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Abstract

Current three-dimensional (3D) genome modeling platforms are limited by their inability to account for radial

placement of loci in the nucleus. We present Chrom3D, a user-friendly whole-genome 3D computational modeling

framework that simulates positions of topologically-associated domains (TADs) relative to each other and to the

nuclear periphery. Chrom3D integrates chromosome conformation capture (Hi-C) and lamin-associated domain

(LAD) datasets to generate structure ensembles that recapitulate radial distributions of TADs detected in single cells.

Chrom3D reveals unexpected spatial features of LAD regulation in cells from patients with a laminopathy-causing

lamin mutation. Chrom3D is freely available on github.
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Background

Advances in molecular and computational techniques have

enhanced our understanding of the three-dimensional (3D)

organization of eukaryotic genomes [1]. Current interpret-

ation of chromosome-chromosome contacts determined

from genome-wide chromosome conformation capture

(Hi-C) data pictures a hierarchically organized genome

with fundamental ~1 Mb units termed topologically

associated domains (TADs) [2–4]. In mammals, the gen-

omic linear position of TADs and TAD boundaries are

overall conserved between cell types [2, 3]. However, TADs

can differ in their internal chromatin folding patterns,

chromatin states, and transcriptional activity [3], and con-

tacts between TADs can be altered during cell differenti-

ation [5]. While these observations suggest an orchestrated

genome topology [6, 7], processes modulating transcrip-

tional activity of TADs remain largely unknown.

One way for the cell to regulate chromatin activity in

TADs would be to place them in distinct nuclear com-

partments, such as the nuclear interior which is condu-

cive of transcriptional activity or the nuclear periphery

(NP) which provides a more repressive environment. At

the NP, chromatin interacts with the nuclear lamina, a

meshwork of A- and B-type nuclear lamins [8], through

lamin-associated domains (LADs) [9]. While lamin B1

(abbreviated as LMNB1 here) is restricted to the NP,

lamins A and C, splice variants of the LMNA gene

(abbreviated as LMNA), also exist in the nuclear inter-

ior [10] where they seem to play a role in gene regula-

tion and differentiation [11] presumably by interacting

with chromatin [6, 7]. Thus, a dynamic association of

TADs with the NP would constitute a mode of regulation

of transcriptional activity within TADs [3]. However, TAD

positioning in the 3D nucleus space has not been exam-

ined because there are currently no means of assessing

spatial mammalian genome conformation using chroma-

tin anchor-point information. This limits our understand-

ing of principles of genome dynamics.

Chromatin connections with intranuclear structures

such as the nuclear lamina [9] contribute to spatial gen-

ome organization and regulation of gene expression. In
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yeast, attachment of centromeres to the spindle pole

body and tethering of telomeres to the NP [12–14] pro-

vide constraints on chromosome movement which have

proven useful to generate 3D genome structures [15, 16].

These observations suggest that integrating positional

constraints from various genomic datasets, such as

LAD information from chromatin immunoprecipitation

sequencing (ChIP-seq) of nuclear lamins, in addition to

Hi-C, would provide more realistic structures of the

mammalian genome.

A strategy to study genome conformation is to compu-

tationally model 3D structures of chromatin and analyze

the properties of these structures. 3D genome modeling

approaches have been applied at various scales and reso-

lutions [16–33]. One approach to modeling genomes

from Hi-C data is to reconstruct a consensus 3D struc-

ture, using multidimensional scaling [17, 20, 21, 34] or

Bayesian inference methods such as Bayesian 3D con-

structor for Hi-C data (BACH) and derivatives thereof

[35]. Other methods recapitulate structural variations in

genome conformation across cells in a population by

simulating ensembles of structures [18, 19, 24, 28, 31,

35] or by data deconvolution [22, 24, 25, 31, 36]. A

commonly used framework that models ensembles of

structures is the Integrative Modeling Platform (IMP)

[24, 31, 36, 37] (https://3dgenomes.github.io/TADbit).

However, IMP has not been designed for genome mod-

eling and requires advanced programming skills. An-

other constrained optimization approach (BACH-MIX)

designed for local genome modeling, relies on Bayesian

inference of 3D chromosome arrangements to assess

variations in genome structures in a cell population

[35]. BACH-MIX, however, is not designed to incorpor-

ate positional constraints for loci in the nucleus. There

is therefore no user-friendly framework that models the

3D genome over a wide range of scales and that incor-

porates chromosome positional constraints.

We introduce Chrom3D, a genome 3D modeling plat-

form designed to integrate positional constraints based on

association of loci with intranuclear anchors. The combin-

ation of Hi-C and LAD information enables genome-wide

radial positioning of TADs in ensembles of 3D structures.

We also show that Chrom3D provides new opportunities

to investigate mechanisms of spatial gene regulation in dis-

eases susceptible to affect spatial chromatin organization.

Results

A 3D genome modeling framework integrating

chromosomal interactions and radial position information

Chrom3D simultaneously incorporates chromosomal

interaction constraints and constraints from chromosome

association with the nuclear lamina, at the NP (Fig. 1a;
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Fig. 1 Chrom3D integrates Hi-C and nuclear lamin ChIP-seq data to provide an ensemble of 3D genome structures with radial positioning information

of loci. a Chrom3D principles. Hi-C and lamin ChIP-seq data are combined to define beads (TADs) subjected to interaction constraints between them,

based on Hi-C data, or to interaction constraints with the NP, based on LMNA ChIP-seq data (LADs). Hi-C and LAD maps shown are dummies for

explanation purposes. Additional file 1: Figure S2 shows an actual representation of the relationship between TADs and LADs. During a simulation,

TADs are rearranged with a modeled nucleus by a chromosome move (orange arrow) selected among a set of five possibilities (Additional file 1: Table

S1) in order to juxtapose two interacting TADs (red beads), and position a LMNA-associated TAD at the NP (blue bead). Radius of the modeled nuclei is

5 μm. b Loss-score values and representative structures during a simulation; each chromosome is colored differently. c Example of a Chrom3D whole-

genome 3D structure; chromosomes are distinctively colored. d Tomographic views of the structure in (c), showing LMNA-associated TADs

(blue beads), all interacting TAD pairs (red beads), and interacting TAD pairs in which at least one TAD is associated with LMNA (purple “merged”

beads). Gray beads visualize all other TADs. e Percentage of TADs at the NP as a function of Hi-C and LMNA constraints across 400 structures;

**P < 2.2 × 10–16; *P = 8.53 × 10–5 (Mann–Whitney U tests)
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Additional file 1: Figure S1). Each chromosome is mod-

eled as a beads-on-a-string chain where each bead repre-

sents a genomic contact domain (TAD). To develop

Chrom3D, we integrated statistically significant pair-wise

interactions between TADs (interacting TAD pairs) identi-

fied from high-resolution Hi-C data in HeLa cells [38] and

association of TADs with the NP determined by ChIP-seq

of LMNA also in HeLa cells [7] (Additional file 1: Figure

S1). In effect, if a DNA sequence identified as a LAD can

be assigned to a TAD (see “Methods”), Chrom3D will con-

strain this TAD to the NP; we refer to such TADs as

LMNA-associated TADs (Additional file 1: Figure S1).

Chrom3D therefore emphasizes constraints that are sig-

nificantly enriched in the population-based Hi-C and

lamin ChIP-seq data; Additional file 1: Figure S2 depicts

all positional constraints for each chromosome. Instead of

optimizing particular distances between a large number of

bead pairs, our approach enables an emphasis on the sub-

set of bead pairs that significantly interact in the data.

Chrom3D is based on Monte Carlo (MC) optimization

with the goal of minimizing a loss-score function. The

optimization process starts from random self-avoiding

chromosome structures. Using the constraints described

above imposed by TAD-TAD and TAD-LMNA interac-

tions, iteration invokes one of five predefined local bead

moves, affecting one or multiple beads while preserving

bead chain connectivity (Fig. 1a; Additional file 1: Figure

S3). This is in contrast to previous MC-based genome

modeling where each bead is moved independently [18,

24, 31]. We model the genome at TAD (and sub-TAD)

resolution from 13,878 beads, each spanning ~230 kb. In

the simulations, TADs constrained by LADs are pushed

toward the NP while Hi-C-constrained interacting TAD

pairs are attracted to each other. The resulting Euclidean

distances are assessed through a loss-score optimized until

convergence is reached (Fig. 1b). The result of one simula-

tion is a 3D modeled structure of the entire human gen-

ome where the concept of chromosome territories is

respected (Fig. 1c; see also below for analysis of modeled

chromosome territories). Of note, the lamin constraint is

neutral with respect to the detection of chromosome

territories in the modeled structures (Additional file 1:

Figure S4a).

Since the optimization method is non-convex, a given

simulation run may result in the representation of a struc-

ture from a local optimum in the loss-score function.

Thus, to obtain a statistical estimate of the variability in

the optimized structures, we generated 400 structures,

each from 2 × 106 iterations. We show that TADs associ-

ated with LMNA are mainly placed towards the NP

whereas interacting TAD pairs without a LMNA-directed

peripheral positional constraint are more evenly distrib-

uted in the nucleus (Fig. 1d, e). Interaction matrices

reconstructed from the modeled structures show strong

correlation with matrices generated from input Hi-C data

for all chromosomes, providing validation to the struc-

tures (Additional file 1: Figure S5). We then defined the

NP as a 1 μm thick outer “shell” partitioning the modeled

nucleus into two compartments of equal volumes (Fig. 2a).

As expected from microscopy observations, computation

of chromatin (bead) density as a function of distance from

the nucleus center shows that chromatin is not uniformly

distributed in the modeled nuclei (Additional file 1: Figure

S4b). Moreover, we find that across the 400 structures,

gene density and expression level are lowest in TADs posi-

tioned at the NP (Fig. 2b, c). This is consistent with the

gene-poor content and overall heterochromatic state of

chromatin in this compartment [9]. Chrom3D therefore

enables the reconstruction of 3D genome structures in-

cluding a LMNA-directed constrained positioning of loci

at the NP.
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Fig. 2 Characterization of TADs modeled at the NP and in the

nucleus center. a Definition of periphery, center, and intermediate

regions used to ascribe a radial position of TADs in Chrom3D

structures. Volumes of the peripheral 1 μm thick “shell” (light gray)

(NP) and of the nucleus “core” (dark gray) are equal, given a nucleus

of 5 μm radius. A TAD is assigned to the NP if placed in the shell

in > 67% of 400 structures, to an “intermediate” location if placed in

the shell in 33–67% of the structures, and to the center if placed in

the shell in < 33% of the structures. b Gene density and (c) gene

expression level in TADs positioned at the periphery, center, or

intermediate regions across 400 structures. FPKM values in (c) are

from RNA-sequencing data downloaded from NCBI GEO accession

number GSE33480
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Comparison of Chrom3D with IMP

We next compared Chrom3D with IMP, a popular

framework for ensemble 3D genome modeling. To this

end, we customized IMP to include LAD information as

radial positional constraints. Simulation time is slightly

faster with Chrom3D (Additional file 1: Figure S6a). Im-

portantly, IMP tends to draw LMNA-containing TADs

(beads) to the NP by stretching distances between con-

secutive beads, thereby violating chain continuity, espe-

cially for TADs associated with LMNA (Additional file 1:

Figure S6b, c). We attributed this to IMP’s permutation

strategy which involves randomly repositioning single

beads, whereas by design Chrom3D always connects beads

(Additional file 1: Figure S6b, red line). Moreover, using

many beads, IMP generates large and intermingled chro-

mosomes (Additional file 1: Figure S6d, e) that are less el-

lipsoidal and with greater variation in asphericity, beyond

the 1–2 μm radius of chromosome territories estimated

from microscopy studies [39] (Additional file 1: Figure S6f,

g). This is likely due to initialization in an unconnected

configuration. Thus, despite IMP’s suitability for 3D gen-

ome modeling of coarse-grained systems, Chrom3D more

favorably models 3D genome structures with bead sizes at

TAD and sub-TAD resolution from the constraints im-

posed in our system.

Chrom3D is able to model local chromatin conformation

We assessed whether Chrom3D was scalable to restriction

fragment-level size by modeling the ENCODE ENm008

region containing the α-globin locus, whose 3D conform-

ation has been inferred from 5C data [18]. Clustering of

1000 Chrom3D-simulated conformations with no lamin

constraint (see “Methods”) reveals greater structural vari-

ability in erythroleukemia K562 cells where the α-globin

gene is expressed, than in lymphoblastoid GM12878 cells

where it is repressed (Additional file 1: Figure S7a).

Chrom3D structures also show compactness of the locus

consistent with the previous structure and fluorescence

in situ hybridization (FISH) data and with expression of

the gene in these cell types [18] (Additional file 1:

Figure S7b–d). We conclude that Chrom3D is also

suited for structural chromatin modeling at the gene

locus level.

TADs associated with LMNA are more centrally placed

than those associated with LMNB1

Association of TADs with the nuclear lamina and inter-

actions between TADs reflect complementary but also

potentially conflicting information on spatial positioning:

two TADs may be predicted to interact, but peripheral

assignment of only one (if associated with LMNA) may

preclude them from being juxtaposed. Accordingly, we

find that 40% of TADs associated with LMNA are placed

in the peripheral 1 μm shell in our structures (Fig. 3a).

This indicates that not all TADs associated with LMNA

can be assigned to the NP in a given structure. We next

modeled the radial placement of TADs in 400 new

structures modeled using either LMNA or LMNB1 [7]

as peripheral constraints. The results show that a LMNA

constraint is less consistent with TAD placement at the

NP than a LMNB1 constraint (Fig. 3a; P = 9.53 × 10–7;

Wilcoxon signed-rank test), in line with a role of

LMNA in chromatin organization also in the nuclear

interior [6, 40].

Previous FISH analysis simultaneously probing 25

LMNB1 LADs in single HT1080 cells show that only

32% of LADs can be simultaneously detected at the NP

(defined there as < 0.7 μm, or 8 pixels, from the nucleus

edge) in a given nucleus [41]. This proportion is remark-

ably similar to that of TADs associated with LMNB1

localized within 0.7 μm of the nucleus edge across our

400 Chrom3D structures (30.5%; Fig. 3a, inset). It is also

higher than that of LMNA-associated TADs modeled at

the periphery (25%; P < 2.2 × 10–16; Mann–Whitney U

test). This again indicates that not all LADs can be

assumed to be found at the NP in individual nuclei in a

cell population. This may be because some regions only

transiently contact nuclear lamins at the NP and are

therefore mainly detected in the nuclear interior.

Assessment of chromatin stability at the nuclear periphery

Our previous results suggest that Chrom3D can recap-

itulate structures of genome conformation at the single-

cell level. To further assess this contention, we examined

the consistency of assignment of TADs at the NP across

structures, with the rationale that this would reflect sta-

bly positioned TADs in this compartment across cells in

a population. Chromosomal heatmaps of radial place-

ment of TADs in structures modeled using LMNA or

LMNB1 constraints reveal TADs with constitutive place-

ment at the NP (<1 μm from the nucleus edge) or in the

nucleus center and TADs with intermediate placement

(Fig. 3b). As expected, the most stable peripheral TADs

are located on the largest and most gene-poor chromo-

somes, while smaller gene-rich chromosomes harbor

TADs more centrally placed (Fig. 3b). We find, however,

no correlation between TAD size and peripheral stability

of TADs across structures, indicating that the attribution

of TADs from large chromosomes to the NP is not

merely caused by TAD size (r = 0.16; Additional file 1:

Figure S8). There is also concordance of radial position-

ing of TADs based on LMNB1 or LMNA constraints

(Fig. 3b, c), consistent with the bulk of LMNA being

enriched in the peripheral lamina. Moreover, subtelomeric

regions appear overall more centrally placed than pericen-

tromeric regions that are more stably ascribed to the NP

(Fig. 3b), corroborating previous FISH data [42, 43]. The

patterns and consistency of radial assignment of TADs
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across our ensemble of structures indicate that Chrom3D

can capture principles of chromatin organization in single

cells.

Features of LADs estimated from the structures concur

with lamin-genome contact patterns observed in single

cells

We next compared our three radial placement categories

(center, intermediate, periphery; see Fig. 2a) with single-

cell NP-genome contact frequencies. These were defined

by association of chromatin with the nuclear lamina

observed in a previous single-cell LMNB1 DamID study

in the near-haploid KBM7 cell line, the only cell type for

which to our knowledge LADs have been mapped at the

single-cell level [44]. Despite the difference in ploidy be-

tween HeLa and KBM7 cells, our structure ensembles

reveal features of genome organization inferred from

the single-cell observations. Indeed, TAD sequences

assigned to the periphery in our structures show the

highest peripheral contact frequency calculated from

the single-cell LMNB1 DamID data and, conversely,

the central category shows the lowest peripheral con-

tact frequency in the single-cell dataset (Fig. 3d). Re-

peating this comparison excluding the lamin constraint

in our modeling shows strongly reduced assignment of

the regions to the periphery (Fig. 3d; P = 4.34 × 10–5 to

P < 2.2 × 10–6; Mann–Whitney U tests). Moreover, fo-

cusing on LADs, our structures predict that larger

LADs are more stably assigned at the periphery than

smaller LADs (Fig. 3e; P = 1.23 × 10–6; Mann–Whitney

U tests), again in agreement with the single-cell obser-

vations [44]. Our predictions of lower gene density and
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Fig. 3 Chrom3D genome structures recapitulate features of genome organization estimated from single-cell analyses. a Percentage of LMNA-
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P < 2.2 × 10–16 (Mann–Whitney U test). b Heatmaps of radial stability of LMNA-associated or LMNB1-associated TADs in all chromosomes across

400 structures. “Blue” TADs are more stably placed in the nucleus center than “red” TADs, which are more stably placed at the NP. c Correlation
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expression level in peripheral TADs (see Fig. 2b, c) are

also supported by the single-cell data. We conclude that

our ensemble of structures reflects the radial localization

of LADs observed in single cells.

FISH validates LADs modeled in the nuclear periphery

and nuclear interior

To validate the position of LADs predicted from the

modeled structures, we carried out a FISH analysis. We

analyzed 1105 FISH signals obtained from FISH probes

designed to LMNA LADs placed at the NP, towards the

nucleus center or in intermediate radial positions in the

structures (Additional file 1: Table S1 and Figure S9a).

The observed radial distribution of LADs from FISH ana-

lysis strongly concurs with predictions from the modeled

structures (Fig. 4a–d; r = 0.91; Additional file 1: Figure

S9b–d). To further appreciate the spatial coverage of indi-

vidual chromosomes, four FISH probes were designed to

chromosome 4 (Additional file 1: Figure S9e, f ). Observed

distributions of 453 FISH signals again agree with their

predicted distribution (r = 0.97; Additional file 1: Figure

S9g–i). These results validate the structures and indicate

that LADs can be found in peripheral and central nuclear

compartments. LAD distribution across structures also re-

capitulates their localization visualized in single cells.

Chrom3D reveals laminopathy-specific LADs and differential

gene regulation in the nucleus interior

Mutations in LMNA cause laminopathies which affect

specific tissues [45] through still largely unknown mecha-

nisms. The roles of LMNA on chromatin organization

and mobility [46, 47] suggest that laminopathies may

involve altered interactions of LMNA with chromatin in

distinct nuclear compartments. This, however, has not

been examined due to a lack of suitable tools. To gain 3D

insight on chromatin changes that might be associated

with LMNA mutations, we used Chrom3D to model the

radial distribution of LADs associated with wt or mutated

LMNA.

First, we expressed in HeLa cells: (i) a flag-tagged

version of a LMNA mutation, LMNA(R388P), causing

congenital muscle dystrophy and lipodystrophy (Barateau

et al., manuscript submitted); (ii) wt LMNA; and (iii) a

LMNA(L647R) mutant causing a progeroid disorder [48]
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that localizes only at the NP by retention of its prela-

min A-associated farnesyl moiety (Additional file 1: Fig-

ure S10a, b). We next mapped LADs associated with

these LMNA proteins by ChIP-seq using anti-Flag anti-

bodies. While LMNA wt and LMNA (L647R) LADs reveal

strong overlap, there is little overlap between R388P LADs

and wt or L647R LADs (Fig. 5a, b; Additional file 1: Figure

S10b, c). Superimposition of wt and mutant LADs on 400

Chrom3D HeLa structures strikingly reveals that R388P

LADs map more frequently to the nuclear center than

wt or L647R LADs (Fig. 5c, d). Validating these predic-

tions, immunofluorescence analysis shows that the

LMNA(R388P) mutant is indeed distributed throughout

the nucleoplasm, accounting for the intranuclear position-

ing of the majority of R388P LADs (Fig. 5e; Additional file

1: Figure S10d). Furthermore, R388P LADs are gene-rich

(Fig. 5f) and narrower (Fig. 5g) than wt or L647R LADs

(P < 2.2 × 10–16; Mann–Whitney U tests). These observa-

tions are again consistent with the radial placement of

these LADs predicted by Chrom3D (Fig. 5c). These find-

ings importantly indicate that Chrom3D can reveal radial

positioning of loci without prior knowledge of their

localization.

Next, we determined whether Chrom3D could provide

new insights into laminopathies by modeling the 3D

genome in cells from patients harboring a LMNA muta-

tion. We mapped by ChIP-seq using anti-lamin A/C anti-

bodies, LMNA LADs in fibroblasts from four patients

with familial partial lipodystrophy of Dunnigan type

(FPLD2; OMIM#151160; patients “p1–p4”) bearing the

same heterozygous LMNA p.R482W mutation [49] and

in fibroblasts from three healthy control individuals.

We examined the R482W LMNA mutant because the

R >W substitution has been shown to impair DNA and
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nucleosome binding to LMNA in vitro [50, 51], and

thus might affect LMNA association with chromatin in

patient cells. Genome browser views of LMNA enrich-

ment and detected LADs, and LAD overlap analyses,

show that LMNA LADs in control and FPLD2 cells are

overall conserved (Fig. 6a) but also show differences in

genome coverage (Fig. 6b, c; Additional file 1: Figure

S11a–c). Differential LMNA-chromatin association was

corroborated by ChIP-quantitative polymerase chain re-

action (qPCR) analysis of 16 genic and ten intergenic

loci in fibroblasts from three patients and two controls

(Additional file 1: Figure S11d, e).

Using Chrom3D, we generated 100 structures for

each of the control and patient fibroblasts by integrat-

ing control and FPLD2 LMNA LAD datasets with TAD

information from published Hi-C data for IMR90

human fibroblasts [38]. We find that strikingly, LADs

specific to FPLD2 patients (LADs “gained” in FPLD2

fibroblasts) are more centrally located than all LADs in

these cells (Fig. 6d, bars 2, 6; P < 2.2 × 10–16, Mann–Whit-

ney U test); these domains are also centrally placed in con-

trol cells (Fig. 6d). In contrast, LADs unique to control

fibroblasts (“lost” in patient cells) are found at the NP, to

the same extent as all LADs in these cells (Fig. 6d; bars 3,

5; P = 0.35). Figure 6e shows examples of peripherally

placed “lost” LADs in a modeled control nucleus and cen-

trally placed “gained” LADs in an FPLD2 nucleus. We

nevertheless note that a gain or loss of LADs is associated

with partial recruitment of these regions towards, or away

from, the NP, respectively (Fig. 6d, bars 1, 2; P < 2.2 × 10–16

and bars 3, 4; P < 2.2 × 10–16). These findings imply that

LADs gained in patient cells are mainly restricted to

the nuclear interior and are unexpectedly not fully

repositioned to the NP. In addition, a gain or loss of

LADs correlates with overall downregulation or upreg-

ulation, respectively, of gene expression within them
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Paulsen et al. Genome Biology  (2017) 18:21 Page 8 of 15



(Fig. 6f; P < 2.2 × 10–16, Mann–Whitney U test), provid-

ing functional significance to the differential LMNA as-

sociations identified in FPLD2 patient cells. This is in a

context of similar range of expression levels of all genes

and of genes within LADs, both in patient and control

cells (Fig. 6g).

Providing additional biological meaning to the modeled

structures, Gene Ontology enrichment analysis highlights

distinct functions of genes found in control-specific LADs

(signaling and metabolic processes) and FPLD2-specific

LADs (developmental processes; Additional file 1: Table

S2). Interestingly, relevant for the metabolic phenotype of

FPLD2 patients [49], the gained and lost LADs in patient

fibroblasts contain genes implicated in white and brown

adipocyte differentiation and metabolism (e.g. PRDM16, a

master regulator of adipose tissue browning, RARRES2,

LGR4, BCATENIN, PLCB1, PTGS2, FABP4, RSPO3, and

EIF2AK3). Predictions emerging from this modeling

therefore suggest that adipogenic and metabolic defects in

FPLD2 patients with the LMNA p.R482W substitution

might be associated with a deregulation of LADs in the

nuclear interior and not exclusively at the nuclear enve-

lope. This could speculatively involve differential bind-

ing of lamin A/C to promoters [52]. Our 3D genome

modeling framework paves the way to more targeted

investigations of disease mechanisms affecting genome

architecture.

Discussion

We present Chrom3D, a software for 3D genome model-

ing based on the inclusion of positional input constraints

from chromosomal interactions (Hi-C data) and nuclear

lamin-chromatin associations (lamin ChIP-seq data).

Several key features of our modeled structures are shown:

inclusion of radial positional constraints, scalability from a

single locus to the whole human genome, and predictive

value of radial placement of TADs. Chrom3D is versatile

in that other positional constraints can be integrated.

Finally, we show an application of Chrom3D to the study

of disease mechanisms using FPLD2 patient-specific pos-

itional constraints imposed by a LMNA mutant displaying

alterations in its association with the genome. Incorpor-

ation of radial positional constraints provides new insight

into the placement of genomic regions in the 3D mamma-

lian nucleus space with respect to the NP, which has not

been possible from current genome modeling plat-

forms. Our ensembles of structures reveal information

on the cell-to-cell variation in genome structures likely

to exist in a cell population. They recapitulate the per-

ipheral positions of TADs in single cells and notably

ascribe a subset of LMNA-associated TADs, and

thereby LADs, in the nuclear interior without prior

knowledge of such localization. Inference of an intra-

nuclear localization of LMNA LADs concurs with the

nuclear distribution of A-type lamins [40] and with

their association with euchromatin, including active

genes [6, 7, 53], which is enriched in the nuclear inter-

ior. Our structures therefore have predictive capacity.

We exploit this property to infer the internal positioning

of LADs associated with a pathological LMNA(R388P)

mutation, after superimposition of these LADs onto struc-

tures. This concurs with the only information currently

available on this lamin mutant, namely LAD data deter-

mined by ChIP-seq of an epitope-tagged version of this

mutant, and its localization throughout the nucleoplasm

visualized by immunostaining. Our findings illustrate

the benefit of optimization-based 3D modeling to un-

veil the interplay between factors determining 3D gen-

ome structure.

The predictive capacity of our structures has important

implications in understanding the relationship between

genome structure and disease [54, 55]. Chrom3D structures

enable a gain of spatial insight into disease-causing mecha-

nisms, e.g. laminopathies as illustrated here. The structures

reveal how alterations in LMNA-chromatin associations

specific to FPLD2 patients with the LMNA(R482W) substi-

tution predictively occur centrally in the nucleus and not

necessarily at the NP as one might have expected. This

opens the door to better targeted molecular investigations

of the disease. Our modeling approach should not only be

applicable to other laminopathies, but also potentially to

diseases linked to dysfunction or mis-regulation in other

nuclear components.

Challenges remain, however, before 3D genome mod-

eling can be routinely applied in disease contexts. First,

the genome must be modeled at appropriate spatial

resolution to infer significant associations between gen-

ome structure and disease mechanisms; this may be re-

quired, for instance, to place selected genes and other

genomic elements into correct regulatory neighbor-

hoods. We have modeled the genome at TAD and sub-

TAD resolution, providing high resolution structures of

the diploid human genome. We do not imply that TADs

exist as structural units at the single-cell level, but TADs

reflect statistically enriched topological domains that

prove to be relevant units for modeling. Second, the size

and complexity of the human genome necessitate some

level of coarse graining for any 3D modeling exercise.

Thus, a tradeoff between resolution and throughput of

structures is inevitable: we have focused here on an ele-

vated number of beads in our structures and a smaller en-

semble of structures. Nevertheless, we show how critical

insights into cell-to-cell variability of genome structures

can be gained from radial positioning constraints.

Conclusions
Chrom3D is a genome 3D modeling platform integrating

Hi-C data together with positional constraints from the
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association of loci with intranuclear anchors such as nu-

clear lamins. While pairwise domain interactions are im-

portant to enforce contacts between distal genomic

regions, radial positioning provides key information on

the spatial organization of genomic domains. Incorpor-

ation of radial positioning constraints in 3D genome

structures enables the study of spatial gene regulation in

disease, for example so-called nuclear envelopathies,

caused by mutations in nuclear envelope proteins.

Extending positional information to other chromatin

anchor points in the nucleus should expectedly enhance

applications of 3D genome structures to the study of

disease mechanisms.

Methods

Cells

HeLa cells (American Type Culture Collection; CCL-2)

were cultured in MEM medium containing Glutamax

(Gibco), 1% non-essential amino acids and 10% fetal calf

serum. Cells were transfected using XtremeGENE 9

(Roche) using a 3:1 ratio (μL:μg) of X-tremeGENE 9

DNA Transfection Reagent and DNA. Primary skin

fibroblast cultures were established from healthy volun-

teers aged 20 years and 33 years (CTL-1, CTL-3) and

from four patients with familial partial lipodystrophy of

Dunnigan type (FPLD2) due to a LMNA p.R482W het-

erozygous mutation (female, age 43 years (“FPLD-p1”

patient), female, age 37 years (FPLD-p2), female, age

14 years (FPLD-p3), male, age 43 years (FPLD-p4) [56].

These studies were approved by the Institutional Review

Board of Hôpital Saint Antoine (Paris, France). Normal

skin fibroblasts were also purchased from Lonza (“CTL-

2”). Fibroblasts were cultured in DMEM/F12/10% fetal

calf serum, 10 ng/mL epidermal growth factor, 24 ng/

mL basic fibroblast growth factor, and 1% Penicillin-

Streptomycin. Cultures were at passage 5–7 when used.

Plasmids

pCMV-Flag-preLA-WT and pCMV-Flag-preLA-L647R

vectors were generated by LMNA amplification of

pSVK3-Flag-preLA-WT and pSVK3-preLA-L647R [50],

with the 5′ CCGGATCCTATGGAGACCCCGTCCCA

GCGG-3′ and 5′ GCGAATTCTTACATGATGCTGC

AGTTCTG-3′ primers and insertion of the PCR

product into pCMV-Flag at BamH1 and EcoRI sites.

pCMV-Flag-preLA-R388P was constructed from pCMV-

Flag-preLA-WT using the QuikChange Lightning Site-

Directed Mutagenesis Kit (Agilent Technologies). pCMV-

Flag-preLA-wt was amplified by PCR using 5′-GAGGA

GAGGCTACCACTGTCCCCCAGC-3′ and 5′-GCTGG

GGGACAGTGGTAGCCTCTCCTC-3′ primers, prod-

ucts digested by DpnI and XL10-Gold® ultracompetent

cells were transformed. pEGFP-preLA-R388P was con-

structed by LMNA amplification of pCMV-Flag-preLA-

R388P with the 5′ GCCCTAGGTGAGGCCAAGAAGC

AACTT 3′ and 5′ GCCCATGGACTGGTCCTCATTGG

ACTTGT 3′ primers and insertion of the PCR product

into pEGFP-preLA-wt at EcoNI and PflMI sites.

Immunofluorescence

Cells grown on coverslips were fixed 24 h after transfec-

tion with 3% paraformaldehyde, permeabilized in PBS/

0.5% Triton X-100, and incubated in PBS/0.1% Triton X-

100/2% BSA for 25 min. Cells were incubated for 30 min

each with primary and secondary antibodies in PBS/0.1%

Triton X-100/1% BSA. Antibodies were anti-Flag (1:200;

Sigma), anti-lamin A/C [50] (1:400), and anti-rabbit Alex

Fluor® 594 (1:200; Jackson ImmunoResearch). DNA was

stained with Hoechst 33258. Coverslips were mounted

with Mowiol and examined on a LSM 700 confocal micro-

scope (Zeiss) at the Imaging Facility of the Functional and

Adaptive Biology Unit of University Paris Diderot/CNRS.

Immunoblotting

Proteins were separated by SDS-PAGE and transferred

onto nitrocellulose. Membranes were incubated with anti-

lamin A/C [50] or anti-GAPDH antibodies (1:15,000;

Sigma) and with horseradish peroxidase-conjugated anti-

bodies (1:20,000; Promega). Signals were detected by

enhanced chemiluminescence.

RNA-sequencing

Total RNA was isolated from control and FPLD2 fibro-

blasts using the Ambion TRIzol® Reagent RNA extraction

kit (Life Technologies) [57]. Libraries were sequenced on

an Illumina HiSeq2500. RNA-sequencing (RNA-seq)

reads were processed using Tuxedo [58]. TopHat [59] was

used to align reads to hg19 applying the Bowtie 2 [60] pre-

set “very sensitive.” Gene ontology analysis was done with

topGO in R [61].

ChIP of LMNA and LAD identification

ChIP of Flag-LMNA proteins in HeLa cells was done

using anti-Flag antibodies (20 μg/107 cells) as described

[57]. ChIP of LMNA from fibroblasts was done using

anti-lamin A/C antibodies [57]. Illumina libraries were

sequenced on a HiSeq2500. DNA was also used as tem-

plate for qPCR (Additional file 1: Table S3), with 95 °C

for 3 min and 40 cycles of 95 °C for 30 s, 60 °C for 30 s,

and 72 °C for 30 s. Sequence reads were aligned to hg19

genome using Bowtie2 with default parameters and

option -best enabled. LADs were called using Enriched

Domain Detector [57] using a 1-kb bin size and default

parameters. Browser files were generated from the ratio

of ChIP/input for each 1-kb bin with input normalized

to ratio of [total ChIP reads/total input reads]. Scripts

were written in Perl [62] or R [61].
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TAD and bead definition

Genomic positions of TADs were based on contact do-

mains identified from Hi-C data [38] accessed under

GEO GSE63525. Overlapping TADs were merged into

single domains and regions not covered by a TAD were

assigned a bead of size proportional to the correspond-

ing genomic region. Bead sizes were scaled so that total

bead volume constituted 15% of the volume of a 10-μm

diameter modeled nuclei [63], using a previous scaling

function [24].

Assigning lamin information to TADs

TADs that overlap, fully or partially, with a called peak

from lamin ChIP-seq data (i.e. a LAD) [57] were desig-

nated as LMNA-associated or LMNB1-associated TADs

and were constrained towards the NP. This resulted in

1718 LMNA-associated TADs (see Additional file 1:

Figure S1 and S2, blue segments) and 2770 LMNB1-

associated TADs.

Inference of significant interactions from Hi-C data

Interactions between beads were defined from high-

resolution Hi-C data for HeLa cells [38] accessed under

dbGap number phs000640. To infer statistically significant

interactions, we adapted the ChiaSig method designed for

ChlA-PET [64] to Hi-C. To this end, we estimated the de-

pendency between linear genomic distance and contact

frequencies using 1-Mb bins. Refinement of genomic dis-

tance–contact frequency relationship was not necessary

because most pairwise combinations of bins reflect back-

ground looping information. To estimate background

distribution for inter-chromosomal interactions, we used

the average number of inter-chromosomal interactions

between all pairs of bins between chromosomes. ChiaSig

calculates a P value based on the probability of observing

a given number of contacts conditional on the total

number of contacts for both regions involved, as well

as the total number of contacts, using a non-central

hypergeometric distribution. This adjusts for the pro-

pensity of different regions to be involved in contacts,

including technical bias (GC-content, accessibility).

Intra-chromosomal interactions were selected with

FDR 0.01% [21]. For inter-chromosomal interactions,

we also required that interactions be significant in

HeLa cells and in > 4 of the seven cell lines analyzed

previously (GM12878, HMEC, HUVEC, IMR90, K562,

KBM7, NHEK) [38].

This resulted in 3824 significant interactions (3657

intra-chromosomal and 167 inter-chromosomal) for HeLa

(see Additional file 1: Figure S2, red segments). For

IMR90, we obtained 2349 significant interactions (1558

intra-chromosomal and 791 inter-chromosomal). These

interactions were associated with TADs by mapping the

mid-point of each Hi-C bin to the corresponding TAD.

This resulted in 2586 beads for HeLa cells and 1744 beads

for IMR90 (each × 2 to account for a diploid genome) with

at least one interaction.

Peripheral, central, and intermediate assignment of TADs

in the modeled structures

To examine genomic properties of TADs as a function of

radial position in the modeled nuclei, we divided the

nucleus into a peripheral “shell” 1.03-μm thick and a

central compartment, each making up 50% of the total

nucleus volume. A TAD was assigned to:

� the NP if placed in the shell in > 67% of 400

structures;

� an “intermediate” location if placed in the shell in

33–67% of the 400 structures;

� the nucleus center if placed in the shell in < 33% of

the 400 structures.

Chromatin modeling framework

We developed a software suite for MC optimization and

modeling of chromatin 3D structure using C++. Simula-

tions were done using this software, except for when IMP

was used for comparison. The concept is to enable incorp-

oration of constraints and enable MC optimization by in-

voking local perturbations on chromosome regions. These

chromatin “moves” have the favorable property that they

alter only a small part of chromatin structure in each iter-

ation, while maintaining connectivity of the chromatin

chain. This is in contrast to previous MC-based methods

[28] where each bead is moved independently. During

simulation, moves are selected randomly according to

weights specified by the user. In all simulations carried

out here, these weights were set equal, such that each

move has the same chance of being selected in each iter-

ation. For a given structure, we defined a loss-score (L) as

the sum of the individual loss-scores of each constraint

[18] (Equation 1):

L ¼

X

i;j

k ij bi−bj
�

�

�

�

−dij

� �2
;

where the sum runs over all bead positions where a con-

straint has been defined and dij is the target Euclidean

distance of the given pair of beads i and j. Beads to be

associated with the NP are optimized according to the

distance from a “dummy bead” assigned in the nucleus

center (the origo). The dummy bead has a radius of 0

and is in all instances (except for loss-score calculations)

not considered as part of the modeled structure. Each

constraint can be weighted by a factor kij, to allow for
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selected constraints to be prioritized in the MC

optimization. Target distance of all bead pairs con-

strained by a Hi-C interaction between them was set to

the sum of the radii of the two beads, effectively minim-

izing the distance between them without bead overlap.

For beads constrained by LADs, target distance (from

the nucleus center) was set to the difference between the

nucleus radius and the bead radius, allowing lamin-

constrained beads to move to the nuclear “wall.” All non-

lamin beads were pulled towards the center by minimizing

their distance to the nucleus center (“dummy bead”). At

the start of each simulation, we initialize the modeling

based on self-avoiding random walk structures sampled

such that none of the chromosomes clash or overlap. We

perturb the structure using the “moves” and minimize the

loss-score using simulated annealing. A move was ac-

cepted based on resulting Euclidian distances between

interacting TADs or between TADs and the NP, according

to the Metropolis–Hastings algorithm with simulated

annealing. Moves causing a clash between beads were

discarded.

Chrom3D software and documentation can be freely

accessed at: https://github.com/CollasLab/Chrom3D.

The version of the source code used in the manuscript

is available at: https://doi.org/10.5281/zenodo.168212

Comparisons of Chrom3D with IMP

We developed a modeling procedure based on IMP using

the same set of constraints and number of beads as for

Chrom3D. We initialized TAD beads as particles and

added “ExcludedVolumeRestraint” to disable bead–bead

clashes. For each consecutive pair of beads on each

chromosome, we added harmonic springs with a spring

distance equal to the two radii of the beads. Interac-

tions between non-consecutive beads (based on Hi-C)

were modeled using harmonic springs with a distance

corresponding to the sum of the radii of the bead pair,

similarly to Chrom3D. Beads with lamin constraints

were pushed to the NP using the “HarmonicLower-

Bound” and a “dummy bead” placed in the nucleus cen-

ter. Spring distance from the lamin-bead and the

dummy bead was set to nucleus radius (5 μm) minus

bead radius. To run MC optimization, we used “Monte-

CarloWithLocalOptimization” with fie local steps and a

total of 500 iterations, which was sufficient to reach

convergence. Ten independent simulations were done

for comparison with Chrom3D structures.

To compare chromosome territories, we used the radius

of gyration, calculated as the root mean square distance of

the beads on each chromosome from their common cen-

ter of mass (using bead volume to represent the mass). To

estimate individual chromosome deviations from a spher-

ical shape, we used the asphericity measure based on the

eigenvalues of the gyration tensor [65].

Modeling of the α-globin gene locus

The ENm008 ENCODE region containing the α-globin

locus was modeled using Chrom3D based on published

5C chromosome conformation capture data [18]. For

each restriction fragment, we created beads (n = 70) of

diameter corresponding to the genomic length of the

fragment multiplied by 0.005 [18]. Preprocessing and

distance conversion rules for 5C data were as described

[18]. In contrast to the input file used for earlier 3D

reconstruction [18], we did not include distance con-

straints between neighboring beads since our modeling

framework represents each chromosome as a chain of

connected beads. Thus, distance constraints included

non-interaction constraints (two beads should not get

closer than a given distance) and interaction constraints

(two beads should not get further from each other than

a given distance). For all bead pairs with zero contacts

detected in the 5C contact matrix, we used non-

interaction constraints. Thresholds for non-interaction

and interaction distances were cell type-specific (K562

and GM12878 cells) [18]. We ran 1000 simulations for

each cell line using 40,000 iterations and a cooling rate

of 0.000125, excluding whole chromosome “Translation”

and “Rotation” moves. Final structures were aligned

using Procrustes analysis (procrustes method in the

vegan R package; default parameters with no scaling)

and clustered using agglomerative hierarchical clustering

(agnes method in the cluster R package; metric = “man-

hattan”). We extracted the cluster containing highest

proportion of simulated structures for each dataset and

plotted these on top of each other with high transpar-

ency so that the most common positions for each bead

are the most visible in the plot. Coloring scheme was ap-

proximated to the scheme used in Table 1 in [18]. Bead

sizes (in base-pairs) were: min 2; median 5151; mean

7043; max 29,050; bead radii in nm: min 0.01, median

25.76, mean, 35.21, and max 145.20. For distance calcu-

lations for comparison with FISH probes, we used beads

14 and 58 to calculate their distances across all struc-

tures for each cell line.

FISH probe design

The model nucleus was divided into two compartments

at rhalf_v = 3.97 μm distance from nuclear center (consid-

ering a 5 μm radius), each compartment being of equal

volume. This provided two regions for bead placement:

beads with centers located < rhalf_v from the nucleus cen-

ter were classified as central, and peripheral otherwise.

Proportions of each bead placed in peripheral or central

region across 400 structures were used to identify the

most stable beads in the periphery or center. Beads were

further filtered to select beads associated with LMNA

[7] (GEO GSE57149; track GSM1376181). We also de-

signed probes to beads that were neither stable in the
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periphery nor center (“intermediate” area). Additionally,

due to the variable copy number of genomic segments

in HeLa cells, probes were designed to avoid areas with

high copy number variations. Positions of FISH probes are

shown in Additional file 1: Figure S4a and FISH probe in-

formation is shown in Additional file 1: Table S1.

FISH procedure and signal detection

Cells were incubated in hypotonic buffer (0.25% KCl,

0.5% tri-sodium citrate) for 10 min and fixed in ice-

cold methanol:acetic acid (3:1). Cells were dropped on

slides. BAC FISH probes (BacPac Resource Center)

(Additional file 1: Table S1) were labeled using a Nick

Translation Kit and Biotin-16-dUTP (Roche). Per slide,

a 200–300 ng labeled probe was mixed with 8 μg

human Cot-1 DNA and 30 μg salmon sperm DNA

(Invitrogen) and precipitated. A DNA pellet was dis-

solved in 11 μL hybridization mix (50% deionized form-

amide (Ambion), 2× SSC, 1% Tween 20, 10% dextran

sulphate) at 42 °C for 20 min and pre-annealed for 1 h

at 37 °C. Slides were RNase-treated and washed twice

in 2× SSC, dehydrated in 70%, 90%, and 100% ethanol,

and air-dried. Slides were denatured for 1 min 20 s in

70 °C 70% deionized formamide/2× SSC, pH 7.5, dehy-

drated in ice-cold 70%, 90%, and 100% ethanol, and air-

dried. Probes were denatured for 5 min at 70 °C and

pre-annealed for 15 min at 37 °C. Ten microliters of

probe were applied onto coverslips (22 × 22 mm) which

were then mounted on a slide. Slides were hybridized

overnight at 37 °C. Slides were washed in 2× SSC (45 °C

2 min then 3× 5 min) and in 0.1× SSC (60 °C for 4×

4 min). Slides were blocked in 5% skim milk in 4×

SSC for 15 min at 37 °C and incubated at 37 °C for

30–60 min with Avidin Alexa Fluor 488 conjugate

(Invitrogen) (1.7 μg/mL in blocking buffer). Slides

were washed in 4× SSC/0.1% Tween 20 for 3× 5 min

and incubated with Biotinylated Anti-Avidin D conju-

gate (goat; 1.0 μg/mL in blocking buffer) (Vector) for

30 min at 37 °C. Slides were washed and incubated

with Avidin Alexa Fluor 488 conjugate as above.

Slides were mounted with 0.2 μg/mL DAPI in Dako

Fluorescent Mounting Medium.

A total of 484 FISH images were analyzed using FISH-

finder [66] to detect probes and calculate their position

relative to the nucleus edge (n = 1105 FISH signals). Im-

ages were taken in DeltaVision image stack format (.dv).

Significance of FISH signal localization in central, inter-

mediate, and peripheral regions was tested by Mann–

Whitney–Wilcoxon tests.

Data viewing

Browser views of ChIP-seq data are shown using Inte-

grated Genomics Viewer [67]. Genes are from Illumina

iGenomes gene annotation with UCSC source for hg19.

Additional file

Additional file 1: Figure S1. Source data for Chrom3D modeling.

Figure S2. Hi-C and LMNA constraints integrated in Chrom3D. Figure

S3. Chromosome moves introduced in the Chrom3D modeling frame-

work. Figure S4. Structure characteristics. Figure S5. Correlation analysis

between interaction frequency matrices reconstructed from 400 modeled

structures and matrices from input Hi-C data. Figure S6. Chrom3D and IMP

comparison. Figure S7. Chrom3D modeling of the ENm008 ENCODE region

containing the α-globin locus. Figure S8. Stability of TADs at the nuclear

periphery as a function of TAD size, across 400 structures. Figure S9. FISH

validation of radial TAD placement predicted by Chrom3D. Figure S10.

Expression of Flag-LMNA wt, Flag-LMNA(R388P), and Flag-LMNA(L647R) in

HeLa cells. Figure S11. LMNA LADs in FPLD patient and control fibroblasts.

Table S1. FISH probe information. Table S2. Top 10 enriched GO terms for

genes in LADs specific to control or FPLD patient fibroblasts. Table S3.

ChIP-qPCR primers and genomic location of amplicons. (PDF 2914 kb)
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