
IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. XX, NO. YY, MONTH YEAR 1

Chroma Binary Similarity and Local Alignment

Applied to Cover Song Identification
Joan Serrà*, Emilia Gómez, Perfecto Herrera and Xavier Serra

Abstract—We present a new technique for audio signal com-
parison based on tonal subsequence alignment and its application
to detect cover versions (i.e., different performances of the
same underlying musical piece). Cover song identification is a
task whose popularity has increased in the Music Information
Retrieval (MIR) community along in the past, as it provides a
direct and objective way to evaluate music similarity algorithms.
This article first presents a series of experiments carried out
with two state-of-the-art methods for cover song identification.
We have studied several components of these (such as chroma
resolution and similarity, transposition, beat tracking or Dynamic
Time Warping constraints), in order to discover which character-
istics would be desirable for a competitive cover song identifier.
After analyzing many cross-validated results, the importance
of these characteristics is discussed, and the best-performing
ones are finally applied to the newly proposed method. Multiple
evaluations of this one confirm a large increase in identification
accuracy when comparing it with alternative state-of-the-art
approaches.

Index Terms—Music, Information retrieval, Acoustic signal
analysis, Multidimensional sequences, Dynamic programming.

I. INTRODUCTION

IN THE present times, any music listener may have thou-

sands of songs stored in a hard disk or in a portable

MP3 player. Furthermore, on-line digital music stores own

large music collections, ranging from thousands to millions

of tracks. Additionally, the ‘unit’ of music transactions has

changed from the entire album to the song. Thus, users or

stores are faced to search through vast music databases at the

song level. In this context, finding a musical piece that fits

one’s needs or expectancies may be problematic. Therefore,

it becomes necessary to organize them according to some

sense of similarity. It is at this point where determining if two

musical pieces share the same melodic or tonal progression

becomes interesting and useful. To address this issue, from

a research perspective, a good starting point seems to be the

identification of cover songs (or versions), where the relation-

ship between them can be qualitatively defined, objectively

measured, and is context-independent. In addition, from the

users perspective, finding all versions of a particular song can

be valuable and fun.

It is important to mention that the concept of music simi-

larity, and more concretely, finding cover songs in a database,

has a direct implication to musical rights management and

Manuscript received November 30, 2007; revised February 21, 2008;
accepted April 5, 2008. This research has been partially funded by the EU-IP
project PHAROS IST-2006-045035: http://www.pharos-audiovisual-search.eu
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licenses. Also, learning about music itself, discovering the

musical essence of a song, and other many topics related

with music perception and cognition are partially pursued

by this research. Furthermore, the techniques presented here

can be exploited for general audio signal comparison, where

cover/version identification is just an application among other

possible ones.

The expressions cover song and version may have different

and somehow fuzzy connotations. A version is intended to

be what every performer does by playing precomposed music,

while the term cover song comes from a very different tradition

in pop music, where a piece is composed for a single performer

or group. Cover songs were, originally, part of a strategy

to introduce ‘hits’ that had achieved significant commercial

success from other sections of the record-buying public, with-

out remunerating any money to the original artist or label.

Nowadays, the term has nearly lost these purely economical

connotations. Musicians can play covers as a homage or a

tribute to the original performer, composer or band. Some-

times, new versions are made for translating songs to other

languages, for adapting them to a particular country/region

tastes, for contemporising familiar or very old songs, or for

introducing new artists. In addition, cover songs represent the

opportunity to perform a radically different interpretation of a

musical piece.

Today, and perhaps not being the proper way to name it, a

cover song can mean any new version, performance, rendition

or recording of a previously recorded track [1]. Therefore,

we can find several musical dimensions that might change

between two covers of the same song. These can be related

to timbre (different instruments, configurations or recording

procedures), tempo (global tempo and tempo fluctuations),

rhythm (e.g., different drum section, meter, swinging pattern or

syncopation), song structure (eliminating introductions, adding

solo sections, choruses, codas, etc.), main key (transposition

to another tonality), harmonization (adding or deleting chords,

substituting them by related ones, adding tensions, ...) and

lyrics (e.g., different languages or words).

A robust mid-level characteristic that is largely preserved

under the mentioned musical variations is a tonal sequence

(or a harmonic progression [2]). Tonality is ubiquitous and

most listeners, either musically trained or not, can identify the

most stable pitch while listening to tonal music. Furthermore,

this process is continuous and remains active throughout the

sequential listening experience [3], [4]. From the point of view

of the Music Information Retrieval (MIR) field, clear insights

about the importance of temporal and tonal features in a music

similarity task have been evidenced [5], [6], [7].

Tonal sequences can be understood as series of different
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note combinations played sequentially. These notes can be

unique for each time slot (a melody) or can be played jointly

with others (chord or harmonic progressions). Systems for

cover song identification usually exploit these aspects and

attempt to be robust against changes in other musical facets. In

general, they either try to extract the predominant melody [8],

[9], a chord progression [10], [11], or a chroma sequence [12],

[13], [14], [15], [16]. Some methods do not take into account

(at least explicitly) key transposition between songs [13],

[14], but the usual strategy is to normalize these descriptor

sequences in respect to the key. This is usually done by

means of a key profile extraction algorithm [9], [10], [15],

or by considering all possible musical transpositions [12], [8],

[11], [16]. Then, for obtaining a similarity measure, descriptor

sequences are usually compared by means of Dynamic Time

Warping (DTW) [8], [10], [15], an edit-distance variant [7],

[11], string matching [12], Locality Sensitive Hashing (LSH)

[14], or a simple correlation function or a cosine angle [9],

[13], [16]. In addition, a beat tracking method might be used

[9], [12], [16], or a song summarization or chorus extraction

technique might be considered [9], [15].

Techniques for predominant melody extraction have been

extensively researched in the MIR community [17], [18], [19],

as well as key/chord identification engines [20], [21]. Also,

chroma-based features have become very popular [22], [23],

[24], [25], with applications in various domains such as pattern

discovery [26], audio thumbnailing and chorus detection [27],

[28], or audio alignment [5], [29].

Regarding alignment procedures and sequence similarity

measures, DTW [30] is a well known technique used in speech

recognition for aligning two sequences which may vary in

time or speed and for measuring similarity between them.

Also, several edit-distance variants [31] are widely used in

very different disciplines such as text retrieval, DNA or protein

sequence alignment [32], or MIR itself [33], [34]. If we use

audio shingles (i.e., high-dimensional feature vectors concate-

nations) to represent different portions of a song sequence,

LSH solves fast approximate nearest neighbor search in high

dimensions [35].

One of the main goals of this article is to present a study

of several factors involved in the computation of alignments

of musical pieces and similarity of (cover) songs. To do

this, the impact of a set of factors in state-of-the-art cover

song identification systems is measured. We experiment with

different resolution of chroma features, with different local

cost functions (or distances) between chroma features, with

the effect of using different musical transposition methods, and

with the use of a beat tracking algorithm to obtain a tempo-

independent chroma sequence representation. In addition, as

DTW is a well known and extensively employed technique,

we test two underexplored variants of it: DTW with global

and local constraints. All these experiments are oriented to

elucidate the characteristics that a competitive cover song iden-

tification system should have. We then apply this knowledge

to a newly proposed method, which uses sequences of feature

vectors describing tonality (in our case Harmonic Pitch Class

Profiles [25], from now on HPCP), but it presents relevant

differences in two important aspects: we use a novel binary

similarity function between chroma features, and we develop

a new local alignment algorithm for assessing resemblance

between sequences.

The rest of the paper is organized as follows. First, in section

II, we explain our test framework. We describe the methods

used to evaluate several relevant parameters of a cover song

identification system (chroma resolution and similarity, key

transposition, beat tracking and DTW constraints), and the

descriptors employed across all these experiments. We also

introduce the database and the evaluation measures that are

employed along this study. Then, in section III, we sequentially

present all the evaluated parameters and the obtained results.

In section IV, we propose a new method for assessing the sim-

ilarity between cover songs. This is based on the conclusions

obtained through our experiments (summarized in section

III-F) and on two main aspects: a new chroma similarity

measure and a novel dynamic programming local alignment

algorithm. Finally, a short conclusions section closes the study.

II. EXPERIMENTAL FRAMEWORK

A. Tonality descriptors

All the implemented methods use the same feature set:

sequences of Harmonic Pitch Class Profiles (HPCP) [25].

The HPCP is an enhanced pitch class distribution (or chroma)

feature, computed in a frame-by-frame basis only using the

local maxima of the spectrum within a certain frequency

band. Chroma features are widely used in the literature and

proven to work quite well for the task at hand [13], [15],

[16]. In general, chroma features should be robust to noise

(e.g., ambient noise or percussive sounds), independent of

timbre and played instruments (so that the same piece played

with different instruments has the same tonal description), and

independent of loudness and dynamics. These are some of the

qualities that might make them lead to better results for cover

song identification when comparing them, for instance, with

MFCCs [7], [14].

In addition to using the local maxima of the spectrum within

a certain frequency band, HPCPs are tuning independent

(so that the reference frequency can be different from the

standard A 440 Hz), and consider the presence of harmonic

frequencies. The result of HPCP computation is a 12, 24 or 36-

bin (depending on the desired resolution) octave-independent

histogram representing the relative intensity of each 1, 1/2

or 1/3 of the 12 semitones of the equal tempered scale. A

schema of the extraction process and a plot of the resulting

HPCP sequence are shown in figures 1 and 2.

We start by cutting the song into short overlapping and

windowed frames. For that, we use a Blackman-Harris (62 dB)

window of 93 ms length with a 50% frame overlapping. We

perform a spectral analysis using the Discrete Fourier Trans-

form (DFT), and the spectrum is whitened by normalizing the

amplitude values with respect to the spectral envelop. From the

obtained spectrum, we compute a set of local maxima or peaks

and we select the ones with frequency values fiǫ(40, 5000)
Hz. The selected spectral peaks are summarized in an octave-

independent histogram according to a reference frequency

(around 440 Hz). This reference frequency is estimated by
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Fig. 1. General HPCP feature extraction block diagram. Audio (top) is
converted to a sequence of HPCP vectors (bottom) that evolves with time.

Fig. 2. Example of a high-resolution HPCP sequence (bottom panel)
corresponding to an excerpt of the song “Imagine” by John Lennon (top
panel). In the HPCP sequence, time (in frames) is represented in the horizontal
axis and chroma bins are plotted in the vertical axis.

analyzing the deviations of the spectral peaks with respect to

an equal-tempered chromatic scale. A global estimate of this

reference frequency is employed for all the analyzed frames.

Instead of contributing to a single HPCP bin, each peak

frequency fi contributes to the HPCP bin(s) that are contained

in a certain window around its frequency value. The peak

contribution i is weighted using a cos2 function around the

bin frequency. The length of the weighting window l have

been empirically set to 4

3
semitones. This weighting procedure

minimizes the estimation errors that we find when there are

tuning differences and inharmonicity present in the spectrum,

which could induce errors when mapping frequency values

into HPCP bins.

In addition, in order to make harmonics contribute to the

pitch class of its fundamental frequency, we also introduce

an additional weighting procedure: each peak frequency fi

has a contribution to its nHarmonics = 8 sub-harmonics.

We make this contribution decrease along frequency using an

exponential function.

The HPCP extraction procedure employed here is the same

that has been used in [15], [36], [37], [25], and the parameters

mentioned in this paragraph have been proven to work well

for key estimation and chord extraction in the previously cited

references.

An exhaustive comparison between ‘standard’ chroma fea-

tures and HPCPs is presented in [25] and [38]. In [25], a

comparison of different implementations of chroma features

(Constant-Q profiles [39], Pitch Class Profiles (PCP) [20],

chromagrams [21] and HPCP) with MIDI-based Muse Data

[40] is provided. The correlation of HPCP with Muse Data

was higher than 0.9 for all the analyzed pieces (48 Fugues

of Bach’s WTC) and HPCPs outperformed the Constant-Q

profiles, chromagrams and PCPs. We also compared the use

of different HPCP parameters, arriving to optimal results with

the ones used in the present work. In [38], the efficiency of

different sets of tonal descriptors for music structural discovery

was studied. Herein, the use of three different pitch-class

distribution features (i.e., Constant-Q Profile, PCP and HPCP)

was explored to perform structural analysis of a piece of music

audio. A database of 56 audio files (songs by The Beatles)

was used for evaluation. The experimental results showed that

HPCP were performing best, yielding an average of 82% of

accuracy in identifying structural boundaries in music audio

signals.

B. Studied methods

We now describe two methods that have served us to test

several important parameters of a cover song identification

system, as a baseline for further improvements [16], [25]. We

have chosen them because they represent in many ways the

state-of-the-art. Their main features are the use of global align-

ment techniques and common feature dissimilarity measures.

In subsequent sections, we differentiate these two methods by

its alignment procedure (cross-correlation or Dynamic Time

Warping), but other procedures are characteristic for each one

(such as audio features, dissimilarity measure between feature

vectors, etc.).

1) Cross-correlation approach: A quite straightforward ap-

proach is presented in [16]. This method finds cover versions

by cross-correlating chroma vector sequences (representing the

whole song) averaged beat-by-beat. It seems to be a good

starting point since it was found to be superior to other

methods presented to MIREX 2006 evaluation contest1. We

worked with a similar version of the forementioned system.

We re-implemented the algorithm proposed by the authors2 in

order to consider the same chroma features for all the methods

(HPCPs) and to ease the introduction of new functionalities

and improvements. We now describe the followed steps.

First of all, HPCP features are computed. Each frame vector

is normalized by dividing it by its maximum amplitude, as

shown in figure 1. In addition, beat timestamps are computed

1See the complete results at http://www.music-ir.org/mirex/2006/index.php/
Audio Cover Song (Accessed 28 Jan. 2008)

2http://labrosa.ee.columbia.edu/projects/coversongs (Accessed 28 Jan.
2008)
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with an algorithm adapted from [41], [42] using the aubio

library3.

The next step is to average the frame-based HPCP vectors

contained in between each two beat timestamps. With this,

we obtain a tempo-independent HPCP sequence. In order to

account for key changes, the two compared HPCP sequences

are usually transposed to the same key by means of a key

extraction algorithm or an alternative approach (see section

III-C). Another option is the one proposed in [16], where

the sequence similarity measure is computed for all possible

transpositions and the maximum value is then chosen.

In this approach, sequence similarity is obtained through

cross-correlation. That is, we calculate a simple cross-

correlation between each two tempo-independent HPCP se-

quences for each song being compared (with possibly different

lengths). The cross-correlation values are further normalized

by the length of the shorter segment, so that the measure is

bounded between zero and one. Note that a local distance

measure between HPCPs must be used. The most usual thing

is to use an euclidean-based distance, but other measures can

be tried (see section III-B).

In [16], the authors found that genuine matches were

indicated not only by cross-correlations of large magnitudes,

but that these large values occurred in narrow local maxima

in the cross correlations that fell off rapidly as the relative

alignment changed from its best value. So, to maximize these

local maxima, cross-correlation was high-pass filtered. Finally,

the final measure representing the dissimilarity between two

songs is obtained with the reciprocal of the maximum peak

value of this high-pass filtered cross-correlation.

2) Dynamic Time Warping approach: Another approach

for detecting cover songs was implemented, reflecting the

most used alignment technique in the literature: Dynamic

Time Warping (DTW). The followed method has a very high

resemblance with the one presented in [25].

We proceed by extracting HPCP features in the same way

as the previous approach (section II-B1). Here, we do not

use any beat tracking method because DTW is specially

designed for dealing with tempo variations (see section III-D).

For speeding up calculations, a usual strategy is to average

each k consecutive descriptors vectors (frames). We call this

value (k) the averaging factor. Here, each HPCP feature

vector is also normalized by its maximum value. We deal

with key invariance just in the same way than the previous

approach (section II-B1) and transpose the HPCP sequences

representing the two songs’ tonal progressions to a common

key.

To align these two sequences (which can have different

lengths n and m), we use the DTW algorithm [30]. It basically

operates by recursively computing an n × m cumulative

distance matrix by using the value of a local cost function.

This local cost function is usually set to be any euclidean-

based distance, though in [15], [25] the correlation between the

two HPCP vectors is used to define the dissimilarity measure

(see section III-B). With DTW, we obtain the total alignment

cost between two HPCP sequences in matrix element (n, m).

3http://aubio.org (Accessed 28 Jan. 2008)

We can also obtain an alignment path whose length acts as a

normalization factor.

C. Evaluation methodology

To test the effectiveness of the implemented systems un-

der different parameter configurations, we compiled a music

collection comprising 2053 commercial songs distributed in

different musical genres. Within these songs, there were 451

original pieces (we call them canonical versions) and 1462

covers. Songs were obtained from personal music collections.

The average number of covers per song was 4.24, ranging

from 2 (the original song plus 1 cover) to 20 (the original

song plus 19 covers). There were also 140 ‘confusing songs’

from the same genres and artists as the original ones that were

not associated to any cover group. A special emphasis was put

in the variety of styles and the employed genres for each cover

set. A complete list of the music collection can be found in

our web page4.

Due to the high computational cost of the implemented

cover song identification algorithms, we have restricted the

music collection for preliminary experiments. We simulta-

neously employed two non-overlapping smaller subsets of

the whole song database, intended to be as representative as

possible of the entire corpus. We provide some statistics in

table I.

TABLE I
SONG COMPILATIONS USED. DB75, DB330 AND DB2053 CORRESPOND

TO THE NAMES WE GIVE TO THE DIFFERENT DATABASES. ‘⋆’ DENOTES

AVERAGE NUMBER OF COVERS PER GROUP. IN DB75 AND DB330 THERE

WERE NO ‘CONFUSING SONGS’

DB75 DB330 DB2053

Total number of songs 75 330 2053
Number of cover sets 15 30 451
Covers per set 5 11 4.24⋆

We queried all the covers and canonical versions and

obtained a distance matrix whose dimensions depended on

the number of songs. This data was further processed in order

to obtain several evaluation measures. Here, we mainly show

the results corresponding to standard F-measure and average

Recall (Rx) [43]. This last measure was computed as the mean

percentage of identified covers within the first x answers. All

experiments were evaluated with these measures, and, most of

the time, other alternative metrics were highly correlated with

the previous ones. A qualitative assessment of valid evaluation

measures for this cover song system was presented in [44].

III. EXPERIMENTS

The next subsections describe the tests carried out to evalu-

ate the impact of several system parameters and procedures in

both methods explained in section II-B. Our hypothesis was

that these had a strong influence in final identification accuracy

and shouldn’t be blindly assigned. To our knowledge, this is

one of the first systematic study of this kind that has been

made until now (with, perhaps, the exception of [11], where

the author evaluated the influence of key shifting, cost gap

4http://mtg.upf.edu/∼jserra/files/coverdatabase.csv.tar.gz
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insertions and character swaps in a string alignment method

used for cover song identification, in addition to the use of a

beat-synchronous set).

In our experiments, we aimed at measuring, on a state-

of-the-art cover song identification system, the impact of the

following factors [45]: (a) the resolution of the chroma fea-

tures, (b) the local cost function (or distance) between chroma

features, (c) the effect of using different key transposition

methods, and (d) the use of a beat tracking algorithm to

obtain a tempo-independent chroma sequence representation.

In addition, as DTW is a well known and extensively em-

ployed technique, we wanted to (e) test two underexplored

variants of it: DTW with global and local constraints. A wrap-

up discussion on these factors is provided in section III-F.

Finally, we want to highlight that through all experiments

reported in this section, all combinations of parameters cited in

each subsection were studied. We report average performance

results for each subsection given that all parameter combina-

tions resulted in similar behaviours. Different behaviours are

properly highlighted through the text, if any.

A. Effect of chroma resolution

Usually, chroma features are represented in a 12-bin his-

togram, each bin corresponding to 1 of the 12 semitones

of the equal-tempered scale. But higher resolutions can be

used to get a finer pitch class representation. Other commonly

used resolutions are 24 and 36 bins [25] (corresponding to

1/2 or 1/3 of a semitone). We tested these three values in

our experiments. The resolution parameter was changed in

the HPCP extraction method of the approaches explained in

section II-B.

The average identification accuracy across experiments with

two different chroma similarity measures (section III-B) and

two key transposition methods (section III-C) are shown in

table II. In all the experiments, and independently of the HPCP

distance used and the transposition made, the greater the HPCP

resolution, the better the accuracy we got (F-measure more

than 12% better).

TABLE II
F-MEASURE AND AVERAGE RECALL WITHIN THE FIRST FOUR RETRIEVED

SONGS FOR DIFFERENT HPCP RESOLUTIONS. AVERAGE OF DIFFERENT

CROSS-CORRELATION APPROACH VARIANTS EVALUATED WITH DB75

Resolution F-measure R4

12 bins 0.495 0.429
24 bins 0.511 0.435
36 bins 0.558 0.489

B. Effect of chroma similarity measures

In order to test the importance of the used HPCP distance

measure, we evaluated two similarity measures: cosine simi-

larity and the correlation between feature vectors. These two

measures were chosen because they are commonly used in

the literature. Correlation has been used in [15], [25], and

is inspired on the cognitive aspects of pitch processing in

humans [46]. Furthermore, for key extraction, it was found to

work better than the simple euclidean distance between HPCP

vectors [25].

Tests were made with the methods exposed in section II-B

and the two measures cited above. The results are shown

in table III. We observe that the employed HPCP distance

plays a very important role. This aspect of the system can

yield to more than a 13% accuracy improvement for some

tests [45]. In all trials made with different resolutions and

ways of transposing songs, correlation between HPCPs was

found to be a better similarity measure than cosine distance5.

The former gives a mean F-measure improvement, among the

tested variants, of approximately 6%.

TABLE III
F-MEASURE AND AVERAGE RECALL WITHIN THE FIRST FOUR RETRIEVED

SONGS FOR COSINE DISTANCE (dCOS ) AND CORRELATION DISTANCE

(dCORR). AVERAGE OF DIFFERENT CROSS-CORRELATION APPROACH

VARIANTS EVALUATED WITH DB75

Distance used F-measure R4

dCOS 0.504 0.436
dCORR 0.537 0.461

C. Effect of key transposition

In order to account for songs played in a different key

than the original one, we calculated a global HPCP vector

and we transposed (circularly-shifted) one HPCP sequence to

the other’s tonality. This procedure was introduced in both

methods described in section II-B. A global HPCP vector was

computed by averaging all HPCPs in a sequence, and it was

normalized by its maximum value as all HPCPs. With the

global HPCPs of two songs (
−→
hA and

−→
hB), we computed what

we call the Optimal Transposition Index (from now on OTI),

which represents the number of bins that an HPCP needs to be

circularly shifted to have maximal resemblance to the other:

OTI(
−→
hA,

−→
hB) = argmax

0≤id≤NH−1

{
−→
hA · circshiftR(

−→
hB, id)} (1)

where ‘·’ indicates a dot product, NH is the HPCP size

considered, and circshiftR(
−→
h , id) is a function that rotates

a vector (
−→
h ) id positions to the right. A circular shift of one

position is a permutation of the entries in a vector where

the last component becomes the first one and all the other

components are shifted. Then, to transpose one song, for each

HPCP vector i in the whole sequence we compute:

−−→
hTr

A,i = circshiftR(
−−→
hA,i, OT I) (2)

where superscript Tr denotes musical HPCP transposition.

In order to evaluate the goodness of this new procedure for

transposing both songs to a common key, an alternative way

of computing a transposed HPCP sequence was introduced.

This consisted on calculating the main tonality for each piece

using a key estimation algorithm [25]. This algorithm is a

state-of-the-art approach with an accuracy of 75% for real

5http://mtg.upf.edu/∼jserra/chromabinsimappendix.html
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audio pieces [36], and scored among the first classified algo-

rithms in the MIREX 2005 contest6 with an accuracy of 86%

with synthesized MIDI files. With this alternative procedure,

once the main tonality was estimated, the whole song was

transposed according to this estimated key. A possibly better

way of dealing with key changes would be to calculate the

similarity measures for all possible transpositions and then

take the maximum [16]. We have not tested this procedure

since for high HPCP resolutions it becomes computationally

expensive.

OTI and key transposition methods were compared across

several HPCP resolutions (section III-A) and two different

HPCP distance measures (section III-B). The averaged identifi-

cation accuracy is shown in table IV. It can be clearly seen that

a key estimation algorithm has a detrimental effect to overall

results (F-measure 17% worse). This was also independent

of the number of bins and the HPCP distance used7. We

have evaluated dependence of the number of HPCP bins, and

HPCP distance, and we have found that they had similar

behavior. Therefore, it seems appropriate to transpose the

songs according to the OTI of the global HPCP vectors. Apart

from testing the appropriateness of our transposition method,

we were also pursuing the impact that different transposition

methods could have, which we see is quite important in table

IV.

TABLE IV
F-MEASURE AND AVERAGE RECALL WITHIN THE FIRST FOUR RETRIEVED

SONGS FOR GLOBALHPCP + OTI TRANSPOSITION METHOD AND BY

USING A KEY ESTIMATION ALGORITHM. AVERAGE OF DIFFERENT

CROSS-CORRELATION APPROACH VARIANTS EVALUATED WITH DB75

Method F-measure R4

GlobalHPCP + OTI 0.569 0.500
Key finding algorithm 0.474 0.400

D. Effect of beat tracking and averaging factors

In the cross-correlation approach (section II-B1), HPCP

vectors were averaged beat-by-beat. With the DTW approach

of section II-B2, we expected DTW being able to cope with

tempo variations. To demonstrate this, we performed some

tests with DTW. In these, several averaging factors were also

tried.

Experiments were done with 5 different DTW algorithms

(see section III-E). In these and subsequent experiments

HPCP resolution was set to 36, correlation was used to

assess the similarity between HPCP vectors and we employed

OTI-based transposition. Results shown in table V are the

average identification accuracy values obtained across these

different implementations. We have to note that taking the

arithmetic mean of the respective evaluation measures masks

the concrete behaviour of them along different averaging

factors (information regarding the effect of different averaging

factors upon considered constraints can be found in subsequent

section III-E). Nevertheless, for all the tested variants, better

6http://www.music-ir.org/mirex/2005/index.php/
Audio and Symbolic Key Finding (Accessed 29 Jan. 2008)

7http://mtg.upf.edu/∼jserra/chromabinsimappendix.html

accuracies were reached with averaging HPCPs in a frame

basis, than using beat-by-beat averaging. A similar result using

the Needleman-Wunsch-Sellers algorithm [47] reported in [11]

supports our findings.

TABLE V
F-MEASURE AND AVERAGE RECALL WITHIN THE FIRST FOUR RETRIEVED

SONGS FOR DIFFERENT averaging factors (INCLUDING BEAT AVERAGING).
CORRESPONDING TIME FACTOR IS EXPRESSED IN THE SECOND COLUMN.
AVERAGE OF DIFFERENT DTW APPROACH VARIANTS EVALUATED WITH

DB75

Averaging factor Averaging length F-measure R4

(frame count) (seconds)

Beat variable 0.469 0.417
5 0.232 0.470 0.419

10 0.464 0.494 0.448
15 0.696 0.511 0.465
20 0.929 0.514 0.463
25 1.161 0.512 0.466
30 1.393 0.510 0.461
40 1.856 0.487 0.434

E. Effect of DTW global and local constraints

We can apply different constraints to a DTW algorithm in

order to decrease the number of paths considered during the

matching process. These constraints are desirable for two main

purposes: to reduce computational costs and to prevent ‘patho-

logical’ warpings. ‘Pathological’ warpings are considered the

ones that, in an alignment, assign several multiple values of

a sequence to just one value of the other sequence. This is

easily seen as a straight line in the DTW matrix (an example

is shown in the first plot of figure 3).

To test the effect of these constraints we implemented 5

variants of a DTW algorithm: the one mentioned in section

II-B2, two globally constrained DTW algorithms, and two

locally constrained ones:

• Simple DTW: This implementation corresponds to the

standard definition of DTW, where no constraints are

applied [30].

• Globally constrained DTW: Two implementations were

tried. One corresponds to Sakoe-Chiba constraints [48]

and the other one to the Itakura parallelogram [49]. With

these global constraints, elements far from the diagonal

of the n×m DTW matrix are not considered (see figure

4). A commonly used value for that in many speech

recognition tasks is 20% [30].

• Locally constrained DTW: To further specify the optimal

path, some local constraints can be applied in order

to guarantee that excessive time scale compression or

expansion is avoided. We specified two local constraints

that were found to work in a plausible way with speech

recognition [50]. From this reference, Type 1 and Type 2

constraints were chosen (we denote them MyersT1 and

MyersT2 respectively). For both, the recursive relation of

DTW is changed in such a way that in element (i, j) of a

DTW cumulative distance matrix, we only pay attention

to warpings (i−1, j−1) (no tempo deviation), (i−2, j−1)
(2x tempo deviation) and (i − 1, j − 2) (0.5x tempo

deviation). So, we allow maximal deviations of the double
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or half the tempo. This seems reasonable for us since, for

instance, if the original song is at 120 B.P.M., a cover

may not be at less than 60 B.P.M. or more than 240

B.P.M. The difference between MyersT1 and MyersT2

constraints relies in the way we weight this warpings:

considering intermediate distances for the former, and

double-weighting the distance between elements i and

j for the latter [50].

These three implementations were evaluated across different

averaging factors (see section III-D) and the means of the F-

measure and average recall within the 4 first answered items

(R4) were taken. Results can be seen in table VI. In general,

better accuracies are achieved with local constraints, whereas

global constraints yielded the worst results.

TABLE VI
F-MEASURE AND AVERAGE RECALL WITHIN THE FIRST FOUR RETRIEVED

SONGS FOR DIFFERENT DTW ALGORITHMS IMPLEMENTING GLOBAL AND

LOCAL CONSTRAINTS. EVALUATION WAS DONE WITH DB75

Alg. name Constr. type F-measure R4

Sakoe-Chiba Global 0.321 0.283
Itakura Global 0.344 0.304
Simple DTW No constr. 0.600 0.541
MyersT2 Local 0.608 0.552
MyersT1 Local 0.624 0.570

There is one important fact about local constraints that

needs to be remarked and that can be appreciated in table

VII. In general (except for the locally constrained methods),

as the framelength decreases, it can be seen that identification

accuracy does so. This is due to the fact that lower frame-

lengths introduce the creation of ‘pathological’ warping paths

(straight lines in the DTW matrix) that do not correspond to

the true alignment (a straight line indicates several points of

one sequence aligned just to one point of the other, left picture

in figure 3). This makes the path length to increase, and since

we normalize the final result by this value to yield sequence

length independence, the final distance value decreases. Then,

false positives are introduced in the final outcomes of the

algorithm. Figure 3 shows the same part for matrices obtained

after a simple and a locally constrained DTW approach. Local

constraints prevent DTW from these undesired warpings. If

there is a single horizontal or vertical step in the warping

path, they force them to be the opposite way in next recurrent

step. This is why the accuracy of locally constrained methods

keeps increasing while lowering the averaging factor.

Fig. 3. Parts of the matrix obtained with a simple (left) and locally
constrained (MyersT1, right) DTW approach for the same two songs. On
the left we can observe some ‘pathological’ warpings, while on the right,
these have disappeared.

Also in table VII, we observe that the identification accuracy

for globally constrained methods is significantly lower than for

the other ones. This is due to the fact that, by using these global

constraints, we restrict the paths to be around the DTW matrix

main diagonal. To understand the effect of that, as an example,

we consider a song composed by two parts that are the same

(S1 = AA) and another song (a cover) with nearly half the

tempo (′) and composed by only one of these parts (S2 = A′).

The plots in figure 4 graphically explain this idea. The first one

(left) was generated using a method with no constraints. We

observe that the best path (straight diagonal red line) goes from

(1, 1) to more or less (20, 10) (horizontal axis lower-half part).

This is logical since S2 (vertical axis) is a half-tempo kind-of

repetition of one part of S1 (horizontal axis). The middle plot

corresponds to the same matrix with Sakoe-Chiba constraints.

We observe that the ‘optimal’ path we could trace with the first

plot has been broken by the effect of the global constraints. A

similar situation occurs with Itakura constraints (right plot).

Fig. 4. Examples of an unconstrained DTW matrix (left), and Sakoe-Chiba
(center) and Itakura (right) global constraints for S1 (x-axis) and S2 (y-axis).
As this is an intuitive example, coordinate units in the horizontal and vertical
axes are arbitrary.

F. Discussion

In previous subsections we have studied the influence of

several aspects in two state-of-the-art methods for cover song

identification. All the analyzed features proved to have a direct

(and sometimes dramatic) impact in the final identification

accuracy. We are now able to summarize some of the key

aspects that should be considered when identifying cover

songs. These aspects have been considered as a basis to

design our approach, which will be presented in the following

sections.

1) Audio features: The different musical changes involved

in cover songs, as discussed in section I, give us clear insights

on which features to use. As chroma features have been

evidenced to work quite well for this task [13], [15], [16]

and proven to be better than timbre oriented descriptors as

MFCC [7], [14], our approaches are based on HPCPs, given

their usefulness for other tasks (e.g., key estimation) and their

correspondence to pitch class distributions (see [25], [38] for

a comparison with alternative approaches).

In section III-A, we have shown that HPCP resolution is

important with both cosine and correlation distances. We have

tested 12, 24, and 36-bin HPCPs with different variants of

the methods presented in section II-B, and the results suggest

that accuracy increases as the resolution does so. On the other

hand, increasing resolution also increases computational costs,

so that higher resolution is not considered. In addition, 36

seems to be a good resolution for key estimation [36] and

structural analysis [51].
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TABLE VII
F-MEASURE FOR DIFFERENT AVERAGING FACTORS AND CONSTRAINTS. DTW APPROACH EVALUATION WITH DB75

Alg. name Constr. type 5 10 15 20 25 30 40

Sakoe-Chiba Global 0.259 0.282 0.327 0.332 0.342 0.355 0.331
Itakura Global 0.256 0.286 0.362 0.353 0.360 0.395 0.388
Simple DTW No constr. 0.537 0.606 0.611 0.632 0.638 0.634 0.598
MyersT1 Local 0.647 0.651 0.641 0.643 0.624 0.625 0.577
MyersT2 Local 0.651 0.646 0.617 0.614 0.599 0.566 0.542

2) Similarity measure between features: In section III-B

we have stated the importance of the similarity employed to

compare chroma vectors. Furthermore, we have shown that

using a similarity measure that is well correlated with cognitive

foundations of musical pitch [46] improves substantially the

final system accuracy. When using tonality descriptors, some

papers do not specify how a local distance between these fea-

ture vectors is computed. They are supposed to assess chroma

features’ similarity as the rest of studies: with an euclidean-

based distance. Since tonality features such as chroma vectors

are proven not to be in an euclidean space [52], [53], [54],

[55], this assumption seems to be wrong. Furthermore, any

method (e.g., a classifier) using distances and concepts just

valid for an euclidean space will have the same problem. This

is an important issue that will be dealt in the proposed method

(section IV).

3) Chroma transposition: To account for main key differ-

ences, one song is transposed to the tonality of the other

one by means of computing a global HPCP for each song

(section III-C) and circularly shifting by the OTI (equation

1). This technique has been proven to be more accurate than

transposing the song to a reference key by means of a key

estimation algorithm. In this case, the use of a less-than-perfect

key extraction algorithm degrades the overall identification

accuracy. Through the testing of two transposition variants we

have pointed out the relevance this fact has in a cover song

identification system or in a tonal alignment algorithm.

4) The use of beat tracking: We have seen that the DTW

approach summarized in section II-B2 could lead to better

results without beat tracking information (tables V and VII).

Better results for DTW without beat tracking information

were also found when comparing against the cross-correlation

approach (which uses beat information). We can see this in

table IX and in figure 8 (we also provide an extra comparative

figure in a separate web page8). This is another fact that makes

us disregard the use of ‘intermediate’ processes such as key

estimation algorithms and beat tracking systems (citing the two

that have been tested here), or chord and melody extraction

engines. We feel that this can be a double-edged sword. Due

to the fact that all these methods do not have a fully reliable

performance9, they may decrease the accuracy of a system

comprising (at least) one of them. The same argument can

be applied to any audio segmentation, chorus extraction, or

summarization technique. We can also take a look at state-

of-the-art approaches. For instance, common accuracy values

8http://mtg.upf.edu/∼jserra/chromabinsimappendix.html
9To account for accuracies of those systems you can visit, e.g., MIREX

2006 wiki page: http://www.music-ir.org/mirex/2006/index.php/Main Page
(Accessed 29 Jan. 2008)

for a chord recognition engine range from 75.5% [56] to

93.3% [57] depending on the method and the considered

music material. Also, in this last case, once the chords are

obtained, the approach to measure distances between them

is still an unsolved issue, involving both some cognitive and

musicological concepts that are not fully understood yet. So,

errors in these ‘intermediate’ processes might be added (in

case we are using more than one of them), and be propagated

to the overall system’s identification accuracy (the so called

weakest link problem).

5) Alignment procedure: Several tests have been presented

with chroma features DTW alignment. DTW allows us to

restrict the alignment (or ‘warping’) paths to our requirements

(section III-E). Consequently, we have tested four ‘standard’

constraints on these paths (two local and two global con-

straints). With global constraints we are not considering paths

(or alignments) that might be far from the DTW matrix main

diagonal. A problem arises when this path can represent a

‘correct’ alignment (as the example illustrated in figure 4).

We have also seen that the accuracy decreases substantially

with these constraints. As mentioned in section I, covers can

substantially alter the song structure. When this happens, the

‘correct’ alignment between two covers of the same canonical

song may be outside of the main DTW matrix diagonal.

Therefore, the use of global constraints dramatically decreases

the system detection accuracy. These two facts reveal the

incorrectness of using a global alignment technique for cover

song identification. Regarding local constraints, we have seen

that these can help us by reducing ‘pathological’ warpings

that arise when using a small averaging factor (table VII).

Consequently, this allows us to use much detail in our analysis,

and, therefore, to get a better accuracy.

Many systems for cover song identification use a global

alignment technique such as DTW or entire song cross-

correlation for determining similarity (except the ones that use

a summarization, chorus extraction or segmentation technique,

which would suffer from the problem of the ‘weakest link’,

cited above). In our opinion, a system considering similarity

between song subsequences, and thus, using a local similarity

or alignment method, is the only way to cope with strong song

structural changes.

IV. PROPOSED METHOD

In this section we present a novel method for cover song

identification which tries to avoid all the weak points that

conventional methods may have and which have been analyzed

in previous section. The proposed method uses high-resolution

HPCPs (36-bin) as these have been shown to lead to better

accuracy (section III-A). To account for key transpositions, the
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OTI transposition method explained in section III-C is used in-

stead of a conventional key finding algorithm. We avoid using

any kind of ‘intermediate’ technique as key estimation, chord

extraction or beat tracking, as these might degrade the final

system identification accuracy (as discussed in section III-F).

The method does not employ global constraints, and takes

advantage of the improvement given by the local constraints

explained in section III-E. Furthermore, it presents relevant

differences in two important aspects that boost its accuracy

in a dramatic way: it uses a new binary similarity function

between chroma features (we have verified the relevance of

distance measures in section III-B), and employs a novel

local alignment method accounting for structural changes

(considering similarity between subsequences, as discussed in

section III-F).

A quite resemblant method to the one proposed here is [12].

In there, a chroma-based feature named Polyphonic Binary

Feature Vector (PBFV) is adopted, which uses spectral peaks

extraction and harmonics elimination. Then, the remaining

spectral peaks are averaged across beats and collapsed to a 12-

element binary feature vector. This results in a string vector for

each analyzed song. Finally, a fast local string search method

and a Dynamic Programming (DP) matching are evaluated.

The method proposed here also extracts a chroma feature

vector using only spectral peaks (HPCP, see section II-A), but

we do not do beat averaging, which we find has a detrimental

effect in the accuracy of DP algorithms such as Dynamic Time

Warping (DTW) (section III-D). Another important difference

to the proposed method is the similarity between vectors.

In [12], this is computed between binarized vectors, while

in the proposed method, what is binarized is the similarity

measure, not the vectors themselves (equation 3). Finally, we

also think that using an exhaustive alignment method like the

one proposed in next section IV-A is also determinant for our

final system identification accuracy.

A. System description

Figure 5 shows a general block diagram of the system. It

comprises four main sequential modules: pre-processing, sim-

ilarity matrix creation, dynamic programming local alignment

(DPLA) and post-processing.

From each pair of compared songs A and B (inputs),

we obtain a distance between them (output). Pre-processing

comprises HPCP sequence extraction and a global HPCP

averaging for each song. Then, one song is transposed to the

key of the other one by means of an Optimal Transposition

Index (OTI). From these two sequences, a binary similarity

matrix is then computed. This last is the only input needed for

a Dynamic Programming Local Alignment (DPLA) algorithm,

which calculates a score matrix that gives highest ratings to

best aligned subsequences. Finally, in the post-processing step,

we obtain a normalized distance between the two processed

songs. We now explain these steps in detail.

1) Pre-processing: For each song, we extract a sequence of

36-bin HPCP feature vectors as made before, using the same

parameters specified in section II-A. An averaging factor of

10 was used as it was found to work well in sections III-D

and III-E. As we are using local constraints for the proposed

method, it is not surprising to find a quite similar identifi-

cation accuracy curve for different values of the averaging

factor when comparing the proposed method with the locally

constrained DTW algorithms explained in section III-E. In an

electronic appendix to this article10, the interested reader can

find a figure showing the accuracy curves for the proposed

method and for DTW with local constraints [45].

A global HPCP vector is computed by averaging all HPCPs

in a sequence, and normalizing by its maximum value. With

the global HPCPs of two songs (
−→
hA and

−→
hB), we compute the

OTI index, which represents the number of bins that an HPCP

needs to circularly shift to have maximal resemblance to the

other (see equation 1 in section III-C).

The last operation of the pre-processing block consists in

transposing both musical pieces to a common key. This is

simply done by circularly shifting each HPCP in the whole

sequence of just one song by OTI(
−→
hA,

−→
hB) bins (remember

we denote musical transposition by superscript Tr).

2) Similarity matrix: The next step is computing a similar-

ity matrix S between the obtained pair of HPCP sequences.

Notice that the sequences can have different lengths n and

m, and that, therefore, S will be an n × m matrix. Element

(i, j) of the similarity matrix S, has the functionality of a

local sameness measure between HPCP vectors
−−→
hTr

A,i and
−−→
hB,j

(Si,j = s(
−−→
hTr

A,i,
−−→
hB,j)). In our case, this is binary (i.e., only

two values are allowed).

We outline some reasons for using a binary similarity mea-

sure between chroma features. First, as these features might

not be in an euclidean space [46], we would prefer to avoid the

computation of an euclidean-based (dis)similarity measure (in

general, we think that tonal similarity, and therefore chroma

feature distance, is a still far to be understood topic, with

many of perceptual and cognitive open issues). Second, using

only two values to represent similarity, the possible paths

through the similarity matrix become more evident, providing

us with a clear notion of where the two sequences agree

and where they mismatch (see figure 6 for an example). In

addition, binary similarity allows us to operate like many string

alignment techniques do: just considering if two elements of

the string are the same. With this, we have an expanded range

of alignment techniques borrowed from string comparison,

DNA or protein sequence alignment, symbolic time series

similarity, etc. [32]. Finally, we believe that considering the

binary similarity of an HPCP vector might be an easier (or at

least more affordable) task to assess than obtaining a reliable

graded scale of resemblance between two HPCPs correlated

with (sometimes subjective) perceptual similarity.

An intuitive idea to consider when deciding if two HPCP

vectors refer to the same tonal root is to keep circularly shifting

one of them and to calculate a resemblance index for all

possible transpositions. Then, if the transposition that leads

to maximal similarity corresponds to less than a semitone

(accounting for slight tuning differences), the two HPCP vec-

tors are claimed to be the same. This idea can be formulated

10http://mtg.upf.edu/∼jserra/chromabinsimappendix.html
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Fig. 5. General block diagram of the system.

in terms of the OTI explained in equation 1. So, as we are

using a resolution of a 1/3 of a semitone (36 bins), the binary

similarity measure between the two vectors is then obtained

by:

s(
−−→
hTr

A,i,
−−→
hB,j) =

{

µ+ if OTI(
−−→
hTr

A,i,
−−→
hB,j) ∈ {0,1,NH-1},

µ− otherwise.
(3)

where µ+ and µ− are two constants that indicate match or

mismatch. These are usually set to a positive and a negative

value (e.g., +1 and -1). Empirically, we found that a good

choice for µ+ and µ− were +1 and -0.9 respectively. Ranges

of µ+ and µ− between ±0.7 and ±1.25 resulted in changes

smaller than an 5% of the evaluation measures tested. We show

two examples of this type of similarity matrix in figure 6.

Fig. 6. Euclidean-based similarity matrix for two covers of the same song
(left), OTI-based binary similarity matrix for the same covers (center) and
OTI-based binary similarity matrix for two songs that do not share a common
tonal progression (right). We can see diagonal white lines in the second plot,
while this pattern does not exist in the third. Coordinate units in the horizontal
and vertical axes correspond to 1 sec frames.

3) Dynamic programming local alignment (DPLA): A bi-

nary similarity matrix S is the only input to our DPLA

algorithm. In section III-E we have seen that using global

constraints and, thus, forcing warping paths to be around the

alignment matrix main diagonal, had a detrimental effect in

final system accuracy. Instead, the use of local constraints

[50] can help us preventing ‘pathological warpings’ and just

admitting certain ’logical’ tempo changes. Also, in section

III-F, it has been discussed the suitability of performing a

local alignment to overcome strong song structure changes

(i.e., to check all possible subsequences). The Smith-Waterman

algorithm [58] is a well-known algorithm for performing local

sequence alignment in Molecular Biology. It was originally

designed for determining similar regions between two nu-

cleotide or protein sequences. Instead of looking at the total

sequence, the Smith-Waterman algorithm compares segments

of all possible lengths and optimizes the similarity measure.

So, in the same manner as the Smith-Waterman algorithm

does, we create an (n + 1) × (m + 1) alignment matrix H
through a recursive formula, that, in addition, incorporates

some local constraints:

Hi,j = max



















Hi−1,j−1 + Si−1,j−1 − δ(Si−2,j−2, Si−1,j−1)

Hi−2,j−1 + Si−1,j−1 − δ(Si−3,j−2, Si−1,j−1)

Hi−1,j−2 + Si−1,j−1 − δ(Si−2,j−3, Si−1,j−1)

0
(4)

for 4 ≤ i ≤ n+1 and 4 ≤ j ≤ m+1. Each Si,j corresponds to

the value of the binary similarity matrix S at element (i, j),
and δ() denotes a penalty for a gap opening or extension.

This latter value is set to 0 if Si−1,j−1 > 0 (no gap between

Si−1,j−1 and either Si−2,j−2, Si−3,j−2 or Si−2,j−3), or to a

positive value if Si−1,j−1 ≤ 0. More concretely:

δ(a, b) =











0 if b > 0 (no gap)

c1 if b ≤ 0 and a > 0 (gap opening)

c2 if b ≤ 0 and a ≤ b (gap extension)

(5)

Good values were empirically found to be c1 = 0.5 for

a gap opening, and c2 = 0.7 for a gap extension. Small

variability of the evaluation measures was shown for c1, c2

values between 0.3 and 1. We used the songs in DB90 for

empirically estimating these parameters and then evaluated the

method with DB2053 (see section IV-B).

Values of H can be interpreted considering that Hi,j is the

maximum similarity of two segments ending in
−−−−→
hTr

A,i−1 and
−−−−→
hB,j−1 respectively. The zero is included to prevent negative

similarity, indicating no similarity up to
−−−−→
hTr

A,i−1 and
−−−−→
hB,j−1.

The first 3 rows and columns of H can be initialized to have

a 0 value.

An example of the resultant matrix H is shown in figure

7. We clearly observe two local alignment traces, which

correspond to two highly resemblant sections between two
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versions of the same song (from H150,25 to H250,100 and from

H280,25 to H400,100, where sub-indices respectively denote

rows and columns).

Fig. 7. Example of a local alignment matrix H between two covers. It can
be seen that the two songs do not entirely coincide (just in two fragments),
and that, mainly, their respective second halves are completely different.
Coordinate units in the horizontal and vertical axes correspond to 1 sec
averaging across frames.

4) Post-processing: In the last step of the method, only the

best local alignment in H is considered. This means that the

score determining the local subsequence similarity between

two HPCP sequences, and, therefore, what we consider to be

the similarity between two songs, corresponds to the value of

H’s highest peak:

Score(HPCPTr
A , HPCPB) = max{Hi,j} (6)

for any i, j such that 1 ≤ i ≤ n + 1 and 1 ≤ j ≤ m + 1.

Finally, to obtain a dissimilarity value that is independent of

song duration, the score is normalized by the compared song

lengths [45] and the inverse is taken:

d(songA, songB) =
n + m

Score(HPCPTr
A , HPCPB)

(7)

where n and m are the respective lengths for songs A and B.

B. Evaluation

We now display the results corresponding to the evaluation

of our method. This has been made with the music collection

presented in section II-C and within the framework of the

MIREX 2008 Audio Cover Song Identification contest as well.

As the databases used in this part of the paper may have

more than 5 covers per set, the first 10 retrieved items were

considered for evaluation.

Firstly, as we have proposed a new distance measure be-

tween chroma features, we provide results for a comparison

between common distance measures and the proposed OTI-

based binary distance in table VIII. To perform this com-

parison, we have thresholded common distance measures and

applied the same DPLA algorithm (with the same parameters)

to all of them. Several thresholds were tested for each distance

in order to determine the ones leading to best identification

accuracy. We observe that OTI-based binary similarity matrix

outperforms other binary similarity matrices obtained through

thresholding common similarity measures between chroma

features. In the case of these last measures, best identification

accuracy values for different thresholds tested are shown.

TABLE VIII
IDENTIFICATION ACCURACY FOR DPLA ALGORITHM WITH 5 DIFFERENT

BINARY SIMILARITY MATRICES AS INPUT. EVALUATION DONE WITH

DB2053

Distance used F-measure R10

Dot product 0.132 0.136
Euclidean distance 0.218 0.216
Cosine similarity 0.221 0.219
Correlation 0.239 0.247
OTI-based similarity 0.601 0.576

We next show the general evaluation results corresponding

to our personal music collection. Within these, we compare

identification accuracy between the proposed method and the

best variants of the cross-correlation and DTW methods tested.

In table IX we report the F-measure values for the three

different databases presented. Recall is shown in figure 8. In

there, we plot an average Recall figure for all the implemented

systems (best variants). Vertical axis represents Recall and

horizontal axis represents different percentages of the retrieved

answer. As this was set to a maximum length of 10, the

numbers represent 0 answers (giving a Recall of 0), 1 answer, 2

answers and so forth. We can see that with the newly proposed

method the accuracy is around 58% of correctly retrieved

songs within the first 10 retrieved answers. This value is highly

superior to the accuracies achieved for the best versions of the

cross-correlation and DTW methods that we could implement

(around 20 and 40 percent respectively), and is very far from

the the baseline corresponding to just guessing by chance,

which is lower than 0.3%.

TABLE IX
F-MEASURE FOR THE PROPOSED METHOD, THE DTW AND THE

CROSS-CORRELATION APPROACHES. PARAMETERS FOR THE

CROSS-CORRELATION AND THE DTW METHODS WERE ADJUSTED

ACCORDING TO THE BEST VALUES AND VARIANTS FOUND IN SECTION III

Method DB75 DB330 DB2053

Cross-correlation 0.638 0.348 0.169
DTW 0.651 0.485 0.399
Proposed method 0.868 0.688 0.601

If we take a look to MIREX 2007 contest data (where we

participated with this algorithm), we observe that our system

was the best performing one with a substantial difference to

others [59]. A total of 8 different algorithms were presented

to the MIREX 2007 Audio Cover Song task. Table X shows

the overall summary results obtained11. The present algorithm

(SG, first column) performed the best in all considered eval-

uation measures, reaching an average accuracy of 5.009 of

correctly identified covers within the 10 first retrieved elements

(MNCI10) and a Mean Average Precision (MAP) of 0.521.

11See the complete results and details about the evaluation procedure at
http://www.music-ir.org/mirex/2007/index.php/
Audio Cover Song Identification Results (Accessed 29 Jan. 2008)
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TABLE X
RESULTS FOR MIREX 2007 AUDIO COVER SONG TASK. ACCURACY MEASURES EMPLOYED WERE THE TOTAL NUMBER OF COVERS IDENTIFIED WITHIN

THE FIRST 10 ANSWERS (TNCI10), THE MEAN NUMBER OF COVERS IDENTIFIED WITHIN THE 10 FIRST ANSWERS (MNCI10), THE MEAN OF AVERAGE

PRECISION (MAP) AND THE AVERAGE RANK OF THE FIRST CORRECTLY IDENTIFIED COVER (RANK1). CLOCK TIME MEASURES ARE REPORTED ON THE

LAST LINE OF THE TABLE (NUMBER OF USED THREADS IN BRACKETS). VALUES FOR THE ALGORITHM PRESENTED HERE ARE SHOWN IN THE FIRST

COLUMN (SG)

Measure Range SG EC JB JEC KL1 KL2 KP IM

TNCI10 [0-3300] 1653 1207 869 762 425 291 190 34
MNCI10 [0-10] 5.009 3.658 2.633 2.309 1.288 0.882 0.576 0.103
MAP [0-1] 0.521 0.330 0.267 0.238 0.13 0.086 0.061 0.017
Rank1 [0-1000] 9.367 13.994 29.527 22.209 57.542 51.094 46.539 97.470

Runtime [HH:MM] 01:37(1) 04:28(5) 04:32(8) 00:47(8) 10:45(8) 02:37(1) 03:51(1) 02:04(1)

Fig. 8. Average Recall figures comparing the proposed approach (blue circles)
with the cross-correlation (green sum signs) and the DTW (red crosses)
methods for DB2053. Parameters for the cross-correlation and the DTW
methods compared were adjusted according to the best values found in section
III. A base-line identification accuracy (BLE) is also plotted (black bottom
asterisks).

Furthermore, the next best performing system reached and an

MNCI10 of 3.658 and a MAP of 0.330, which represents a sub-

stantial difference to the one proposed in this paper (57.88%

superior in terms of MAP). In addition, statistical significance

tests showed that the results for the system were significantly

better than those of the other six systems presented in the

contest.

A basic error analysis [45] shows that the best identified

covers are “A forest”, originally performed by The Cure

and “Let it be”, originally performed by The Beatles. Other

correctly classified items are “Yesterday”, “Dont let me down”

and “We can work it out”, all originally performed by The

Beatles and “How insensitive” (Vinicius de Moraes). This high

amount of Beatles’ songs within the better classified items

can be due to the fact that there were many Beatles’ cover

sets (e.g., 14 out of 30 in DB330), but it can also be justified

considering the clear simplicity and definition of their tonal

progressions, that, in comparison with other more elaborated

pieces (e.g., “Over the rainbow” performed by Judy Garland),

leads to better identification. Within this set of better identified

covers there are several examples of structural changes and

tempo deviations. In the electronic appendix12, we provide a

confusion matrix with labels corresponding to cover sets (rows

and columns).

We detected that there were some songs, such as “Eleanor

12http://mtg.upf.edu/∼jserra/chromabinsimappendix.html

Rigby” and “Get Back”, that caused ‘confusion’ more or

less with all the queries made. One explanation for this

might be that these two songs are built over a very simple

chord progression involving just two chords: the tonic and the

mediant (e.g., C and Em for a C major key) for the former,

and the tonic and the subdominant (e.g., C and F for a C major

key) for the latter. So, as they rely half of the time in the tonic

chord, any song being compared to them will share half of the

tonal progression. Other poorly classified items are “The battle

of Epping forest” (Genesis) or “Stairway to heaven” (Led

Zeppelin). Checking their wrongly associated covers, we find

that, most of the time, the alignment, the similarity measure

and the transposition are performing correctly according to the

features extracted. Thus, we have the intuition that the tonal

progression might not be enough for some kinds of covers.

This does not mean that HPCPs could be sensitive to timbre

or other facets of the musical pieces. On the contrary, we are

able to detect many covers that have a radical change in the

instrumentation, which we think it is due to the capacity of

HPCPs to filter timbre out.

An interesting misclassification appears with “No woman no

cry”, originally performed by Bob Marley. These covers are

associated more than 1/3 of the times with the song “Let it be”

(The Beatles). When we analyzed the harmonic progression of

both songs, we discovered that they share the same chords in

different parts of the theme (C - G - Am - F). Thus, this

might be a logical misclassification using chroma features.

Another source of frequent confusion is the classical harmonic

progression I - IV - I or I - V - IV - I, which many songs

share.

V. CONCLUSIONS

In this paper we have devised a new method for audio

signal comparison focused on cover song identification that

by large outperforms state-of-the-art system. This has been

achieved after experimenting with many proposed techniques

and variants, and testing their effect in final identification

accuracy, which also was one of the main objectives in writting

this article.

We have first presented our test framework and the two

state-of-the-art methods that we have used in further experi-

ments. The performed analysis has focused on several variants

that could be taken for these two methods (and, in general,

for any method based on chroma descriptors): (a) the chroma

features resolution - section III-A; (b) the local cost function

(dissimilarity measure) between chroma features - section
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III-B; (c) the effect of using key transposition methods -

section III-C; and (d) the use of a beat tracking algorithm

to obtain a tempo-independent representation of the chroma

sequence - section III-D. In addition, as DTW is a well known

and extensively used technique, we tested two underexplored

variants of it, apart from the simple one mentioned in section

II-B2: DTW with global and with local constraints (section

III-E). The results of these cross-validated experiments have

been summarized in section III-F.

Finally, we have presented a new cover song identification

system that takes advantage of the results found and that has

been proven, using different evaluation measures and contexts,

to work significantly better than other state-of-the-art methods.

Although cover song identification is still a relatively new

research topic, and systems dealing with this task can be

further improved, we think that the work done and the method

presented here represent an important milestone.
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