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We applied independent component analysis (ICA) to hyperspectral images in order to learn a n  efficient rep- 
resentation of color in natural scenes. In the spectra of single pixels, the algorithm found basis functions that 
had broadband spectra and basis functions that were similar to natural reflectance spectra. When applied to 
small image patches, the algorithm found some basis functions that were achromatic and others with overall 
chromatic variation along lines in color space, indicating color opponency. The directions of opponency were 
not strictly orthogonal. Comparison with principal-component analysis on the basis of statistical measures 
such as average mutual information, kurtosis, and entropy, shows that the ICA transformation results in 
much sparser coefficients and gives higher coding efficiency. Our findings suggest that nonorthogonal oppo- 
nent encoding of photoreceptor signals leads to higher coding efficiency and that ICA may be used to reveal the 
underlying statistical properties of color information in natural scenes. O 2001 Optical Society of America 

OCIS codes: 330.1690, 330.1720, 100.2960, 330.7310. 

1. INTRODUCTION 

The efficient encoding of visual sensory information is an  

important task for image processing systems, and its 

study may provide insights into coding principles of bio- 
logical visual systems. ~a r low '  proposed that the goal of 
sensory information processing is to transform the input 

signals such that the redundancy between the inputs is 
reduced. Recently several methods have been proposed 

for finding linear basis functions for achromatic images of 

natural scenes that reduce the redundancy in the images. 
Olshausen and ~ i e l d ~  used a sparseness criterion and 

found basis functions that were localized and oriented 

like receptive fields in the mammalian visual cortex. 

Similar results were obtained with the infomax indepen- 
dent component analysis (ICA) algorithm3 and a 

Bayesian approach.4 

Although luminance dominates the visual structure of 

the natural environment, many species have developed 
color vision to make use of the information in the varia- 

tions in spectral composition of the light that reaches the 
eye. I t  would therefore be of interest to find efficient 
codes for the chromatic structure of natural images. 

Analyses of color coding have focused mostly on coding 
efficiency with respect to the postreceptoral signals!n6 

Buchsbaum and ~ o t t s c h a l k ~  found opponent coding to be 

the most efficient way to encode human photoreceptor sig- 

nals. In an analysis of cone responses to natural scenes 

using principal-component analysis (PCA), Ruderman 

et aL6 found principal components close to the opponent 

functions of Buchsbaum and Gottschalk. As the study by 
Ruderman et al. showed, the decorrelating functions de- 

pend mainly on the spectral properties of the 

photoreceptors.6 These properties, however, may not be 
determined solely by the spectral statistics in the environ- 

ment. Physical, biological, and ecological factors may im- 

pose constraints on the number and spectral position of 

photoreceptor sens i t i~ i t ies .~*~ Therefore the PCA-like op- 

ponent coding of photoreceptor signals, while optimal for 

transmitting chromatic information through the optic 

nerve, may not necessarily reflect the chromatic structure 

of natural scenes and may be not the ultimate goal of the 

visual system.g It  is known that, while neurons in the 

lateral geniculate nucleus of trichromatic primates show 

responses along orthogonal axes (cardinal directions) of 

cone-opponent color space,10 cortical cells are not re- 

stricted to responses along these direct ion~."*~~ This 
suggests that a nonorthogonal coding scheme may be 

more appropriate for encoding the chromatic structure of 
natural images. 

Our goal in this paper is to find efficient representa- 
tions of chromatic sensory information such that  its re- 

dundancy is reduced significantly. To this end, we use 
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ICA to adapt or learn the spectral and spatial represen- 
tations of natural chromatic images. In Section 2 we de- 

scribe the motivation for using ICA for analyzing spectral 
images. In Section 3 we illustrate the spectral decompo- 
sition using ICA to find basis functions that efficiently en- 
code natural spectra. In Section 4 we describe the spa- 
tial properties of natural color images, which are found by 
decomposing small image patches into spatial basis func- 
tions that encode the image in an efficient manner. In 

Section 5 we discuss our results and compare them with 
other methods. 

2. LEARNING CODES FOR COLOR IMAGES 
WITH INDEPENDENT COMPONENT 
ANALYSIS 

A. Independent Component Analysis 
The ICA algorithm was initially proposed to solve the 
blind source separation problem; i.e., given only mixtures 
of a set of underlying sources, the task is to separate the 
mixed signals and retrieve their original s o ~ r c e s ' ~ - ~ ~  
without knowing how the signals were mixed nor the dis- 
tribution of the sources. In contrast to correlation-based 

transformations, such as PCA, ICA not only decorrelates 
the signals (using second-order statistics) but also re- 
duces higher-order statistical dependencies, thus reduc- 
ing the mutual information between the output signals, 
making them as statistically independent as possible. 
Furthermore, the ICA bases are not restricted to being or- 
thogonal. 

ICA assumes a source vector s with components si that 
are mutually independent. The sources are not observed 

directly, but linear combinations of the sources x are 
given such that 

X = As, (1) 

where A is a N x M scalar matrix. The columns of A are 

called the basis functions. We assume that there is no 
additive sensor noise. The goal of ICA is to find the basis 
functions by adaptation or learning given only the ob- 
served data x. During the adaptation process a cost 
function such as the mutual information function is mini- 
mized by using an adaptation rule. Once the minimum 

is achieved, the sources s; will be as linearly independent 
as possible. 

The many variants of the ICA adaptation algorithm 
can be loosely categorized into parametric3.4.17 and 
n~n~arametr ic '~* '~  algorithms. The main difference be- 

tween these two classes of algorithms is that the paramet- 
ric approach assumes an adaptive or nonadaptive prior 
distribution on the source densities p(s), whereas the 
nonparametric approach tries to approximate the under- 
lying statistics using cumulants up to 4th order. Our pri- 

mary interest is to learn efficient codes; i.e., the distribu- 
tion of p(s) should be as sparse as possible. The 
sparseness constraint has been used to learn efficient 
codes for natural images.2*4 Sparseness in this case as- 
sumes that the data x are encoded in the sources s in such 
a way that the coefficients of s are mostly close to zero. 

Figure 1 shows an example of a Laplacian density func- 
tion [ p ( s )  a'exp(-lsl)] in comparison with a Gaussian 
density function. Both distributions are zero mean and 

have unit variance. The Laplacian prior is sharply 
peaked around zero and has heavy tails; there is only a 

small percentage of informative values (nonzero coeffi- 
cients) in the tails of the Laplacian distribution, and most 
of the data values are close to zero; i.e., the data is 
sparsely distributed. From a coding perspective this as- 
sumes that we can encode and decode the data with only 
a small percentage of the coefficients s. For Gaussian 
densities however, the data is not sparsely distributed, 
and a larger portion of the coefficients s is required to en- 
code the data. In this sense, the basis functions (codes) 
that produce sparse distributions are statistically effi- 
cient codes. 

In our experiments, we use the infomax learning rule 
with natural gradient extension as derived in Appendix 
A. Furthermore, we impose the Laplacian prior on p(s). 
The adaptation of the basis functions is then 

where I is the identity matrix, sign is the sign function, sT 
denotes the matrix transpose of s, and AA is the change of 
the basis functions that is added to A. We also assume 
that A is a square matrix; i.e., the number of sources is 
equal to the number of sensors. Once the adaptation pro- 
cess is complete, AA will be a zero matrix. 

The goal in our analysis is to find the basis functions A 
such that the data can be linearly decomposed into ex- 
tremely sparse distributions. The adapted basis func- 
tions are efficient codes for representing spectral data. 

B. Hyperspectral Images of Natural Scenes 

We analyzed a set of eight hyperspectral images of natu- 
ral scenes. A detailed description of the images is given 
by PGrraga et a~. .~ '  Briefly, the full data set consists of 
29 images with a size of 256 X 256 pixels. Each pixel is 
represented by radiance values for 31 wave bands of 
10-nm width, sampled in 10-nm steps between 400 and - 

700 nm. The pixel size corresponds to 0.056 
x 0.056 deg of visual angle. The images were recorded 
around Bristol, either outdoors or inside the glass houses 
of Bristol Botanical Gardens. We chose eight of these im- 
ages that had been obtained outdoors under apparently 
different illumination conditions (Fig. 2). Note that in 

each image a gray plate mounted on a tripod can be seen. 
This plate, a Kodak Graycard, was intended as a refer- 
ence reflectance for calibration. For each image, we de- 
termined the area in the image occupied by the reflec- 

tance standard and tripod. Image samples taken for 
analysis were restricted to the image regions outside 
these areas. 

Source Coeffidents Source Coefficients 

Fig. 1. Schematic comparison between a Laplacian density (left) 
and a Gaussian density (right). 
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Fig. 2. Eight hyperspectral color images of natural scenes. A, Schematic of decomposition of the observed spectrum into spectral basis 
functions. B, Schematic of decomposition of the observed image patch into spatiochromatic basis functions. 

Figure 2 illustrates two experiments using ICA. In 3. INDEPENDEN COMPONENTS OF 
Fig. 2A the spectral data of image pixels are used to learn NATURAL SPECTRA 
basis functions so that the observed spectra can be repre- 
sented as a linear superposition of scaled basis functions. In this experiment, we randomly sampled spectra of im- 
Figure 2B illustrates the linear decomposition of the ob- age pixels from the eight images in Fig. 2. As in the 
served image patch into spatial basis functions. The Sec- studies by fieldg and Ruderman et a1.: the logarithms of 
tions 3 and 4 describe the learned basis functions for the the radiance values were used. Besides the issues con- 
two experiments. cerning logarithms discussed by Ruderman et al., we see 
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another possible benefit of using logarithmic values when 
investigating color signals. Important processes that af- 

fect spectral distributions, such as reflection and trans- 
mission, are of a multiplicative nature. When converted 

to logarithms, these processes become additive operations 
and thus may be more suitable for ICA, which assumes 
linear combinations of sources. Unlike in the study by 

Ruderman et al., no attempt was made to correct for dif- 
ferences in illumination in the different images. Thus 

our data contained variations caused by illuminants and 

by object reflectances within images as  well as  between 
images. In preliminary analysesz1 we had found that 

speed of convergence of the algorithm was slow and that 

small peaks of one sample (10-nm) width occurred in oth- 
erwise fairly smooth basis functions. These peaks 

changed when other combinations of images were used, 
while the basis functions themselves were stable. We at- 

tributed these small peaks to artifacts introduced by 
changes in the scenes during image acquisition (e.g., by 

movements due to wind or by changes in the illumina- 

tion). Since natural photoreceptors have much wider 

spectral sensitivities, we consider variations on a spectral 
range of 10 nm not as relevant for color vision. Therefore 

we smoothed the spectra by convolution with a triangular 

kernel of 10-nm half-width a t  half-height. This in- 

creased the speed of convergence and reduced the small 
peaks in the basis functions. Training was done in 1000 
training or adaptation steps. For each training step, 

5000 spectra of each of the eight images were chosen ran- 
domly from the regions outside the images of the reflec- 

tance standard. For each such set of 40,000 spectra, the 
mean spectrum vector of the ensemble was subtracted, 

and the data were scaled to unit variance for each en- 
semble. Learning of the ICA basis functions was done on 
sequential blocks of 100 spectra from the data, with Eq. 

(2). The learned basis functions for the pixel spectra are 
shown in Fig. 3, plotted in order of decreasing Lz  norm. 

The lengths of the ICA basis functions (Lz norm) are pro- 
portional to the power along the components and there- 

fore measure the contributions of the basis functions to 
the data, as  do the eigenvalues for PCA. The inset of Fig. 
3 shows the distribution of La-norm values, i.e., the rela- 

tive contributions of the basis functions to the pixel spec- 

tra in the eight images. 

The first four basis functions are broadband spectra. 
Basis function 1 is relatively uniform, with a slight bias 

toward long wavelengths. Basis functions 2 and 3 con- 
tribute mainly in the short- and long-wavelength part of 

the visible spectrum, respectively. Basis function 4 is 
slightly biased toward short wavelengths. Basis function 
5 has a single peak near 540-550 nm and a dip a t  higher 

wavelengths. Basis function 6 has a peak that is broader 
and is shifted to longer wavelengths around 570 nm. Ba- 
sis function 7 has a peak a t  the location of the peak of ba- 

sis function 5 but lacks the long-wavelength dip. Note 
that we show the basis functions obtained from the loga- 

bask function 

Fig. 3. Analysis of pixel spectra using ICA: the learned basis functions of pixel spectra, ordered by decreasing L2 norm. The number 
in the upper left corner of each plot denotes the basis function number as referred to in the text. The inset shows the histogram of the 
L2 norms of the basis functions. 
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principal component 

Fig. 4. Analysis of pixel spectra using PCA: PCA basis functions of pixel spectra, ordered by decreasing eigenvalues. The inset shows 
the histogram of the eigenvahes. 

rithmic data; but since the spectral contrast is relatively 
low within each basis function, the corresponding func- 

tions in linear values have similar shapes. 

A. Comparison with Principal Component Analysis 

For comparison, we calculated the PCA basis functions 
for the same image spectra. Figure 4 shows the resulting 

basis functions, ordered by decreasing eigenvalue (inset). 
In contrast to the ICA results, many basis functions show 
multiple zero crossings, and there are many basis func- 
tions of high spectral frequency. The third basis function 
has a peak in the region of ICA basis function 5, which 
confirms that there is variation with such spectral char- 
acteristics in natural spectra. The eigenvalue spectrum 
decreases strongly, with the first three components ex- 
plaining more than 90% of the variance in the images. 

B. Comparing Coding Efficiency 
We have compared the coding efficiency between ICA and 
PCA, using Shannon's theorem to obtain a lower bound on 
the number of bits required to encode a pixel ~ ~ e c t r u m ~ . ~ ~ :  

#bits 3 -log2 P(x,lA) - N log2( a,), (3) 

where N is the dimensionality of the input spectrum 
xt , a, is the coding precision (standard deviation of the 
noise introduced by errors in encoding), and P(x,lA) is the 
likelihood of the. data given the bases. 

The average number of bits required to encode 40,000 
pixel spectra randomly selected from the eight images in 

Table 1. Coding Efficiencies of ICA and  PCA for 
' 

Pixel Spectra and  Image Patches 

Entropy Mutual Average 

Data Method (bitdpixel) Information Kurtosis 

Pixel spectra ICA 2.03 0.0194 11.8 

PC A 4.79 0.0237 6.7 

Image patches ICA 1.73 0.0093 19.7 

PCA 4.46 0.0123 6.6 

Fig. 2 with a fixed-noise coding precision of a, = 0.059 
was 2.03 bits for ICA and 4.79 bits for PCA, thus indicat- 
ing that ICA basis functions encode natural spectra more 
efficiently than PCA components. 

To compare the form of the resulting coefficient densi- 
ties for PCA and ICA, we computed the normalized kur- 
tosis of the source coefficients for both PCA- and ICA- 
transformed data. The average normalized kurtosis was 
11.8 for the resulting ICA source coefficients and 6.7 for 
those of the PCA. Note that the normalized kurtosis for 
a Gaussian density is zero. This suggests that the ICA 
basis functions produce a very sparse representation for 
the spectra. 

To illustrate how ICA representation minimizes the 
mutual information between its components, we com- 
puted the average painvise mutual information in the 

spectra data (see Table 1). The average mutual informa- 
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tion was 0.2932 in the original data, 0.0237 in PCA- 
transformed data, and 0.0194 in the ICA-transformed 
data. 

4. INDEPENDENT COMPONENTS OF 
COLOR IMAGES 

The goal of the experiment illustrated in Fig. 2B is to ana- 
lyze the spatial properties of chromatic information of the 
data set. To reduce the computational effort and the 

number of resulting basis functions, we converted the 
spectra of each pixel to a vector of three cone excitation 
values. Thus we attempted to find an efficient postrecep- 
toral code for natural images. Conversion to human 

cone-excitation values was done by multiplying the radi- 
ance value for each wavelength by the corresponding val- 
ues for the human cone ~ensi t iv i t ies~~ and summing over 
the resulting values. Thus, the dimensionality of each 
image was reduced from 256 X 256 X 31 dimensions to 
256 x 256 x 3 dimensions. From these data, 7 X 7 
pixel image patches were chosen randomly, yielding 7 
X 7 X 3 = 147 dimensional vectors. As in the case of 

the spectra, the data were transformed to logarithmic val- 
ues. To adapt the basis functions, we used Eq. (2). 
Training was done in 500 training steps, each using a set 

of spectra of 40,000 image patches, 5000 chosen randomly 
from each of the eight images, again excluding the image 
regions corresponding to the reflectance standard. 

To visualize the resulting components, we used the 
method by Ruderman et ~ 1 . ~  and plotted for each basis 
function a 7 x 7 pixel matrix, with the color of each pixel 
indicating the combination of long-, middle-, and short- 
wavelength sensitive (L-, M-, and S-) cone responses as 
follows. The values for each patch were normalized to 
values between 0 and 255, with 0 cone excitation corre- 
sponding to a value of 128. Thus the red, green, and blue 
(R, G, and B) components of each pixel represent the rela- 
tive excitations of L, M, and S cones, respectively. In Fig. 

5, the 147 components are ordered by decreasing L2 
norm. A histogram of the L2 norms is shown in Fig. 6. 
To further illustrate the chromatic properties of the basis 
functions, we convert the L, M, S vector of each pixel to its 
projection onto the isoluminant plane of a cone-opponent 
color space. We used a space similar to the color spaces 
used by MacLeod and ~ o ~ n t o n ~ ~  and Derrington et al.1° 
with coordinate axes defined by L-M, S, and L+M+S 

modulation, respectively. In our plots we show the pro- 
jections on the isoluminant plane, with L-M on the hori- 
zontal axis and S on the vertical axis. For each pixel of 

the basis functions, a point is plotted a t  its corresponding 
location in that color space (Fig. 5, bottom). The colors of 
the points are the same as those used for the pixels in the 
top part of the figure. Thus, although only the projection 
onto the isoluminant plane is shown, the third dimension 
(i.e., luminance) can be inferred by the brightness of the 
points. 

Figure 5 shows homogeneous and oriented achromatic 
and chromatic basis functions. When ordered by de- 
creasing L2 norm, achromatic basis functions tend to ap- 
pear before chromatic basis functions. This reflects the 
fact that in the natural environment, luminance varia- 
tions are generally larger than chromatic  variation^.^' 

The achromatic basis functions are localized and oriented, 
similar to those found in the analysis of gray-scale natu- 

ral Most of the chromatic basis functions, par- 
ticularly those with strong contributions, are color oppo- 
nent; i.e., the chromaticities of their pixels lie roughly 

along a line through the origin of our color space. Basis 
functions 4 and 5 code green and purple colors, respec- 
tively (see Fig. 5, bottom). These are the only basis func- 
tions with strong contributions in the first and third 
quadrants. Most chromatic basis functions with rela- 
tively high contributions are modulated between light 
blue and dark yellow in the plane defined by luminance 
and S-cone modulation. Those with lower L2 norm are 

highly localized but still are mostly oriented. There are 
other chromatic basis functions with tilted orientations, 

corresponding to blue versus orange colors. The chroma- 
ticities of these basis functions occupy mainly the second 
and fourth quadrants. The basis functions with the low- 
est contributions are less strictly aligned in color space 
but still tend to be color opponent, mostly along a bluish- 
green-orange direction. There are no basis functions 
with chromaticities along the horizontal axis, correspond- 
ing to pure L versus M cone opponency, as with PCA basis 
 function^.^ In Fig. 5 we show some of the filters (column 
marked 'W') corresponding to the basis functions. The 
filters likewise are localized and oriented, and their direc- 

tions in color space are nonorthogonal. Note that the 
chromatic directions in the filters are enhanced in com- 
parison with the achromatic direction, since in the basis 

functions they have smaller contributions. This leads to 
chromatic variations in the achromatic filters. For better 
visualization, we chose to scale the data along the chro- 
matic directions to approximately equal variance by seal- 
ing with factors of 3 (S) and 8 (L-M), respectively, before 
computing the inverse. 

Figure 6A shows a histogram of the relative contribu- 
tions of the first 50 basis functions. In Fig. 6B we plot 
the distributions of the coefficients of the first 49 basis 
functions across the images. Most distributions have 
very high kurtosis. The mirror-image pair of basis func- 
tions 4 and 5 have relatively low kurtosis, indicating con- 
tribution to many pixels. The contribution of basis func- 
tion 5 to one of the images is shown in Fig. 7. The 256 
X 256 pixel image was first divided into 7 x 7-pixel im- 

age patches, and the contribution was calculated by com- 
puting the source coefficients s5. The s5 coefficients 
show the low contribution in the sky area and its high 
contribution in the tree scene, indicating that this basis 

function encodes green and dark areas. The gray plate 
in the image contains very low green contribution as does 
the sky region. 

A. Comparison with Principal Component Analysis 
We compared the ICA results with principal components 

of the data. For single pixels, we found the same princi- 

pal components as Ruderman et aL6 The three principal 

axes were (l/fi)(1.001 + 1.00m + 0.99s), (l/@)(1.021 

+ 0.96m - 2.01~1, and (l/fi)(0.991 - 1.01m + 0.02s), 
with 1, m, and s the unit direction vectors in logarithmic 

L-, M-, and Scone space. The values for the ICA basis 
functions for single pixels were (0.321 +0.29m 
+ 0.66s), (0.381 + 0.53m + 0.33s), and (0.571 + 0.46m 





72 J. Opt. Soc. Am. A/Vol. 18, No. IfJanuary 2001 Wachtler et al. 

basis function 

B 

source coeff. 

Fig. 6. Relative contributions of ICA basis functions. A, Histo- 
gram of the L, norms of the first 50 ICA basis functions in Fig. 5. 
B, Histograms of coefficient values for the first 25 ICA basis func- 
tions in Fig. 5. Most distributions have high kurtosis. 

Fig. 7. Example of contribution levels for ICA-patch basis func- 
tion 5 (green image patch) in one of the images. Left, gray-scale 
rendering of original image. Right, contribution level. Dark 
regions correspond to low contributions of basis function 5. 

+ 0.26s). The ICA result reflects the fact that most 
natural colors are not highly saturated; i.e., usually all 

cone types respond to a given color. 

Analyzing 3 X 3 image patches, Ruderman et aL6 
found a separation of chromatic and spatial dimensions 

such that in each patch, color varied along one chromatic 
axis, and the same spatial patterns were found for each of 

the three chromatic axes. Our analysis of 7 x 7 image 
patches (Figs. 8 and 9) shows a similar trend, but there 
are clear deviations from this rule. A number of patches 
show pixels with colors other than the principal colors. 

As a consequence, there are no pure L-M components 
with low spatial frequency. Thus the separation of chro- 
matic and spatial dimensions is not perfect, which indi- 

cates that S and L-M directions are correlated to some 

degree in the data.26 

B. Comparing Coding Efficiency 
We compared the coding efficiency of ICA and PCA for the 

image patches by using the same method as described for 

the pixel spectra in Section 3. The average number of 
bits required to encode 40,000 image patches randomly 
selected from the eight images in Fig. 2 with a fixed noise 

coding precision of a, = 0.059 was 1.73 bits for ICA and 
4.46 bits for PCA. The difference between ICA and PCA 
was significant and supports the argument that basis 

functions for efficient coding are not orthogonal. 
To compare the forms of the resulting coefficient densi- 

ties for PCA and ICA, we again computed the normalized 

kurtosis of the source coefficients for both PCA- and ICA- 
transformed data. The average normalized kurtosis for 
the resulting source coefficients was 19.7 for ICA and 6.6 

for PCA. This again suggests that the ICA basis func- 

tions produce a very sparse representation for the image 

patches. 
In case of the chromatic image patches, the average 

painvise mutual information was 0.1522 in the original 

data, 0.0123 in PCA-transformed data, and 0.0093 in the 

ICA-transformed data. Thus the patches were not inde- 
pendent in the basis functions found by ICA, but they 

were more independent than in the images or in the PCA 

basis. 

5. DISCUSSION 

We applied ICA to a set of hyperspectral images of natu- 

ral scenes. Our goal was to find efficient codes for the 
chromatic structure in the natural environment, assum- 

ing sparse probability density functions for the source co- 

efficients. Our data set consisted of images of terrestrial 
natural scenes, containing mainly plants (grass, trees, 

etc.) and rocks. No strong shadows, no specular high- 

lights, no fruit, and only few flowers were in the images. 

A. Basis Functions of Spectra 

For single-pixel spectra, ICA found basis functions that 

were in most cases relatively broadband and smooth, in 

contrast to PCA basis functions obtained from the same 

data. Spectra of naturally occurring illumination are 

typically broadband and can be described with a small 
number of parameters.26-28 We can ask whether there is 

a relation between the ICA basis functions and natural 

spectra. In a recent study, Chiao et a.LZ9 investigated il- 

luminant and reflectance spectra in natural environ- 
ments. Our first four ICA basis functions are fairly 

broadband with slight biases in the short- or the long- 

wavelength region of the visible spectrum. Their shapes 
are qualitatively similar to some of the illumination spec- 

tra of forest scenes [Fig. 2(a) of Chiao et a1.,29 illuminants 

2,  4, and 51. ICA basis function 7 with its peak near 550 

nm has a shape similar to light from forest shade (illumi- 

nants 1 and 3 of Chiao et ~ 1 . ~ ~ ) .  Chiao et al. determined 
the first three principal components of reflectance spectra 

of forest scenes [Fig. 2(a) of Chiao et ~ l . ~ ~ ] .  Our basis 

function 5, with its peak at medium wavelengths and its 
dip a t  short wavelengths, matches qualitatively the varia- 
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Fig. 8. Analysis of image patches using PCA. Top, spatiochromatic structure of the 147 PCA basis functions of image patches. The 
components are ordered by decreasing eigenvalues. Bottom, chromaticities of the basis functions in cone-opponent color-space coordi- 
nates. The data are plotted in the same way as the ICA basis functions in Fig. 5. 

tions of reflectance spectra as represented by the second et aL30 The peak of basis function 5 matches closely the 
and third principal components shown by Chiao et al. For peaks in the reflectance spectra. The similarity of some 
comparison, in Fig. 10 we show basis function 5 together basis functions with natural spectra raises the question 
with reflectance spectra of leaves as determined by Vrhel whether ICA can be used to separate the chromatic con- 
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principal component 

Fig. 9. Eigenspectrum of the first 50 principal components in 
Fig. 8. 

wavelength [nm] 

Fig. 10. Comparison of ICA basis function 5 (dashed curve) with 
reflectance spectra of leaves after Vrhel et aL30 (solid curves). 
All spectra have been scaled such that their peaks near 550 nm 
have a value of 1. 

tributions of illuminants and reflectances, which vary in 
dependently in natural scenes. This will be investigated 
in the future. 

Interestingly, owing to the spectral position of its peak 
near 550 nm, basis function 5 leads to stronger stimula- 
tion of the M cones than the other basis functions, when 
normalized to equal total radiance (data not shown). 
Likewise, basis function 6, with its peak near 570 nm, is 
more effective in stimulating the L cones than the other 
basis functions. The question of the relation between 
primate cone spectra and natural spectra has been dis- 
cussed in several studies. It has been proposed that L- 
and M-cone sensitivities evolved in frugivorous monkeys 
for the purpose of finding food.31C2 The images of our 
data set did not contain fruit, but the search for an effi- 
cient code nevertheless yielded hc t ions  that strongly 
contribute in the spectral region of the L- and M-cone sen- 
sitivities. 

B. Basis Functions of Images 
When applied to small image patches, ICA found homoge- 
neous basis functions and edges as well as achromatic 
and chromatic basis functions. Most of the chromatic ba- 
sis functions showed pronounced opponency; i.e., the chro- 
maticities of their components'feU along lines through the 
origin of color space. However, the directions of these 

lines did not always coincide with the color-space axes. 
Whereas achromatic and blue-yellow basis functions lie 
along the luminance and S-cone axes, respectively, the 
chromaticities of red-green basis functions form lines 

tilted with respect to the L-M-cone axis. This most 
likely reflects the distribution of the chromaticities in our 
images. In natural images, L-M and S coordinates in 

our color space are negatively ~ o r r e l a t e d . ~ ~  ICA finds the 
directions that correspond to maximally independent sig- 
nals; i.e., it extracts the statistical structure of the inputs. 
For the corresponding ICA filters, we likewise found non- 
orthogonal directions. PCA did not yield basis functions 
in these directions, probably because it is limited by the 
orthogonality constraint. Although it is known that 
chromatic properties of neurons in the lateral geniculate 
nucleus of primates correspond to variations along the 
axes of cone ~ ~ ~ o n e n c ~ , ' ~  cortical neurons show sensitivi- 
ties for intermediate directions." Since the results of 
PCA and ICA differ in a qualitatively similar way, we sus- 
pect that opponent coding along the cardinal directions of 
cone opponency is used by the visual system to reliably 
transmit visual information to the cortex. where the in- 
formation is recoded in order to better reflect the statisti- 
cal structure of the envir~nment.~ 

We had reduced the spectral dimensions by converting 
the spectra to the three-dimensional human cone space. 
This was done not only to reduce the computational re- 
quirements but also to enable us to display and interpret 
the results. We could have chosen any lower- 
dimensional basis, but since we are interested in visual 
information processing, the photoreceptor responses seem 
a natural and sensible choice. A recent study by Tailor 
et ~ 1 . ~ ~  analyzed JPEG images with the extended infomax 
ICA algorithm,17 resulting in basis functions defined in 
RGB space. Our basis functions are qualitatively similar 
to these in the sense that there are achromatic basis func- 
tions and also chromatic basis functions mainly along two 
directions in the respective color space. The results are 
not comparable on a more detailed level, though, since the 
data were qualitatively different, and different ICA algo- 
rithms were used, which leads to codes of different effi- 
ciencies (see below). 

C. Independent Component Analysis Methods 
To ensure that our results are not sensitive to the choice 
of prior and ICA method, we applied other ICA methods, 
including the methods of Hyvarinen and 0ja,18 
cardoso,lg and Lewi~ki?~ to the same data set and found 
that they produced similar results. The resulting basis 
functions looked similar, the coefficients were sparsely 
distributed, and the encoding differences between the dif- 
ferent ICA methods were less than 10%. Note that these 
methods do not use a fixed distribution on the coefficients 

of the independent components. We initialized the algo- 
rithms with Gaussian sources, but the algorithms con- 
verged to a solution where the sources were sparsely dis- 
tributed, similar to Laplacian densities. This indicates 
that the results presented here are insensitive to a spe- 
cific ICA method. The results obtained with the Laplac- 
ian prior were most similar (encoding difference was less 
than 1%) to the ICA method by L e ~ i c k i . ~ ~  The reasoning 
behind using a Laplacian prior is that this distribution 
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models a sparse density on the coefficients, and sparse- 
ness is essential for efficient encoding of signak2 Other 
sparse-source-density models could have been used for 
this purpose, presumably resulting in similar basis func- 
tions. However, not all super-Gaussian densities give 
sparse codes. It has been shown by Kreutz-Delgado 
et that super-Gaussianness is a necessary but not 
sufficient condition for sparse signal coding when a maxi- 

mum a posteriori coding method is found. Therefore the 

ICA method used by Bell and ~ejnowski? by Lee et al.,17 
and also by Tailor et ~ 1 . ~ ~  results in basis functions that 
give less-sparse distributions of s than the method by 
Lewicki and 01shausen4 and Lee et ~ 1 . ~ ~  when applied to 
gray-scale images. 

6. CONCLUSIONS 

Independent-component analysis of natural spectra 
yielded basis functions that were broadband or had rela- 

tively broad peaks. Their shapes show similarities to 
spectra of natural illuminants and to natural reflectance 
spectra, thus indicating that ICA may be used to investi- 
gate the chromatic structure of natural scenes. The 

analysis of trichromatic image patches revealed achro- 
matic and color-opponent basis functions with non- 
orthogonal opponency directions. The comparison with 
principal-component analysis suggests that nonorthogo- 
nal basis functions lead to more efficient encoding of chro- 
matic information. 

APPENDIX A: INDEPENDENT COMPONENT 
ANALYSIS 

ICA is a way of finding a linear nonorthogonal coordinate 
system in any multivariate data that minimizes mutual 
information among the axial projections of the input data. 
The directions of the axes of this coordinate system are 
determined by both second-order and higher-order statis- 
tics of the original data. The goal of ICA is to perform a 
linear transform that makes the resulting source outputs 
as statistically independent of each other as possible.13-16 

Assume that there is an M-dimensional zero-mean vec- 
tor s = [s , . . . , sMIT, whose components are mutually in- 
dependent. The vector s corresponds to M independent 
scalar-valued source signals si . We can write the multi- 

variate probability density function of the vector as the 
product of marginal independent distributions: 

A data vector x = [x , . .. , xNIT is observed such that 

where A is an N X M scalar matrix. The columns of A 
are called the basis functions. The mixing is assumed to 
be instantaneous, so there is no time delay of the source i 
mixing into channel j. In case of N > M, the rank of the 

data correlation matrix (xxT) can be used to estimate the 
number of sources. In case of N < M, an overcomplete 

set of basis functions22 can be used to adapt A. For sim- 
plicity, we assume a square mixing matrix A so that N 
= M. 

As the components of the observed vectors are no 
longer independent, the multivariate probability density 
function will not satisfy the product equality in Eq. (Al). 
The mutual information I(x) of the observed vector is 
given by the Kullback-Leibler divergence D(.ll.) of the 
multivariate density from the density written in product 
form: 

The mutual information is positive and is equal to zero 
only when the components xi  are independent.37 

The goal of ICA is to find a linear transformation W of 
the dependent sensor signals x that makes the outputs u 
as independent as possible, 

u = Wx = WAS, (A41 

so that u is an estimate of the sources. The sources are 
exactly recovered when W is the inverse of A up to a per- 
mutation and scale change. 

A learning algorithm for adapting the basis functions 
can be derived by using the information-maximization 
principle15 or the maximum-likelihood estimation (MLE) 
m e t h ~ d . ~ ~ - ~ O  In the MLE approach the data likelihood is 
derived by marginalizing over the sources: 

Note that the information-maximization approach to ICA 
and the MLE approach are equivalent in this case.40 
Since no additive noise is assumed and A is a square ma- 
trix in Eq. (&), there is a unique expression for the data, 
and the conditional-likelihood function becomes a delta 
function: 

p(xls, A) = 6(x - As). (A61 

Note that the integral in Eq. (A5) for scalars is JS(x 
- as)f(s)ds = (lla)f(xla). The data likelihood can be 

expressed as3' 

The log-likelihood function is 

The learning rule is obtained by maximizing the log 
likelihood with respect to A and using the natural gradi- 
ent extension AAT (Ref. 41): 

where p(s) = -[dp(s)lds]/[p(s)]. Equation (AS) is the 
general ICA learning rule and involves the prior knowl- 
edge on p(k3 that is necessary to implement the applica- 
tion specific ICA learning rule. 
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Our primary interest is to learn efficient codes; i.e., the 

distribution of p ( s )  should be as sparse as possible. 
Sparseness in this case assumes that the data informa- 
tion of x is encoded in s in such a way that the coefficients 

s are mostly near zero. A Laplacian prior [ p ( s )  

a exp(-IS/)], for example, is sharply peaked near zero 
and has heavy tails. The sparseness constraint was used 

in other ~ t u d i e s ~ - ~  to learn efficient codes for natural im- 
ages. The Laplacian prior on p ( ~ )  reduces to a simple 

sign function for p(s) = sign(s) , and the learning rule for 
our analysis is 

This is the learning rule we used for the experiments in 

Figs. 2A and 2B to find the basis functions. 
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