where we have attempted to 
find a solution of  the well-known P-median problem by means 
of both GE and CGE. 

In the future we plan to apply our approach to new problems 
difficult to solve without adding some semantics to the 
description of the candidate solutions. We shall also test other 
ways to specify semantics different from Christiansen 
grammars and attribute grammars. Our group also plans to 
perform both theoretical and empirical studies to characterize 
the properties of this technique, and to design a general 
methodology to automatically solve given tasks by means of 
variants of GE that include semantics.  

One of the main questions that this methodology still has to 
answer is how to decide in advance which EAP is more 
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suitable for a given problem. That is, if the problem under 
consideration should be tackled with or without semantics and, 
in the first case, if AGE or CGE should be used. At this point, 
choosing CGE rather than AGE is a matter of taste, comfort 
and ease of use. 
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Figure 1: semantically annotated parse tree of the program 
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Figure 2: CGE genotype-to-phenotype mapping example, initial step 
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Figure 3: CGE genotype-to-phenotype mapping example, second step 
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Figure 4: CGE genotype-to-phenotype mapping example, third step 
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Figure 5: CGE genotype-to-phenotype mapping example, result 
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Figure 6: CGE performance for different instances of the function with boolean values problem 
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Figure 7: CGE vs. GE performance comparison for the first experiment 
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Figure 8: CGE vs. GE performance comparison for the second experiment 
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Figure 9: CGE vs. GE performance comparison for the third experiment: 4 variables 
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Figure 10: CGE vs. GE performance comparison for the third experiment: 5 variables 
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Figure 11: CGE vs. GE performance comparison for the third experiment: 6 variables 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


