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Arjan Meijerink, Niek Nïens, Geert Heideman and Wim van Etten
University of Twente, Department of Electrical Engineering, Telecommunication Engineering Group

P.O. Box 217, 7500 AE, Enschede, The Netherlands
Email: a.meijerink@ieee.org

Abstract— Coherence multiplexing (CM) is a relatively un-
known form of optical CDMA, which is particularly suitable
in medium bit rate, small-scale optical networks like access
networks, LANs or optical interconnects. Despite the small bit
rates and small distances, this technique is rather sensitive to
chromatic fiber dispersion, since broadband sources have to be
used. In this paper, the impact of chromatic dispersion on the
performance of a digital transmission system using CM and
binary PSK will be studied. Moreover, it will be proven that
the performance of a system with significantly dispersive fiber
links can be enhanced by performing QPSK modulation, rather
than the so far more conventional binary PSK modulation.

I. I NTRODUCTION

A. Coherence Multiplexing (CM)

Coherence multiplexing (CM) is a simple form of optical
code division multiplexing (OCDM), in which broadband
sources and delay-lines are used to multiplex signals from dis-
tinct users over one optical fiber cable [1]–[6]. The difference
between CM and the more well-known OCDM techniques
using optical orthogonal codes (OOCs), is that the randomness
of the broadband source is used as a code, rather than a
(known) pseudorandom code. An example of a simple CM
system, consisting of one transmitter and receiver, is shown
in Fig. 1. Since the code is not known at the receiver,
it has to be transmitted twice: once modulated and once
unmodulated. These two signals are moreover delayed in time
with respect to each other by a timeshift that exceeds the
so-called coherence timeτc [7]. The latter is a measure of
the width of the coherence function of the light emitted by
the source (autocorrelation function of the correspondingfield
amplitude), which indicates the time interval over which one
can reasonably predict the phase of the lightwave. Hence,
the modulation signal does not result in a visible intensity
modulation in the output signal of the transmitter. In the
receiver, the modulating signal can be recovered by mixing the
received signal by a time-delayed version of the same received
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Fig. 1. A simple coherence multiplex (CM) system

signal, such that the time-delays in the transmitter and receiver
are the same. When these delays are not the same, however,
and moreover, their difference is much larger thanτc, then
the mixing process will simply result in (zero-mean) noise.
Hence, multiplexing can be achieved by launching the signals
of several (sayN transmitters) into the common fiber, each
transmitter using a different time delay.

B. Application area

CM has several advantages and disadvantages with respect
to other optical multiplexing techniques, which makes it
suitable for very specific applications.

The particular advantage with respect to wavelength division
multiplexing (WDM) is that the conditions with respect to
stability and optical bandwidth of both the sources and the
receiver components are not so strict: broadband sources and
simple couplers and delay lines can be used to perform the
multiplexing, and small fluctuations in source wavelength
or path delays do not introduce crosstalk between the CM
channels.

A particular advantage with respect to optical time division
multiplexing (OTDM) is that CM does not require a synchro-
nization scheme to avoid crosstalk between the CM channels.
This is a particular advantage in a multiple access scheme,
where the transmitters are not localized to a single node, for
example in the upstream of a distribution network.

And finally, the advantage of CM with respect to OCDM
with OOCs is that the electrical signal processing can be
performed at a rate that corresponds to the bit rate of the
modulating signal, rather than at a (much higher) chip rate
of the OOCs. Moreover, an advantage with respect to both
OTDM and OCDM with OOCs is that CM is transparent to
any signal format, which makes it suitable for analog mod-
ulation, and moreover, enables combination with subcarrier
multiplexing (SCM).

A disadvantage of CM is the fact that the signals that
mix incoherently result into optical beat interference (OBI)
noise. The power spectral density of this noise increases
inversely proportional to the bandwidth of the source, and
approximately proportional to the square of the number of
channels. This limits both the number of channels that can be
multiplexed, and their bandwidth (or bit rate, in case of digital
transmission). Another disadvantage of CM is the fact that
the broadband light renders the multiplexed channels rather
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sensitive to dispersion, even when single-mode fiber (SMF) is
used. This limits the span lengths of the fiber links that are to
be used, as well as the bandwidth of the multiplexed channels.

As a result, CM is particularly suitable for applications
where required bandwidth, number of users and link lengths
are modest, and costs are to be kept low. Examples of such
applications are optical LANs and access networks. More-
over, the signal transparency enables Radio over Fiber (RoF)
distribution, as described elsewhere in these proceedings[2].
Actually, these functionalities could even be integrated into
a single network, for example for an indoor network that
provides both wireless and fixed access.

C. Scope of this paper

In this paper, the influence of chromatic dispersion in
SMF on the output signal of a CM receiver is studied in
general, and applied to digital transmission in particular. In
Section II, an analysis will be performed in which the output
signal of a CM receiver is related to the modulating signal
in the transmitter, incorporating the effect of chromatic fiber
dispersion. Using this relation, the performance of a digital
transmission system using CM and binary phase shift keying
(BPSK) modulation is studied in terms of the bit error rate
(BER), in Section III. Moreover, a formula will be derived
that gives the maximum bit rate that can be achieved at a
BER of 10−9, optimized with respect toτc. In Section IV,
M -ary PSK will be considered as an alternative modulation
format, and it will be shown that QPSK will result in higher
bit rates than BPSK. This is illustrated in Section V, where a
numerical example with 500 m of standard SMF is presented.
Conclusions are formulated in Section VI.

II. A NALYSIS OF THE COHERENCE MULTIPLEX SYSTEM

A. Light model

Consider the simple CM system in Fig. 1. If we assume
that the light that is coupled into the Mach-Zehnder Inter-
ferometer (MZI) is linearly polarized, and that the optical
circuit is single-mode, then we can describe the optical signal
by the normalized pre-envelopex(t) of the corresponding
electrical field, which is defined such that its center frequency
corresponds to the optical carrier frequencyfc, its phase
corresponds to the optical phase, and the instantaneous power
that is coupled into the MZI is given by

Pin(t) = 1
2

∣

∣x(t)
∣

∣

2
(1)

This notation saves us from bothering about the actual spatial
profile of the electrical field in the fundamental mode. If
we assume that all the lightwaves in the system have the
same polarization state, then we can describe interference
effects by simply summing normalized electrical fields and
then calculating the power of the sum.

Since the light is generated by means of spontaneous emis-
sion, we can approximately modelx(t) as thermal light [7],
which implies that the corresponding complex envelope is
a circular complex Gaussian process. Moreover, if the light
source is a light emitting diode (LED) or superluminescent

diode (SLD), the spectrum ofx(t) is also Gaussian. Hence,
its autocorrelation function can be written as

Rx∗x(τ) , E
[

x∗(t)x(t + τ)
]

= 2Pin exp

(

−π

2

(

τ

τc

)2
)

exp(j2πfcτ) (2)

where Pin is the average powerE
[

Pin(t)
]

and τc is the
coherence time. The spectrum ofx(t) follows by Fourier
transformation:

Sx∗x(f) = 2
√

2Pinτc exp
(

−2π(f − fc)
2τ2

c

)

(3)

B. Transmitted signal

If the 3-dB couplers are assumed to be ideal, their transfer
matrix is given by

[H2] = 1√
2

[

1 j
j 1

]

(4)

Hence, the output signal of the transmitter’s MZI can be
written as

y0(t) = 1
2

[

x(t) − x(t − TTx)s(t)
]

(5)

wheres(t) is a complex modulating signal which is related to
the phase modulationφmod(t) as

s(t) , exp
(

jφmod(t)
)

(6)

Hence, whens(t) is considered as a deterministic signal,y0(t)
is a non-stationary random signal with autocorrelation function

Ry∗

0
y0

(t1, t2) , E
[

y∗
0(t1)y0(t2)

]

= 1
4

[

Rx∗x(t2 − t1)

− Rx∗x(t2 − t1 − TTx)s(t2)

− Rx∗x(t2 − t1 + TTx)s
∗(t1)

+ Rx∗x(t2 − t1)s
∗(t1)s(t2)

]

(7)

C. Output signal of receiver

The lightwave signals at the upper and lower output ports of
the receiver’s MZI can be related to the received signalyL(t)
as

za(t) = 1
2

[

yL(t) − yL(t − TRx)
]

(8)

zb(t) = 1
2 j

[

yL(t) + yL(t − TRx)
]

(9)

For large received powers, shot noise in the photodiodes canbe
ignored. Hence, by assuming that the photodiodes are perfectly
linear with identical responsivitiesRpd, the instantaneous
output current can be written as

Iout(t) = 1
2Rpd

[

∣

∣za(t)
∣

∣

2 −
∣

∣zb(t)
∣

∣

2
]

= − 1
2RpdRe

{

yL(t)y∗
L(t − TRx)

}

(10)

whereRe{.} denotes real part. The output signal consists of
a desired term and noise. The desired term can be found by
taking the expected value:

E
[

Iout(t)
]

= − 1
2RpdRe

{

Ry∗

L
yL

(t − TRx, t)
}

(11)



D. Output signal for short fiber lengths

In case of short fiber lengths, both attenuation and disper-
sion can be neglected, so that we can write

yL(t) ≈ y0(t) ⇒ Ry∗

L
yL

(t1, t2) ≈ Ry∗

0
y0

(t1, t2) (12)

where an irrelevant propagation delay was omitted. Hence, the
output signal of the receiver can be found by substituting (7)
into (11). Assuming that bothTTx and TRx are much larger
thanτc, this results in

E
[

Iout(t)
]

= 1
8RpdRe

{

Rx∗x(TRx − TTx)s(t)
}

(13)

Using (2) and (6), this can be written as

E
[

Iout(t)
]

= 1
4RpdPin exp

(

−π

2

(

TRx − TTx

τc

)2
)

· cos
(

2πfc(TRx − TTx) + φmod(t)
)

(14)

This equation once more indicates how the output signals
depend on the relation betweenTRx andTTx:

• for
∣

∣TRx − TTx

∣

∣ ≫ τc, the exponential becomes very
small, resulting in a negligible output signal;

• for TRx = TTx, the exponential becomes 1, resulting in

E
[

Iout(t)
]

= 1
4RpdPin cos

(

φmod(t)
)

(15)

This mathematically confirms thatTRx can be used as a
parameter to tune to a particular CM channel. Note that the
cosine-term in (14) implies thatTRx has to be tuned toTTx

very precisely (in the order of1/fc). This can be done for
example by means of a feedback loop [3]. This is a typical
problem in self-homodyne detection, and can be avoided by
performing self-heterodyne detection instead, by means ofan
optical frequency shifter [4], or by performing pseudo-self-
homodyne detection by means of optical phase diversity [5],
[6]. In this paper, however, we will assume that a balanced
receiver is used, and thatTRx andTTx match precisely.

E. Output signal for long fiber lengths

When a longer fiber cable is used,y0(t) and yL(t) are no
longer the same. In that case, a simple expression for the
output signal of the receiver can be found by means of a
derivation that is similar to the procedure that Gimlett and
Cheung performed in order to find the output signal of an
IM/DD link with an LED and SMF [8]. Assuming a linear
and time invariant relation between input and output signalof
the fiber, we can write

yL(t) =

∫

hf(ξ)y0(t − ξ) dξ (16)

wherehf(t) denotes the impulse response of the fiber, which
can be written as

hf(t) =

∫

∣

∣

∣Hf(f)
∣

∣

∣ exp
(

j2πft − j β(f)L
)

df (17)

where
∣

∣

∣
Hf(f)

∣

∣

∣
denotes the magnitude of the optical field

transfer function of the fiber, andβ(f) denotes the phase

transfer per unit length of the fiber. Using (7), and assuming
that

• the bandwidth ofs(t) is much smaller than the bandwidth
of the source;

•

∣

∣

∣
Hf(f)

∣

∣

∣
can be considered constant in any frequency

interval with bandwidth in the order of the bandwidth
of the source;

• β(f) can be considered linear in any frequency interval
with bandwidth in the order of the bandwidth ofs(t);

• the bandwidth ofs(t) is much smaller than 1
TTx

,

it can be proven (the proof is omitted for brevity) that the
autocorrelation function ofyL(t) can be approximated as

Ry∗

L
yL

(t1, t2) ≈ 1
4

∣

∣

∣Hf(fc)
∣

∣

∣

2
[

2Rx∗x(t2 − t1)

−
∫

s
(

t2 − Lτg(f)
)

Sx∗x(f)

· exp
(

j2πf(t2 − t1 − TTx)
)

df

−
∫

s∗
(

t1 − Lτg(f)
)

Sx∗x(f)

· exp
(

j2πf(t2 − t1 + TTx)
)

df

]

(18)

where the group delay per unit lengthτg(f) is related toβ(f)
by

τg(f) ,
1

2π

dβ(f)

df
(19)

Using (11) and assuming thatTTx andTRx are identical and
much larger thanτc, the expected value of the output signal
can now be written as

E
[

Iout(t)
]

≈
1
8

∣

∣

∣Hf(fc)
∣

∣

∣

2

Rpd

∫

Re
{

s
(

t − Lτg(f)
)}

Sx∗x(f) df (20)

(Note that this is an intuitively appealing result, and thatfor
L = 0, this result corresponds to (13).) By substituting (3) and
approximatingτg(f) by its second order Taylor series about
the optical carrier frequencyfc, we can write (20) as

E
[

Iout(t)
]

≈
∫

hsys(ξ)Re
{

s(t − ξ)
}

dξ (21)

where

hsys(t) = 1
4

∣

∣

∣
Hf(fc)

∣

∣

∣

2

RpdPin

u

(

t − T0 +
T 2

1

T2

)

√

(t − T0)T2 + T 2
1

·
[

exp

(

− 4π

T 2
2

(

√

(t − T0)T2 + T 2
1 − T1

)2
)

+ exp

(

− 4π

T 2
2

(

√

(t − T0)T2 + T 2
1 + T1

)2
)]

(22)



in which u(.) is the unit step function and

T0 = Lτg(fc) (23)

T1 =
Lτ ′

g(fc)√
2τc

(24)

T2 =
Lτ ′′

g (fc)

τ2
c

(25)

hsys(t) can be looked upon as the impulse response of the CM
system.

For most fibers, the dispersion coefficients are given as
derivatives of the group delayτg with respect to wavelength
rather than frequency. The derivatives with respect to fre-
quency can be found using the following conversion formulas

τ ′
g(fc) = − λ2

c

c0
τ ′
g(λc) (26)

τ ′′
g (fc) =

λ3
c

c2
0

[

2τ ′
g(λc) + λcτ

′′
g (λc)

]

(27)

III. I MPACT OF CHROMATIC DISPERSION ON DIGITAL

TRANSMISSION EMPLOYINGBPSK MODULATION

A. General derivation of output pulse shape

When ordinary binary phase shift keying (BPSK) modu-
lation with symbol timeTs (without any pulse shaping) is
applied,s(t) (as defined in (6)) is a rectangular polar NRZ
signal, which we can write as

s(t) =
∑

n

an pin(t − nTs) (28)

wherepin(t) is a rectangular pulse with lengthTs

pin(t) =

{

1 if |t| < 1
2Ts

0 if |t| > 1
2Ts

(29)

Theans represent the information symbols, which take values
+1 or −1. The expected output signal of the receiver will also
be a polar NRZ signal, but the pulse shape will be distorted
because of the dispersion of the fiber. The pulse shape can
be found by convolving (29) with the impulse response of the
fiber.

Of course, low pass filtering has to be applied prior to
detection. Although several equalization techniques are known
for optimizing detection, we will simply assume that the filter
is matched to an undistorted pulse, resulting in a simple
integrate and dump filter, which has an impulse response that
is equal topin(t). Hence, using (21), the expected value of the
detected signal can be written as

E
[

Idet(t)
]

=

∫

E
[

Iout(t − ξ)
]

pin(ξ) dξ

= 1
4

∣

∣

∣
Hf(fc)

∣

∣

∣

2

RpdPin

∑

n

an pdet(t − nTs) (30)

with pulse shape

pdet(t) =

4

∫∫

pin(ξ1)pin(ξ2)hsys(t − ξ1 − ξ2) dξ1 dξ2

∣

∣

∣Hf(fc)
∣

∣

∣

2

RpdPin

=

4

∫ Ts

−Ts

hsys(t − ξ)
(

Ts − |ξ|
)

dξ

∣

∣

∣Hf(fc)
∣

∣

∣

2

RpdPin

(31)

Note that this pulse shape is normalized such that its peak
value is equal toTs whenL = 0. Substituting (22), it can be
proven that (31) can be written as

pdet(t) = q (t + Ts − T0)

− 2 q (t − T0)

+ q (t − Ts − T0) (32)

with

q(t) = u

(

t +
T 2

1

T2

)

·
{

1

4π

[

(

√

T2t + T 2
1 − T1

)

· exp

(

− 4π

T 2
2

(

√

T2t + T 2
1 + T1

)2
)

+

(

√

T2t + T 2
1 + T1

)

· exp

(

− 4π

T 2
2

(

√

T2t + T 2
1 − T1

)2
)]

+

(

t − T2

8π

)

[

1 − Q

(

2
√

2π

T2

(

√

T2t + T 2
1 + T1

)

)

− Q

(

2
√

2π

T2

(

√

T2t + T 2
1 − T1

)

)]}

(33)

whereQ(.) is the Gaussian tail probability

Q(z) ,
1√
2π

∫ ∞

z

exp

(

−x2

2

)

dx (34)

For most center wavelengths, the value ofT1 will be much
larger thanT2. When the center wavelengthλc is chosen close
to the so-called zero-dispersion wavelength, however,T2 will
be much larger thanT1. Hence, for most practical applications,
eitherT1 or T2 can be neglected. These cases will be treated
separately in the following subsections.

B. Wavelengths far from zero-dispersion wavelength

For operating wavelengths far from the zero-dispersion
wavelength, we haveT1 ≫ T2, so that (33) becomes

q(t) =
T1

2π
exp

(

−π

(

t

T1

)2
)

+ t

[

1 − Q

(

t
√

2π

T1

)]

(35)



From symmetry considerations, one can easily see that the
resulting pulse shape has maximum value

pdet,max = pdet(T0) =

=
T1

π

[

exp

(

−π

(

Ts

T1

)2
)

− 1

]

+ Ts

[

1 − 2Q

(

Ts

√
2π

T1

)]

(36)

For largex, one can approximate

Q(x) ≈
exp

(

−x2

2

)

x
√

2π
(37)

so for T1 ≪ Ts, we have

pdet,max ≈ Ts −
T1

π
(38)

Obviously, the maximum pulse amplitude decreases with in-
creasing dispersion. Moreover, inter-symbol interference (ISI)
occurs, as the absolute pulse width is larger thanTs. The
amount of ISI can be quantified by calculating the pulse
amplitudes at time instantsT0 + nTs with n integer. One can
show that forT1 ≪ Ts, these are negligible for|n| > 1. For
n = ±1, we have:

pdet(T0 ± Ts) ≈
T1

2π
(39)

The most ISI occurs when a particular bit is neighbored by
bits with opposite sign. In that case, the amplitude of that bit
is degraded with respect to the case without dispersion by a
factor

Pd =
pdet(T0) − pdet(T0 − Ts) − pdet(T0 + Ts)

Ts

= 1 − 2T1

π Ts
(40)

wherePd stands for dispersion penalty. As the bandwidth of
the noise is much larger than the bandwidth of the matched
filter, the output signal can be considered as Gaussian dis-
tributed, resulting in a bit error probability

Pe = Q
(

√

2γb

)

(41)

whereγb is the SNR per bit. In the absence of dispersion it
is known to be given by [1], [6]

γb =
1

4N2 + 2N + 1

Ts

τc
(42)

Hence, using (24) and (40), the worst case SNR per bit in case
of first order dispersion follows as

γb =
1

4N2 + 2N + 1

Ts

τc
P 2

d

=
1

4N2 + 2N + 1

Ts

τc

(

1 −
√

2Lτ ′
g(fc)

π Tsτc

)2

(43)

Hence, one can show that for a given SNR, fiber length,
number of users and coherence time, the bit rate that can be
achieved is given by

Rb ,
1

Ts
=

πτc√
2Lτ ′

g(fc)
− π2(4N2 + 2N + 1)γbτ3

c

4L2
(

τ ′
g(fc)

)2

·





√

1 +
4
√

2Lτ ′
g(fc)

π(4N2 + 2N + 1)γbτ2
c

− 1



 (44)

It can be proven that this can be optimized with respect toτc

by choosingτc as

τc,opt =
2

3

√

3
√

2Lτ ′
g(fc)

πγb(4N2 + 2N + 1)
(45)

resulting in a maximum bit rate

Rb,max =
2

9

√

3π√
2Lτ ′

g(fc)γb(4N2 + 2N + 1)
(46)

This will be numerically illustrated in Section V.

C. Wavelengths close to zero-dispersion wavelength

For operating wavelengths close to the zero-dispersion
wavelength, we haveT1 ≪ T2, so that (33) becomes

q(t) =

{√
T2t

2π
exp

(

−4π t

T2

)

+

(

t − T2

8π

)

[

1 − 2Q

(

2

√

2π t

T2

)

]}

u(t) (47)

By calculating its derivative with respect tot,

q′(t) =

[

1 − 2Q

(

2

√

2π t

T2

)]

u(t) (48)

it can be proven that the resulting pulse has its maximum for
t = t0 with

Q



2

√

2π(t0 − T0)

T2



 ≈ 1

4
⇒ t0 ≈ T0 + 0.0181T2 (49)

so the maximum pulse amplitude is given by

pdet,max = pdet(t0) ≈ Ts − 0.0341T2 (50)

where it is assumed thatT2 ≪ Ts. It can be proven that the
ISI is dominated by the interference from the neighboring bits,
which is quantified by

pdet(t0 + Ts) ≈ 0.0279T2 (51)

pdet(t0 − Ts) ≈ 0.0062T2 (52)

Hence, the dispersion penalty is given by

Pd =
pdet(t0) − pdet(t0 − Ts) − pdet(t0 + Ts)

Ts

≈ 1 − 0.0682
T2

Ts
(53)



Using (25), (42) and (53), we find a worst-case SNR per bit

γb =
1

4N2 + 2N + 1

Ts

τc
P 2

d

≈ 1

4N2 + 2N + 1

Ts

τc

(

1 − 0.0682
Lτ ′′

g (fc)

τ2
c Ts

)2

(54)

The bit rate that can be achieved at a fixed coherence time
and SNR per bit follows as

Rb ≈ 14.66τ2
c

Lτ ′′
g (fc)

− 107.4(4N2 + 2N + 1)γbτ5
c

L2
(

τ ′′
g (fc)

)2

·





√

1 +
0.2729Lτ ′′

g (fc)

(4N2 + 2N + 1)γbτ3
c

− 1



 (55)

The optimum coherence time can be proven to be

τc,opt ≈ 0.6021 3

√

Lτ ′′
g (fc)

γb(4N2 + 2N + 1)
(56)

and the maximum bit rate is

Rb,max ≈ 1.063

3

√

γ2
b(4N2 + 2N + 1)2Lτ ′′

g (fc)
(57)

This will be numerically illustrated in Section V.

IV. M -ARY PSK MODULATION

As an alternative to BPSK modulation,M -ary PSK mod-
ulation is proposed [6]. In that case, each symbol represents
k bits, andφmod(t) can takeM = 2k different values rather
than only0 andπ, so thats(t) is not necessarily real anymore.
The symbol timeTs is related to the bit rate by

Rb =
k

Ts
(58)

Detection ofM -ary PSK requires replacing the balanced mixer
in Fig. 1 by a double balanced mixer, which consists of a4×4
phase diversity coupler and two balanced photodiode pairs.
This is illustrated in Fig. 2. If the4× 4 coupler is assumed to
have an ideal transfer matrix

[H4] = 1
2









1 j
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1 1
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(59)
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Fig. 2. An M -ary PSK receiver for coherence multiplexing

then one can find for the quadrature currents

E
[

II(t)
]

= − 1
4RpdRe

{

Ry∗

L
yL

(t − TRx, t)
}

(60)

E
[

IQ(t)
]

= − 1
4RpdIm

{

Ry∗

L
yL

(t − TRx, t)
}

(61)

Hence, using a procedure that is similar to the one in Sec-
tion II, one can easily prove that the output signals for short
fiber lengths andTRx = TTx are given by

E
[

II(t)
]

= 1
8RpdPinRe

{

s(t)
}

= 1
8RpdPin cos

(

φmod(t)
)

(62)

E
[

IQ(t)
]

= 1
8RpdPinIm

{

s(t)
}

= 1
8RpdPin sin

(

φmod(t)
)

(63)

As a result, the transmitted symbols can be reconstructed using
integrate and dump filters and a conventional PSK detector.
The rest of the system remains unchanged.

In case of longer fiber lengths, however, we can again find
relations between the quadrature currents and the modulating
signal s(t). Using a similar procedure as in Section II, one
can prove that

E
[

II(t)
]

= 1
2

∫

hsys(ξ)Re
{

s(t − ξ)
}

dξ (64)

E
[

IQ(t)
]

= 1
2

∫

hsys(ξ)Im
{

s(t − ξ)
}

dξ (65)

wherehsys(t) is given by (22). Consequently, when integrate
and dump filters are used for the quadrature currents, the
distortion of the output pulses is more or less the same as
in the case of BPSK modulation, as analyzed in Section III.

The worst case BER does not follow directly from the
dispersion penalty of each of the quadrature currents, however.
This will be illustrated in the following two subsections, where
the BERs will be derived for quadriphase shift keying (QPSK)
andM -ary PSK withM ≥ 8.

A. QPSK modulation

Consider the case that QPSK is employed, and thatφmod(t)
is assigned values which are odd multiples ofπ

4 radians.
Moreover, assume that Gray coding is used to assign the
information bits to the transmitted symbols, such that the
BER is minimized [9]. Then, detection of the transmitted bits
can be found by simply tresholding the filtered quadrature
currentsII(t) andIQ(t). This is illustrated in Fig. 3(a), where
the possible values ofE

[

II(t)
]

versusE
[

IQ(t)
]

are plotted.
The effect of dispersion can be analyzed as follows. Without

loss of generality, consider the case in which the two binary
zeroes are transmitted, corresponding toφmod = π

4 . Similarly
as in the case of BPSK modulation, two effects occur:

• Pulse height reduction; this results in a shift towards
the origin of Fig. 3(a), such that the distance between
the received symbol and the origin is reduced by a
factor pdet(t0)/Ts.

• Inter symbol interference (ISI); this is dominated by
the neighboring symbols, and results in shifts which



are proportional topdet(t0 ± Ts), in the directions that
correspond to the phase of the interfering symbols.

Now consider the probability that the first bit (0) is detected
incorrectly. This equals the probability that the filteredIQ(t)
is negative. From Fig. 3(a), it should then be obvious that this
probability is not affected by the second bit of the preceding
or succeeding symbol, but that it does depend on their first bit:
the worst ISI occurs when the first bit of both the preceding
and succeeding symbol is 1. A similar story holds for the
second bit: the worst ISI occurs when the second bit of both the
preceding and succeeding symbol is 1. In general, we can say
that the worst case ISI for QPSK occurs when the phase of the
preceding and succeeding symbol haveπ radians difference
with respect to the symbol that is to be detected. This results
in the same relation between the dispersion penalties and the
symbol timeTs as in Section III. (The difference is that for the
same value of the bit rate,Ts is now twice as large.) When
there is no dispersion, the probability of bit error is given
by [6], [9]

Pe = Q(
√

γs) (66)

where, in absence of dispersion, the SNR per symbolγs is
given by

γs =
1

4N2 + 2N + 1

Ts

τc
=

2

4N2 + 2N + 1

1

Rbτc
(67)

Applying the dispersion penalty, however, we find

γs =
2

4N2 + 2N + 1

1

Rbτc

(

1 −
Lτ ′

g(fc)Rb

π
√

2 τc

)2

(68)

for wavelengths far from the zero dispersion wavelength, and

γs =
2

4N2 + 2N + 1

1

Rbτc

(

1 − 0.0341
Lτ ′′

g (fc)Rb

τ2
c

)2

(69)
for wavelengths close to the zero dispersion wavelength. Using
a similar approach as in Section III, the maximum bit rate
that can be achieved for a given coherence time and SNR per
symbol can be derived to be

Rb,max =
4

9

√

3π√
2Lτ ′

g(fc)γs(4N2 + 2N + 1)
(70)

for wavelengths far from the zero dispersion wavelength, and

Rb,max =
2.126

3

√

γ2
s (4N2 + 2N + 1)2Lτ ′′

g (fc)
(71)

for wavelengths close to the zero dispersion wavelength. This
will be numerically illustrated in Section V.

B. M -ary PSK modulation withM ≥ 8

Now consider the case thatM -ary PSK with M ≥ 8 is
employed, and thatφmod(t) is assigned values which are
multiples of 2π

M
. Again assume that Gray coding is used. The

possible values thatE
[

II(t)
]

and E
[

IQ(t)
]

can take in that
case are illustrated forM = 8 in Fig. 3(b). The straight dotted
lines in this figure represent the decision boundaries. From

E[ ( )]I tI

E[ ( )]I tQ

(00)(01)

(11)
(10)

shift

(a) QPSK

E[ ( )]I tI
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(100)

(b) 8-PSK

Fig. 3. Output signals forM -ary PSK and the effect of dispersion

the geometry of the figure, it should be obvious that when a
symbol error is made, it is very unlikely that more than one
bit error is made. Hence, the probability of bit error can be
approximated by dividing the probability of a symbol error
by k [9]. When there is no dispersion, this can be proven to
result in (for high SNRs) [6], [9]

Pe ≈
2

k
Q

(

√

2γs sin
( π

M

))

(72)

where, in absence of dispersion, the SNR per symbolγs is
given by

γs =
1

4N2 + 2N + 1

Ts

τc
=

k

4N2 + 2N + 1

1

Rbτc
(73)

In case of dispersion, however, pulse height reduction and ISI
occurs. Without loss of generality, consider the case when the
phase of a particular symbol is0. The worst case ISI occurs
when the contribution of the neighboring symbols causes a
shift as close to one of the two closest decision lines as
possible. This is the case when the phases of the neighboring
bits are identical and equal to eitherπ2 , (M+1)π

2M
, −π

2 or
− (M+1)π

2M
radians. The distance to one decision boundary is

then reduced by a factor

P−
d = 1 − Ts − pdet(t0)

Ts

[

cot
( π

M

)

+ 1
]

(74)

The distance to the other decision line is then increased. The
minimum increase occurs when the phases of the neighboring
bits are either(M+1)π

2M
or − (M+1)π

2M
radians and is given by a

factor

P+
d = 1 +

Ts − pdet(t0)

Ts

[

cos
(

3π
M

)

sin
(

π
M

) − 1

]

(75)

Hence, one can prove that the worst case BER forM -ary PSK
with M ≥ 8 can be approximated as

Pe =

Q

(
√

2γ−
s sin

( π

M

)

)

+ Q

(
√

2γ+
s sin

( π

M

)

)

k
(76)

where

γ−
s ,

k

4N2 + 2N + 1

1

Rbτc

(

P−
d

)2
(77)

γ+
s ,

k

4N2 + 2N + 1

1

Rbτc

(

P+
d

)2
(78)



Now, the aim is again to optimize the bit rate that can be
achieved at a BER of10−9 with respect toτc. This can be
done as follows. For the time being, neglect the second term
in the nominator of (76). Then, for each value ofM = 2k,
one can numerically find the value ofγ−

s that is required to
havePe ≈ 10−9. Then, an analytical expression can be found
for the achievable bit rate as a function of amongst othersτc,
which can be analytically optimized. This results in

Rb,max =

2k

9

√

√

√

√

3π
√

2Lτ ′
g(fc)γ

−
s (4N2 + 2N + 1)

[

cot
( π

M

)

+ 1
] (79)

for wavelengths far from the zero dispersion wavelength, and

Rb,max =

0.844k

3

√

(

γ−
s

)2
(4N2 + 2N + 1)2Lτ ′′

g (fc)
[

cot
( π

M

)

+ 1
]

(80)

for wavelengths close to the zero dispersion wavelength. (One
can verify that at these bit rates and for low BERs, the second
term of (76) can indeed be neglected. Hence, the obtained
expressions are indeed good approximations of the maximum
achievable bit rate atPe = 10−9.)

V. NUMERICAL EXAMPLE FOR STANDARD SINGLE-MODE

FIBER

In this subsection, we will give some numerical examples
for applications in which standard SMF [10] is used. We will
consider two operating wavelengths:

• λc ≈ 1550 nm; in that case, second order dispersion
can be neglected, and the first order dispersion coeffi-
cient as prescribed by the ITU is given byτ ′

g(λc) ≤
20 ps/(nm·km).

• λc is equal to the zero-dispersion wavelength, which is
close to 1310 nm. In that case, the first order dispersion
coefficient is zero (by definition) and the second order
dispersion coefficient isτ ′′

g (λc) ≤ 0.093ps/(nm2·km).
As a fiber length, we will assume a typical indoor length
of L = 500 m. As an SNR requirement, we putγb = 18.0
for BPSK, γs = 36.0 for QPSK andγ−

s = 115.5 for 8-
PSK. (Using (41), (66) and ((76), one can verify that this
corresponds to a BER of10−9.)

Using (26), (27), (46), (57), (70), (71), (79) and (80), the
maximum achievable bit rates for both wavelengths can now
be found as a function of the number of usersN . The results
are shown in Fig. 4.

VI. CONCLUSION

An expression has been derived that relates the output signal
of a coherence multiplex (CM) receiver to the modulating sig-
nal in the transmitter, in which chromatic dispersion in single-
mode fiber (SMF) is taken into account. The expression is
used to evaluate the effect of dispersion on digital transmission
using CM. Expressions are derived for the maximum bit rate

Rb,max

(Gbps)

N
5 10 15 20 25 30

0.1

1

10

100

BPSK @ 1550nm

BPSK @ 1310 nm

QPSK @ 1550 nm

QPSK @ 1310 nm

8-PSK @ 1550 nm

8-PSK @ 1310 nm

Fig. 4. Maximum bit rate atPe = 10
−9 as a function of number of channels

that can be achieved at a BER of10−9 for binary PSK, QPSK
andM -ary PSK (withM > 8), both for wavelengths far from
and close to the zero-dispersion wavelength. These bit rates
were optimized with respect to source linewidth, showing that
the highest bit rate can be achieved when QPSK modulation
is used. Numerical results are given for a standard SMF of
500 m length, indicating a maximum bit rate of 3.02 Gbps
per user for 10 simultaneous users and 1.22 Gbps per user for
20 simultaneous users.
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