
Technical Report

TR-2005-010

Chromatic numbers and homomorphisms of large girth hypergraphs

by

Dwight Duffus, Vojtech Rodl, Bill Sands, Norbert Sauer

Mathematics and Computer Science

EMORY UNIVERSITY



Chromatic numbers and homomorphisms of large girth

hypergraphs

Dwight Duffus and Vojtěch Rödl
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Abstract

We consider the problem of determining the minimum chromatic number of
graphs and hypergraphs of large girth which cannot be mapped under a homomor-
phism to a specified graph or hypergraph. More generally, we are interested in
large girth hypergraphs that do not admit a vertex partition of specified size such
that the subhypergraphs induced by the partition blocks have a homomorphism to
a given hypergraph. In the process, a general probabilistic construction of large
girth hypergraphs is obtained, and general definitions of chromatic number and
homomorphisms are considered.

1 Introduction

This paper is motivated by a problem of N. Sauer and R. Winkler. Given a graph
G = (V,E), find the smallest chromatic number of a triangle-free graph H so that after
removing any induced subgraph H[V ′] which has a homomorphism to G the remaining
graph H[V −V ′] still does not have a homomorphism to G. We provide an answer to this
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[see Theorems 1.3, 1.4 and 5.4] and in the process are led to two observations. First, our
investigations are related to a recent paper by J. Nešetřil and X. Zhu [7] that connects
the well-known results of P. Erdős [2] on the existence of graphs with large girth and
high chromatic number to the study of homomorphisms. Second, our methods both use
hypergraph constructions and yield results for hypergraph versions of the problem. This
leads to consideration of how best to define chromatic numbers and homomorphisms of
hypergraphs.

Graph homomorphisms have emerged as a fruitful tool within graph theory. In fact,
there is a new book by Nešetřil and P. Hell [4] devoted to this subject that highlights
diverse applications. However, homomorphisms of hypergraphs, and their relationship
to possible definitions of chromatic number, have not been studied extensively. One of
the objectives of this work is to examine these notions in the hypergraph setting.

Let us start off by stating the Nešetřil-Zhu result, showing how it is related to the
Sauer-Winkler problem, and seeing that the most familiar or obvious ways to define
chromatic number and homomorphisms for hypergraphs lead to very different results
for the graph and hypergraph cases.

We first consider a simple version of the question of Sauer and Winkler. Given a
graph A, what is the minimum chromatic number ψ(A) of a graph G such that there
is no homomorphism from G to A? It is easy to see that ψ(A) = ω(A) + 1, where
ω(A) = ω is the clique number of A. The complete graph on ω + 1 vertices, Kω+1, has
no homomorphism into A, since the image of a clique under a graph homomorphism
is a clique of the same size. On the other hand, any graph G of chromatic number ω
has a homomorphism, defined by an ω-colouring of G, into a clique of A. This easy
observation can be strengthened considerably with the Nešetřil-Zhu theorem, alluded
to above.

Theorem 1.1 (J. Nešetřil and X. Zhu, [7]). For every graph H and for all positive
integers n and l there exists a graph G with the following properties:

1. girth(G) > l.

2. For every graph H′ with at most n vertices, there exists a homomorphism g : G →
H′ if and only if there exists a homomorphism f : H → H′.

In Section 5 we show how this result gives the following.

Theorem 1.2. Let A be a graph and let l ≥ 2 be an integer. Then there is a graph G
with girth(G) > l and χ(G) = ψ(A) which does not have a homomorphism to A.

Now, let us generalize ψ to capture the Sauer-Winkler problem. Say that a graph G
is s-partition homomorphic to a graph A if there exists a partition V (G) = V1 ∪ V2 ∪
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. . . ∪ Vs such that for all i there is a homomorphism of G[Vi] to A. Let ψ(A, s) be the
least chromatic number of a graph which is not s-partition homomorphic to A. Then
ψ(A, 1) = ψ(A) and ψ(A, 2) is the least chromatic number of a graph G = (V,E) such
that whenever an induced subgraph G[V ′] has a homomorphism to A, then G[V − V ′]
does not — the original problem.

Without a girth restriction, just about the same reasoning as in the case s = 1 shows
that ψ(A, s) = s · ω(A) + 1. But we are also able to extend the result, just as in
Theorem 1.2.

Theorem 1.3. Let A be a graph and let l, s be integers with l ≥ 2. Then there is a
graph G with girth(G) > l and χ(G) = ψ(A, s) which is not s-homomorphic to A.

One way to prove this is based on a hypergraph packing construction, a probabilistic
construction of a large girth hypergraph [with additional properties], and Theorem 1.1.
This argument is outlined in Section 5. In the process, we obtained an extension of
Theorem 1.3 from the graph case to the k-uniform hypergraph case. Before stating this,
here is some language needed for hypergraphs.

A hypergraph H is a pair (V,E) where E is a family of subsets of the vertex set V .
To avoid trivialities, assume that the members of E, that is, the edges of H all have
size at least 2. Call a hypergraph simple if edges intersect in at most one vertex. Call
H = (V,E) a k-uniform hypergraph if E is a family of k-element subsets of V ; thus, a
usual (simple, undirected) graph is a 2-uniform hypergraph.

Given a hypergraph H, we often let V (H) denote the set of vertices of H and E(H) stand
for the set of edges of H. Given S ⊆ V (H), H[S] is the hypergraph with vertex set S
and edges P(S)∩E(H), where P(S) is the power set of S. Call H[S] the subhypergraph
of H induced by S.

An r-colouring of H is a map with domain V (H), range within an r-element set, and
which is not constant on any edge of H. The (weak) chromatic number of H, denoted by
χ(H), is the least r for which H has an r-colouring. Note that χ(H) exists since every
edge has at least two elements.

Given k-uniform hypergraphs F1 and F2, a mapping f : V (F1) 7→ V (F2) is a homomor-
phism of F1 to F2 if {f(x) : x ∈ e} ∈ E(F2) for every e ∈ E(F1). For example, if G is a
graph, then χ(G) ≤ r if and only if the graph G has a homomorphism to Kr.

We will be concerned with hypergraphs of large girth. A circuit of length c in a hy-
pergraph H = (V,E) is a sequence e1, e2, . . . , ec of distinct members of E and distinct
elements v1, v2, . . . , vc of V such that

ei ∩ ei+1 = {vi} (i = 1, 2, . . . , c− 1), and e1 ∩ ec = {vc}.
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Thus, if H is k-uniform then each circuit of length c corresponds to a family of distinct
k-sets whose union contains at most c(k−1) elements of V . Conversely, it is well-known
that given a family of c members of E with union of size at most c(k−1) some subfamily
constitutes a circuit of length at most c. [See, for instance, [3]].

The k-uniform hypergraph F is s-partition homomorphic to the k-uniform hypergraph
A if there exists a partition V (F) = V1 ∪ V2 ∪ . . . ∪ Vs such that for all i there is a
homomorphism of F[Vi] to A. Let ψ(A, s) be the least chromatic number of a k-uniform
hypergraph which is not s-partition homomorphic to A.

We can now state the result for k-uniform hypergraphs.

Theorem 1.4. Let A be a k-uniform hypergraph and l, s be positive integers. Then

ψ(A, s) =

{
s · ω(A) + 1 if A is a graph,

s+ 1 if k ≥ 3.

For every l ≥ 2 there is a k-uniform hypergraph F with girth(F) > l and χ(F) = ψ(A, s)
which is not s-partition homomorphic to A.

The difference between the graph and hypergraph results is due to the fact that the
usual definitions of both chromatic number and homomorphism are not broad enough
in the hypergraph setting.

We present an approach in the following three sections that provides more general
definitions of chromatic number and homomorphism, a main result that subsumes both
preceding theorems [Theorem 2.1], a quite general probabilistic hypergraph construction
[Lemma 2.2], and proofs of the theorem and lemma.

In Section 5, we present an alternative proof of Theorem 1.2 based on the Nešetřil-Zhu
result. We also introduce the hypergraph packing construction and, with it, lift the
results for s = 1 to the general setting and a proof of Theorem 1.4. The second version
of Theorem 1.4, Theorem 5.4, is somewhat sharper. The reader can find the required
terminology in Section 5, independent of the intervening sections.

In Section 6, we close with a constructive approach to some special cases.

2 New Definitions, the Main Theorem and the Probabilis-

tic Lemma

In Theorem 1.4, we see the difference between the graph case and the k-uniform hy-
pergraph case, for k ≥ 3. In order to create a more general result that subsumes both
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cases, we amend the definitions of homomorphism and chromatic number to better suit
the hypergraph setting.

In the sequel, all hypergraphs are finite and k-uniform, k ≥ 2. Let 1 < p, q ≤ k and let
Hi = (Vi, Ei), i = 0, 1, be hypergraphs.

(1) A p-homomorphism f of H0 to H1 is a map of V0 to V1 such that for all e0 ∈ E0

there exists e1 ∈ E1 such that

f(e0) ⊆ e1, and |f(e0)| ≥ p ;

write H0
p
→ H1 if there exists a p-homomorphism of H0 to H1, and H0

p
9 H1 if

not.

(2) χ(q)(H0) = min{χ | there exists c : V0 → [χ], for all e ∈ E0 |c[e]| ≥ q}

(3) ψp,q(H1) = min{χ(q)(H0) | H0
p

9 H1}

Our results hold in the more general case of s-partitions.

(4) Say that H0 is s-partition p-homomorphic to H1 if there is a partition X1 ∪ X2 ∪

. . . ∪Xs of the vertices of H0 such that for all i, H0[Xi]
p
→ H1.

(5) Let ψp,q,s(H1) be the minimum χ(q)(H0) such that H0 is not s-partition p-homomorphic
to H1.

Here is the main result. For a k-uniform hypergraph H = (V,E), we let the clique
number ω(H) be the maximum integer ω such that there is an ω-subset V ′ of V all of
whose k-subsets of V ′ are members of E.

Theorem 2.1. Let k, p, q, s and l be positive integers and let A be a k-uniform hyper-
graph.

(1) For 1 < p ≤ q ≤ k, let q = d(p− 1) + r, where 0 < r ≤ p− 1, let ω = ω(A) and set
t = dω + r − 1. Then ψp,q,s(A) = st+ 1.

(2) For 1 < q < p ≤ k, ψp,q,s(A) = s(q − 1) + 1.

Moreover, there is a k-uniform hypergraph H with girth(H) > l such that χ(q)(H) =
ψp,q,s(A) and H not s-partition p-homomorphic to A.
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This theorem contains the results in the introduction. The usual definition of [weak]
chromatic number has q = 2 and the definition of homomorphism used in Section
1 sets p = k. The graph case corresponds to p = q = 2, so Theorem 2.1 states that
ψ(A, s) = st+1 = sω+1, as given in Theorem 1.4. For k ≥ 3, we have q = 2 < 3 ≤ k = p,
so the second part of the theorem yields ψ(A, s) = s+ 1, also as in Theorem 1.4.

The proof of Theorem 2.1 is given in Section 3. It depends upon a general probabilistic
lemma which provides all the “constructions” we require. We state this now, but delay
the proof until Section 4.

Call a sequence ~k = (k1, k2, . . . , kc) of positive integers a k-sequence if
∑c

α=1 kα = k.

Lemma 2.2. Given ǫ > 0, positive integers m, k, l, h, and k-sequences

~k(α) = (k
(α)
1 , k

(α)
2 , . . . , k(α)

cα
), α = 1, 2, . . . , h,

there exists n0 such that for all n ≥ n0, there is a k-uniform hypergraph H with vertex
set

V (H) =
m+1⋃

i=1

Vi, |Vi| = n (i = 1, 2, . . . ,m+ 1)

such that

(1) for all e ∈ E(H) there exist α, a k-sequence ~k(α), and a sequence 1 ≤ j1 < j2 <

. . . < jcα ≤ m+ 1 such that for all β = 1, 2, . . . , cα, |e ∩ Vjβ
| = k

(α)
β ;

and for each α = 1, 2, . . . , h,

(2) for all β = 1, 2, . . . , cα, for all 1 ≤ j1 < j2 < . . . < jcα ≤ m+1 and for all V
′

jβ
⊆ Vjβ

with |V
′

jβ
| ≥ ǫn, there exists e ∈ E(H) such that |e ∩ V

′

jβ
| = k

(α)
β ; and

(3) girth(H) > l.

3 The Proof of the Main Theorem

Proof of Theorem 2.1 (1)

Let A = (V,E), and integers k, p, q, s, l and ω be as in the theorem statement, and, also
as above, let q = d(p− 1) + r, where 0 < r ≤ p− 1, and t = dω + r − 1.

We first prove that ψp,q,s(A) > st by showing if H is any k-uniform hypergraph with
χ(q)(H) = st then there is a partition V (H) = Y1 ∪ Y2 ∪ . . . ∪ Ys such that for all i,
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H(i) := H[Yi]
p
→ A. To this end, let c : V (H) → [st] be a q-colouring of H with classes

C1, C2, . . . , Cst. That is, for all e ∈ E(H), e ∩ Cj 6= ∅ for at least q distinct j’s.

Group these st sets into s, say,

Yi = C(i−1)t+1 ∪ . . . ∪ Cit, (i = 1, 2, . . . , s).

We show that this is the required s-partition of H.

Let W = {w1, w2, . . . , wω} ⊆ V induce an ω-clique in A. We argue that there is a
p-homomorphism f of H(i) to A with range contained in W . Because the vertex set of
H(i) is the union of t classes Cj and t = dω + r − 1, we can group the vertices of H(i)

into disjoint subsets D1, D2, . . . , Dω as follows:

each of D1, . . . , Dr−1 is the union of d+ 1 distinct Cj ’s,

each of Dr, . . . , Dω is the union of d distinct Cj ’s,

and each Cj , j = (i − 1)t + 1, . . . , it, is contained in one Dm. This is possible since
(r − 1)(d+ 1) + (ω − r + 1)d = dω + r − 1 = t.

Define f : V (H(i)) → W by f(v) = wm for all v ∈ Dm, m = 1, 2, . . . , ω. Proving that f
is a p-homomorphism requires that for all e ∈ E(H(i)), f [e] is contained in an edge of
A and |f [e]| ≥ p. The former is true because |f [e]| ≤ k and W induces a clique in A. If
the latter fails then there are m1, . . . ,mp−1 such that

f [e] ⊆ {wm1
, . . . , wmp−1

},

e ⊆ Dm1
∪ . . . ∪Dmp−1

, and therefore

Cj1 ∪ . . . ∪ Cjq ⊆ Dm1
∪ . . . ∪Dmp−1

,

where e ∩ Cju 6= ∅ for u = 1, . . . , q. This implies that at most p − 1 Dm’s contain at
least q Cj ’s. This is impossible because p− 1 of the Dm’s contain at most

(r − 1)(d+ 1) + (p− r)d = (p− 1)d+ r − 1 = q − 1

distinct Cj ’s. Thus f is a p-homomorphism.

In order to prove that ψp,q,s(A) ≤ st+ 1, we use Lemma 2.2 to provide an example of a
k-uniform hypergraph Hst+1 = (V (Hst+1), E(Hst+1)) such that χ(q)(Hst+1) = st+1 and
for all partitions V (Hst+1) = X1 ∪ . . . ∪Xs there is some i such that H(i) := Hst+1[Xi]
is not p-homomorphic to A. Moreover, this hypergraph also has girth greater than any
specified l. To use Lemma 2.2, we also have to specify parameters m and h, the value

of ǫ and the k-sequences ~k(α) = (k
(α)
1 , k

(α)
2 , . . . , k

(α)
cα ) , α = 1, 2, . . . , h.
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Let m = st, h = 2, ǫ = 1/(st|V |) and specify the two k-sequences to be

~k(1) = (1, 1, . . . , 1), and ~k(2) = (k − q + 1, 1, . . . , 1).

The lemma gives an integer n and a k-uniform hypergraph Hst+1 = (V (Hst+1), E(Hst+1))
such that

(i) V (Hst+1) = V1 ∪ V2 ∪ . . . ∪ Vst+1, with |Vi| = n for all i;

(ii) for α = q, k, for all 1 ≤ j1 < j2 < . . . < jα ≤ st + 1, for all V
′

jβ
⊆ Vjβ

with

|V
′

jβ
| ≥ ǫn for β = 1, 2, . . . , α, there exists e ∈ E(Hst+1) such that e ⊆

⋃α
β=1 V

′

jβ
;

(iii) for all e ∈ E(Hst+1), e ∩ Vj 6= ∅ for exactly q or k distinct indices j; and,

(iv) girth(Hst+1) > l.

Observe that χ(q)(Hst+1) ≤ st+ 1 because, by (iii), the classes Vi provide a q-colouring.

Suppose that V (Hst+1) = C1 ∪C2 ∪ . . .∪Cst is a partition. For each j = 1, 2, . . . , st+ 1
choose i(j) from i = 1, 2, . . . , st such that |Vj ∩ Ci(j)| is maximum among all |Vj ∩ Ci|.
Then |Vj ∩Ci(j)| ≥ n/st > ǫn and, by the pigeonhole principle, i(1) = i(2), say. By (ii),

with α = q and ~k(2), there exists e ∈ E(Hst+1) with

e ⊆

q⋃

j=1

Vj ∩ Ci(j) ⊆ Ci(1) ∪ Ci(3) ∪ . . . ∪ Ci(q).

Thus, no partition of V (Hst+1) into st or fewer parts can provide a q-colouring of Hst+1.

We have shown that χ(q)(Hst+1) = st+ 1.

We now prove that Hst+1 is not s-partition p-homomorphic to A. Let us argue that for
an arbitrary partition V (Hst+1) = X1 ∪X2 ∪ . . .∪Xs, and H(i) = H[Xi] (i = 1, 2, . . . , s),
there is some i such that H(i) is not p-homomorphic to A. For each j = 1, 2, . . . , st+ 1
choose i(j) from i = 1, 2, . . . , s such that |Vj ∩Xi(j)| is maximum among all |Vj ∩Xi|.
In particular, |Vj ∩Xi(j)| ≥ n/s. By the pigeonhole principle, we may assume, without
loss of generality, that

Xi(1) = Xi(2) = · · · = Xi(t+1) = X.

Let Bj = Vj ∩X, j = 1, 2, . . . , t+ 1, and let H′ = Hst+1[B1 ∪B2 ∪ . . . ∪Bt+1]. We shall
show that H′ is not p-homomorphic to A.

8



Assume to the contrary that f is a p-homomorphism of H′ to A. For j = 1, 2, . . . , t+ 1,
choose aj ∈ V (A) such that |f−1(aj)∩Bj | is maximum among all |f−1(a)∩Bj |, a ∈ V .
With Uj = f−1(aj) ∩Bj , we see that

|Uj | ≥
|Bj |

|A|
≥
n/s

|A|
≥ ǫn, j = 1, 2, . . . , t+ 1.

Let a1, a2, . . . , av be the distinct elements among a1, a2, . . . at+1.

Case (1): v ≥ k. We claim that for each k-set {i1, i2, . . . , ik} ⊆ [v], {ai1 , ai2 , . . . , aik} ∈

E = E(A). From (ii), using α = k and ~k(1), there is e ∈ E(Hst+1) such that e ⊆⋃k
β=1 Uiβ . It is clear that e ∈ E(H′). Thus,

f [e] = {ai1 , ai2 , . . . , aik} and f [e] ⊆ e′ ∈ E,

so e′ = {ai1 , ai2 , . . . , aik} ∈ E. Thus, {a1, a2, . . . , av} induces a clique in A, so v ≤ ω.

For i = 1, 2, . . . , v, let βi be the number of j’s such that f [Uj ] = ai, and assume that
β1 ≥ β2 ≥ . . . ≥ βv. We now consider the size of β = β1 + β2 + · · · + βp−1. If β ≥ q
then there are distinct indices j1, j2, . . . , jq such that each f [Uji

] ⊆ {a1, a2, . . . , ap−1}.

By (ii), with α = k and ~k(2),
⋃q

i=1 Uji
contains an edge of Hst+1 and, hence, of H′. This

contradicts the assumption that f is a p-homomorphism. On the other hand, if

β ≤ q − 1 = d(p− 1) + r − 1,

then, using the fact that β/(p− 1) ≥ βp ≥ . . . ≥ βv, we have

1

p− 1
(d(p− 1) + r − 1) ≥ βp ≥ . . . ≥ βv.

Since each βi is an integer and r ≤ p − 1, this implies that d ≥ βp ≥ . . . ≥ βv. This
gives a contradiction as follows:

t+ 1 = dω + r

= β1 + β2 + . . .+ βv

≤ d(p− 1) + r − 1 + (v − p+ 1)d

≤ dω + r − 1

= t (3.1)

Again, we see that the assumption that f is a p-homomorphism leads to a contradiction.

Case (2): v < k. Define the β’s in exactly the same way and argue in the same manner.
The fact v < k ≤ ω allows us to obtain a contradiction just as in equation (3.1) above.
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Proof of Theorem 2.1 (2)

Recall that A = (V,E) is a k-uniform hypergraph, and that p, q are integers satisfying
1 < q < p ≤ k. We wish to show that ψp,q,s(A) = s(q − 1) + 1.

To see that ψp,q,s(A) > s(q − 1), we let H be a k-uniform hypergraph with χ(q)(H) =
s(q − 1) and assume that C1, C2, . . . , Cs(q−1) are classes of a q-colouring of H. Define

Xj = C(j−1)(q−1)+1 ∪ C(j−1)(q−1)+2 ∪ . . . ∪ Cj(q−1), j = 1, 2, . . . , s.

Since each edge of H must intersect at least q Cj ’s, each of the subhypergraphs H[Xi] is
empty. Hence, we have p-homomorphisms to A, trivially. This shows that ψp,q,s(A) ≥
s(q − 1) + 1.

To see the opposite inequality, we invoke the probabilistic lemma to obtain the required
k-uniform hypergraph with girth greater than a specified l. Again, we must give m and

h, the value of ǫ and the k-sequences ~k(α) = (k
(α)
1 , k

(α)
2 , . . . , k

(α)
cα ) , α = 1, 2, . . . , h.

Let m = s(q−1), h = 1, ǫ = 1/(s(q−1)|V |), and ~k(1) = (k−q+1, 1, . . . , 1). The lemma
gives an integer n and a k-uniform hypergraph Hs(q−1)+1 = (V (Hs(q−1)+1), E(Hs(q−1)+1))
such that

(i) V (Hs(q−1)+1) = V1 ∪ V2 ∪ . . . ∪ Vs(q−1)+1, with |Vi| = n for all i;

(ii) for all 1 ≤ j1 < j2 < . . . < jq ≤ s(q − 1) + 1, for all V
′

jβ
⊆ Vjβ

with |V
′

jβ
| ≥ ǫn for

β = 1, 2, . . . , q, there exists e ∈ E(Hs(q−1)+1) such that e ⊆
⋃q

β=1 V
′

jβ
;

(iii) for all e ∈ E(Hs(q−1)+1), e ∩ Vj 6= ∅ for exactly q indices j; and,

(iv) girth(Hs(q−1)+1) > l.

Observe that χ(q)(Hs(q−1)+1) ≤ s(q − 1) + 1 because, by (iii), the classes Vi provide a

q-colouring. The argument that χ(q)(Hs(q−1)+1) > s(q − 1) is almost exactly the same

as that showing χ(q)(Hst+1) > st in the previous part, and so we omit it.

Let us show that for every s-partition of V (Hs(q−1)+1) there is some part that in-
duces a subhypergraph of Hs(q−1)+1 with no p-homomorphism to A. Suppose that
V (Hs(q−1)+1) = X1∪X2∪ . . .∪Xs is any partition. Use the pigeonhole principle, just as
in the previous part, to show that there are q distinct indices j1, j2, . . . , jq in [s(q−1)+1]
and some X = Xj such that

Ui = Vji
∩X satisfies |Ui| ≥

n

s
> ǫn i = 1, 2, . . . , q.
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Let H′ = Hs(q−1)+1[X] and let’s consider any map f of H′ to A. We choose ai ∈ V
so that |f−1(a1) ∩ Ui| is maximum among all |f−1(a) ∩ Ui|, a ∈ V , for i = 1, 2, . . . , q.
Because |f−1(ai) ∩ Ui| ≥ n/(s|A|), (ii) yields e ∈ E(H′) such that

e ⊆

q⋃

i=1

f−1(ai) ∩ Ui, implying f [e] ⊆ {a1, a2, . . . , aq}.

Since q < p, f is not a p-homomorphism. Hence, Hs(q−1)+1 is not s-partition p-
homomorphic to A.

4 The Proof of the Probabilistic Lemma

We shall construct H by deleting edges from a union
⋃h

α=1 H(α), where each H(α) corre-

sponds to some k-sequence ~k(α), α = 1, 2, . . . , h. Our probabilistic proof is a modification
of the well-known argument due to Erdős [2] and Erdős and Hajnal [3].

First, here are the two basic results from probability that we shall need. Following
notation in [5], X ∈ Bi(r, p) means that X is a random variable with binomial distribu-
tion, the sum of r independent Bernoulli random variables. The statement of Chernoff’s
Inequality is based on Theorem 2.1 in [5].

Markov’s Inequality : for X ≥ 0 and t > 0,

P(X ≥ t) ≤
E(X)

t
.

Chernoff’s Inequality : for X ∈ Bi(r, p) and 0 ≤ δ ≤ 1,

P(X ≤ δrp) ≤ exp

(
−

(1 − δ)2

2
rp

)
.

Proof of Lemma 2.2

Let V1, V2, . . . , Vm+1 be disjoint sets each of size n, with n sufficiently large. To con-
struct H(α), α = 1, 2, . . . , h, we shall select k-element sets, each with probability p =
(logn)/nk−1 from the set

⋃

j1<...<jcα

{
cα⋃

i=1

(
Vji

k
(α)
i

)
: 1 ≤ j1 < j2 < . . . < jcα ≤ m+ 1

}
.
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Thus, there are

(
t+ 1

cα

) cα∏

i=1

(
n

k
(α)
i

)

independent trials in total.

Since our eventual hypergraph H is obtained by deleting edges from the union of the
H(α)’s, we see that (1) of the lemma is immediate.

Second, we consider property (2) of the lemma. For an arbitrary 1 ≤ j1 < j2 < . . . <
jcα ≤ m + 1, choose a sequence of cα sets V

′

jβ
⊆ Vjβ

, with |V
′

jβ
| ≥ ǫn. We call such

a sequence large. Let X(V
′

j1
, V

′

j2
, . . . , V

′

jcα
) denote the random variable counting the

number of k-sets e satisfying

|e ∩ V
′

jβ
| = kβ, β = 1, 2, . . . , cα. (4.1)

Then X ∈ Bi(r, p) where

r =

cα∏

β=1

(
|Vjβ

|

kβ

)
and p =

logn

nk−1
.

Thus,

E(X) = rp ≥
cα∏

β=1

(
ǫn

kβ

)kβ logn

nk−1
≥

( ǫ
k

)k

n logn.

Apply Chernoff’s inequality with δ = 1/2 to obtain

P

(
X ≤

1

2

( ǫ
k

)k

n logn

)
≤ exp

(
−

1

8

( ǫ
k

)k

n logn

)
.

The number of sequences (V
′

j1
, V

′

j2
. . . , V

′

jcα
) with 1 ≤ j1 < j2 < . . . < jcα is less than(

m+1
cα

)
2cαn and thus the probability that there is a large sequence which contains fewer

than 1
2

(
ǫ
k

)k
n logn satisfying (4.1) is at most

(
m+ 1

cα

)
2cαn exp

(
−

1

8

( ǫ
k

)k

n logn

)
(4.2)
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which tends to 0 as n→ ∞.

We now want to estimate the number of circuits of length at most r in the hypergraph
H =

⋃h
α=1 H(α). First, recall that a circuit of length j ≥ 2 corresponds to a family

of distinct k-sets e1, e2, . . . , ej such that |
⋃j

i=1 ei| ≤ j(k − 1) and, conversely, a family
satisfying these conditions contains a circuit of length at most j. The number of such
families is less than

(
(m+ 1)n

j(k − 1)

)(
j(k − 1)

k

)j

≤ cj(m, k)nj(k−1) ,

where cj(m, k) = cj depends only on j, k,m.

Let Yj be the random variable counting the number of j-circuits j = 1, 2, . . . , l. Then

E(Yj) ≤ cjn
j(k−1)pj = cj logjn .

Let Y =
∑l

j=2 Yj . Then E(Y) ≤
∑l

j=2 cj logjn < c0logln. Apply Markov’s inequality
to E(Y):

P(Y > 2c0logln) ≤
E(Y)

2c0logln
=

1

2
. (4.3)

Summarizing (4.2) and (4.3), we infer that for n ≥ n(m, k, l, ǫ), there is a k-uniform
hypergraph Hn on the vertex set

⋃m+1
i=1 Vi such that

(i) for all α = 1, 2, . . . , h, 1 ≤ j1 < j2 < . . . < jcα ≤ m + 1 and large sequences
(V

′

j1
, V

′

j2
, . . . , V

′

jcα
) there exists e ∈ H(α) such that |e ∩ V

′

jβ
| = kβ, for β = 1, 2, . . . , cα;

and,

(ii) the number of circuits of length at most l is at most 2c0logln.

Delete one edge from each such circuit, resulting in a k-uniform hypergraph H of girth
greater than l in which each large family contains at least one edge of H. Thus, we have
item (3) of the lemma.

This completes the proof of Lemma 2.2.
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5 A Packing Construction

An alternative approach to Theorem 1.4 uses Theorem 1.1 and the well-known result of
Erdős to establish the theorem for s = 1 [see Lemma 5.1]. Then a packing construction
for hypergraphs [Lemma 5.2] and a probabilistic construction [Lemma 5.3] can be used
to both generalize from the graph case to hypergraphs and extend the result to s-
partitions. This argument may be of independent interest, so we present it in this
section.

We revert to the usual meanings of homomorphism, colouring, and chromatic number
for graphs and hypergraphs, as used in Section 1. That is, a homomorphism of graphs
is a 2-homomorphism, of k-uniform hypergraphs, a k-homomorphism, a colouring c of a
hypergraph H has |c[e]| ≥ 2, for all edges e of H, and chromatic number for hypergraphs
is the [weak] chromatic number.

First, here is Theorem 1.4 in the case s = 1, proved using using probabilistic results
from [2] and [7].

Lemma 5.1. Let A be a k-uniform hypergraph and let l ≥ 2. Then there is a k-uniform
hypergraph C with girth(C) > l and χ(C) = ψ(A) such that C 9 A.

Proof. Let A be a graph with ω(A) = ω and let l ≥ 2. As noted in the introduction, it
is straightforward to argue that

ψ(A) =

{
ω(A) + 1 if k = 2,

2 if k ≥ 3,

if there is no restriction on girth.

Let C be a graph with girth(C) > l, obtained from Theorem 1.1 in the case that
H = Kω+1 and n = max{|V (A)|, ω + 1}. Since Kω+1 9 A, we have that C 9 A. On
the other hand, C → Kω+1, and thus χ(C) ≤ ω + 1. Of course, C 9 Kω because
Kω+1 9 Kω. Thus, χ(G) = ω + 1. This finishes the argument in the case of graphs.

Let k ≥ 3 and let A be a k-uniform hypergraph. Given l, we construct a k-uniform
hypergraph C such that χ(C) = 2, girth(C) > l, and C 9 A.

For a k-uniform hypergraph H, we denote by Gr(H) the graph on vertex set V (H), with
edge set all pairs {u, v} such that u and v belong to an edge of H. [This is a special
case of the construction below and is called the 2-section of H in [1].] Note that if f is
a homomorphism of H to a k-uniform hypergraph L then f is a graph homomorphism
of Gr(H) to Gr(L).
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Let χ(Gr(A)) = c. By the well-known result in [2], there exists a graph G such that
χ(G) ≥ c + 1 and girth(G) > l. Let W be a set of size (k − 2)|E(G)| which is disjoint
from V (G). We associate with every edge e of G a subset δ(e) of W with |δ(e)| = k− 2
and δ(e) ∩ δ(f) = ∅ for any two different edges e and f of G.

Let the k-uniform hypergraph C have V (C) = V (G) ∪W and the set of edges

{e ∪ δ(e) : e is an edge of G}.

Since k ≥ 3 the partition V (G) ∪ W is a 2-colouring of C. And, F 9 A because
χ(Gr(F)) ≥ c+ 1, while χ(Gr(A)) = c. It is easy to see that girth(C) > l.

In the rest of this section, we outline the alternative approach to Theorem 1.4 for
arbitrary s. This requires a few new terms.

Let A be a k-uniform hypergraph and let H be a simple |V (A)|-uniform hypergraph.
We let H(A) denote the set of all k-uniform hypergraphs obtained by inserting a copy
of A in each edge of H. More formally, Ĥ ∈ H(A) if and only if V (Ĥ) = V (H), for all
e ∈ E(H), Ĥ[e] is isomorphic to A, and for all ê ∈ E(Ĥ) there is some e ∈ E(H) such
that ê ⊆ e. Note that

|H(A)| =

(
|V (A)|!

|Aut(A)|

)|E(H)|

.

Refer to any member of H(A) as an A-packing of H.

Let A be a hypergraph and s be a nonnegative integer. Let

π(A, s+ 1) = min{χ(Ĥ) | χ(H) = s+ 1, Ĥ ∈ H(A)}.

with the minimum taken over all (s+ 1)-chromatic |V (A)|-uniform hypergraphs H and
all Ĥ ∈ H(A).

Lemma 5.2. Let A be a hypergraph and let s be a nonnegative integer. Then

π(A, s+ 1) ≥ (χ(A) − 1)s+ 1.

Proof. Let H be any simple |V (A)|-uniform hypergraph of chromatic number s+ 1 and
let φ be any mapping of V (H) to X × Y where |X| = χ(A) − 1 and |Y | = s. For each
v ∈ V (H) let φ̂(v) = y where φ(v) = (x, y). Since |Y | < χ(H), there is some e ∈ E(H)
such that φ̂|e is constant. Now let Ĥ ∈ H(A). Since |X| < χ(A) and Ĥ[e] is isomorphic
to A, there is some e′ ∈ E(A) such that e′ ⊆ e and φ|e′ is constant. Thus, φ cannot be
a colouring of Ĥ. Hence, π(A, s+ 1) ≥ (χ(A) − 1)s+ 1.
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Lemma 5.3. let A be a k-uniform hypergraph and let s and l be positive integers. Then
there is a |V (A)|-uniform hypergraph H such that χ(H) = s + 1, girth(H) > l, and an
A-packing Ĥ of H such that

χ(Ĥ) = (χ(A) − 1)s+ 1.

Consequently,
χ(Ĥ) = π(A, s+ 1) = (χ(A) − 1)s+ 1.

Proof. We are given k, s and l and the k-uniform hypergraph A. Let |V (A)| = a,
χ = χ(A), and V (A) = W1 ∪W2 ∪ . . . ∪Wχ be a partition induced by a χ-colouring of
A, with |Wi| = ai for i = 1, 2, . . . , χ.

We apply Lemma 2.2 with k = a, h = 1, c1 = χ, ǫ = 1/s, the a-sequence ~a =
(a1, a2, . . . , aχ), and m = (χ − 1)s. This yields an a-uniform H satisfying (1), (2)

and (3) of the lemma. Define a k-uniform hypergraph Ĥ on V (H) as follows: for each
e ∈ E(H) insert a copy of A in e by identifying Wβ with e ∩ Vjβ

, where |e ∩ Vjβ
| = aβ

for β = 1, 2, . . . , χ, as guaranteed by (1). It is clear that Ĥ ∈ H(A).

We know from Lemma 5.2 that χ(Ĥ) ≥ m+ 1. The upper bound is immediate from the
construction of Ĥ, so we see that χ(Ĥ) = m+ 1. It remains to prove that χ(H) = s+ 1.

To see that χ(H) ≤ s+ 1, recall that V (H) =
⋃m+1

i=1 Vi. Create a new partition of V (H)
with parts Uj , j = 1, 2, . . . , s+ 1, by letting each Uj be the union of χ− 1 distinct Vi’s,
for j = 1, 2, . . . , s, and Us+1 = Vm+1. By (1) of Lemma 2.2, each edge of H intersects
exactly χ Vi’s, so the partition by Uj , j = 1, 2, . . . , s + 1 provides an (s + 1)-colouring
of H.

To prove that χ(H) > s, suppose that V (H) = X1∪X2∪ . . .∪Xs is a partition. For each
i = 1, 2, . . . ,m+1 = (χ−1)s+1 there is some j(i) ∈ [s] such that |Vi∩Xj(i)| > n/s = ǫn.
There is some index j0 such that j0 = j(i) for at least χ distinct i’s. By (2), Xj0 contains
an edge of H, so the partition by Xj , j = 1, 2, . . . , s cannot give an (s− 1)-colouring of
H.

We can now state and prove a somewhat sharpened version of Theorem 1.4.

Theorem 5.4. Let A be a k-uniform hypergraph and let s and l be positive integers.
Then there exist a k-uniform hypergraph C and a |V (C)|-uniform hypergraph H, both of
girth greater than l, such that χ(C) = ψ(A), C 9 A, χ(H) = s+ 1 and such that some
Ĥ ∈ H(C) satisfies:

(1) Ĥ is not s-partition homomorphic to A;
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(2) χ(Ĥ) = ψ(A, s) = s(ψ(A) − 1) + 1; and

(3) girth(Ĥ) > l.

Just as in Theorem 1.4, this gives the value of ψ(A, s), once we recall that ψ(A) =
ω(A) + 1 for graphs and ψ(A) = 2 for nontrivial hypergraphs, and shows that there is
a large girth hypergraph realizing ψ(A, s).

Proof. Let A, s and l be as in the preceding statement. Apply Lemma 5.1 to A and l
to obtain a k-uniform C such that girth(C) > l, χ(C) = ψ(A), and C 9 A.

Apply Lemma 5.3 to C, s+ 1 and l to obtain a |V (C)|-uniform hypergraph H such that
girth(H) > l, and χ(H) = s+ 1, and, for some Ĥ ∈ H(C)

χ(Ĥ) = π(C, s+ 1) = (χ(C) − 1)s+ 1. (5.1)

For any partition of the vertices of V (Ĥ) = V (H) into s parts, some part, sayW , contains
an edge of H. Then Ĥ[W ] contains a copy of A and, thus, has no homomorphism to A.
Therefore, Ĥ is not s-partition homomorphic to A, proving (1).

The proof of (2) will be complete once we show that ψ(A, s) = π(C, s+ 1). Let us see
that

ψ(A, s) ≤ π(C, s+ 1). (5.2)

Given any simple (s+ 1)-chromatic, |V (C)|-uniform hypergraph F and any F̂ ∈ F(C), a
partition of F̂ into s parts must result in a part which contains an edge of F and, hence,
a copy of C. Then the subhypergraph of F̂ induced on that part has no homomorphism
to A, so F̂ is not s-partition homomorphic to A and ψ(A, s) ≤ χ(F̂). Since F and F̂were
chosen arbitrarily, ψ(A, s) ≤ π(C, s+ 1).

In order to prove the opposite inequality, we need that

s(ψ(A) − 1) + 1 ≤ ψ(A, s). (5.3)

To prove it, let F be any k-uniform hypergraph with χ(F) ≤ s(ψ(A) − 1). Let Vi (i =
1, 2, . . . , s(ψ(A) − 1)) be the classes of a colouring of F. Now let Wj (j = 1, 2, . . . , s) be
pairwise disjoint, with each Wj the union of ψ(A) − 1 distinct Vi’s. Since each of the s
induced subhypergraphs F[Wj ] has a (ψ(A)−1)-colouring, defined by the Vi’s contained
in Wj , for j = 1, 2, . . . , s, F[Wj ] → A. Thus, F is s-partition homomorphic to A. This
proves that s(ψ(A) − 1) + 1 ≤ ψ(A, s).

We now conclude that ψ(A, s) = π(C, s+ 1) from (5.4) below, which follows from (5.3),
(5.2), (5.1), and the fact that χ(C) = ψ(A):

s(ψ(A) − 1) + 1 ≤ ψ(A, s) ≤ π(C, s+ 1) ≤

≤ s(χ(C) − 1) + 1 ≤ s(ψ(A) − 1) + 1. (5.4)
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Finally, (3), regarding the girth of a packing, is an immediate consequence of the
following observation: girth(Ĥ) ≥ min{girth(H), girth(C)}.

6 Explicit Packings in Specific Cases

Given s and a k-uniform hypergraph A, Theorem 5.4 produces an (s + 1)-chromatic,
large girth |V (A)|-uniform hypergraph H such that some A-packing Ĥ of H has chromatic
number equal to the minimum possible, π(A, s+ 1) = (χ(A) − 1)s+ 1.

The methods used are probabilistic, so there is no explicit description of Ĥ. We present
an explicit construction of large girth hypergraphs for A = Kk. Here is a restatement
of the objective: for integers k, s and l, explicitly construct a k-uniform hypergraph
H of girth greater than l, weak chromatic number s+ 1, and strong chromatic number
(k − 1)s+ 1.

The construction is based on a general method created by Nešetřil and Rödl [6]. The
following is not explicitly stated in [6] but is a consequence of the proof of the main
theorem of that paper.

Lemma 6.1 (The Girth Machine). Let L be a k-uniform hypergraph with V (L) =
{v1, v2, . . . , vt}, weak chromatic number χw, and strong chromatic number χs. Then
there exists a k-uniform hypergraph L̃ with V (L̃) = V1 ∪ V2 ∪ . . . ∪ Vt, weak chromatic
number χw, strong chromatic number χs, and girth(L̃) > l. Moreover, the mapping
Vi → vi is a homomorphism of L̃ to L.

Apply the Girth Machine to the k-uniform hypergraph L = K
(k)
(k−1)s+1, that is, the

hypergraph on vertex set [(k−1)s+1] with edge set all k-element subsets of [(k−1)s+1].

The weak chromatic number of K
(k)
(k−1)s+1 is s + 1, by a pigeonhole argument, and the

strong chromatic number is the size of the vertex set, (k − 1)s + 1. Therefore, L̃ has
the desired properties. Unfortunately, the cardinality of V (L̃) is a tower function of
considerable height.

We end with a concrete, small construction that handles the case k = l = s = 3.

The set of vertices of H is the set S := {1, 2, 3, 4, 5} together with the 10 2-element
subsets of S, so |V (H)| = 15. The set of hyperedges of H is the set

{{x, y, {x, y}} : x, y ∈ S} ∪ {{{x, y}, {y, z}, {z, x}} : x, y, z ∈ S}.

To see that χ(H) ≥ 3, assume for a contradiction that H has a colouring γ with colours
a and b. Then three of the elements in S receive the same colour. We may assume,
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without loss of generality, that the elements 1, 2 and 3 all receive colour a. Then
the three 2-element subsets {1, 2}, {2, 3}, {3, 1} must be coloured with b, which is a
contradiction.

Note that the strong chromatic number of H is equal to the total chromatic number of
the complete graph K5, which is 5. (The set {1, {2,5}, {3,4}} is a colour class and one
obtains the others by rotation.)

References

[1] C. Berge, Hypergraphs, North-Holland Mathematical Library, 45, Elsevier Science
Publishers B.V. (1989).
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