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Abstract

Development, differentiation, and response to environmental stimuli are characterized by 

sequential changes in cellular state initiated by the de novo binding of regulated transcriptional 

factors to their cognate genomic sites ,,. The mechanism whereby a given regulatory factor selects 

a limited number of in vivo targets from myriads of potential genomic binding sites is 

undetermined. Here we show that up to 95% of induced de novo genomic binding by the 

glucocorticoid receptor, a paradigmatic ligand-activated transcription factor, is targeted to pre-

existing foci of accessible chromatin. Factor binding invariably potentiates chromatin accessibility. 

Cell-selective glucocortocoid receptor genomic occupancy patterns appear to be comprehensively 

pre-determined by cell-specific differences in baseline chromatin accessibility patterns, with 

secondary contributions from local sequence features. The results define a novel framework for 

understanding regulatory factor-genome interactions, and provide a molecular basis for the tissue-

selectivity of steroid pharmaceuticals and other agents that intersect the living genome.

How regulatory factors interact with the chromatin landscape to effect gene regulation is one 

of the leading questions in genome biology. Chromatin structure is altered at cis-regulatory 

regions, resulting in hypersensitivity of the underlying DNA to nuclease attack in vivo ,,. 
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However, how this pre-existing landscape influences de novo binding site selection has not 

been determined.

Here we address this using a well-controlled model system, the endogenous glucocorticoid 

hormone response pathway found in most mammalian cells. The cellular actions of 

glucocorticoids are mediated through the glucocorticoid receptor (GR), a hormone-activated 

transcription factor that rapidly translocates to the nucleus, whereupon its electively engages 

up to several thousand cognate genomic binding sites,. GR signaling thus represents an ideal 

system for both qualitative and quantitative analysis of de novo transcription factor-genome 

interactions in a highly controlled fashion.

We first sought to determine the global relationship between the pre-existing chromatin 

accessibility state of untreated cells and the pattern of GR binding following hormone 

induction. GR is widely believed to function as a ‘pioneer protein’ that is capable of 

autonomous binding to genomic DNA target sites resulting in local chromatin remodeling,

However, this concept is based largely on qualitative results from a limited set of loci.

To gain a genome-wide perspective, we used digital DNaseI analysis, and ChIP-seq,, to map 

chromatin accessibility and GR occupancy at high resolution both before and after steroid 

hormone (dexamethasone, Dex) treatment in a well-studied model cell type (mouse 3134 

mammary adenocarcinoma cells). Digital DNaseI profiling enables quantitative delineation 

of chromatin accessibility, including both classical DNaseI hypersensitive sites (DHSs) as 

well as regions of general chromatin accessibility marked by DNaseI sensitivity

(Supplementary Figs.1,2).

Genome-wide DNaseI sensitivity and GR occupancy profiles were highly reproducible 

(Supplementary Fig.3) and revealed a striking correspondence between the locations of GR 

occupancy post-dexamethasone and the pre-existing pattern of chromatin accessibility in 

untreated cells (Fig.1 and Supplementary Fig. 3a–c). To quantify this phenomenon, we 

delineated genomic regions with significantly increased chromatin accessibility over 

background, and identified 97,717 strongly DNaseI sensitive regions encompassing 2.1% 

(56.7 Mb) of the genome in untreated cells (Supplementary Tables 1,2 and Supplementary 

Notes), within which we localized 87,490 DHSs (0.4% of genome at a false discovery rate 

(FDR) of 1%; Supplementary Tables 1,3).

Analysis of GR ChIP-seq data from hormone-treated cells revealed 8,236 sites of GR 

occupancy (Supplementary Table 4). Performing de novo motif discovery on the top 500 GR 

occupancy sites recovered a 15bp motif that closely matched the consensus glucocorticoid 

receptor binding element (GRBE; Figure 2a),. >80% of GR occupancy sites contained some 

form of this GRBE consensus sequence (at P<10−3), with 50% containing higher stringency 

matches (P<10−4).

The significant majority of GR occupancy sites in 3134 cells (71%, 5,865 sites) were 

targeted to the 2.1% of the genome defined by pre-existing (i.e., pre-hormone or ‘baseline’) 

strongly DNaseI sensitive regions (P<10−300). An additional~9% of binding localized to 

weakly DNaseI sensitive regions, with 80% of GR binding occurring within 4.9% of the 

genome (Supplementary Fig. 3d). However, this estimate represents a lower limit. For 
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example, increasing the sequencing depth of the pre-hormone DNaseI-seq sample ~8-fold 

increased the proportion of GR sites falling within pre-hormone accessible chromatin from 

71% to 88.3% (P<10−300; Supplementary Notes and Supplementary Fig. 3d). In hormone 

treated cells,95% of GR occupancy sites (and >99% on deep sequencing) localized to 

accessible chromatin (P<10−300). Additionally, we observed DHSs unique to hormone-

treated cells that were not directly associated with GR binding (Figure 1a, blue arrows; Fig. 

1d, blue crescent). Most of these DHSs derived from sites of very weak pre-hormone 

chromatin accessibility that were potentiated following hormone treatment (Supplementary 

Fig.4), and may thus represent indirect or ‘network’ effects of GR action.

Taken together, the results indicate that pre-existing patterns of chromatin accessibility exert 

a dominant, global effect on de novo regulatory factor localization, and that factor 

occupancy is almost invariably associated with local chromatin remodeling.

In spite of the fact that average pre-hormone chromatin accessibility at promoter regions was 

high, 93% of GR occupancy sites were observed >2.5kb distal to the nearest transcriptional 

start site (TSS)(vs. 61% of all DHSs; Supplementary Fig.5). GR sites were also highly 

clustered along the genome (Supplementary Fig.6). However, we found no clear relationship 

between GR occupancy patterns and transcriptional activation of nearby genes 

(Supplementary Table 5 and Supplementary Fig.7), raising the possibility that GR acts 

through long-range mechanisms or that many GR binding events are opportunistic.

We next asked why, given the dominant influence of chromatin structure, GR occupied only 

a subset of DNaseI-sensitive regions, and why a small minority of GR binding events could 

escape the requirement for pre-existing highly accessible chromatin. We first examined the 

relationship between GRBE motifs and GR occupancy patterns by developing an approach 

for quantifying the differential sensitivity of different GRBEs to their local chromatin 

environment. Of 2,296,115 significant GRBE (15bp) matches (Fig. 2a) in the non-repetitive 

mouse genome, only a very small fraction were actually occupied in vivo post-hormone. 

Standard position weight matrix matching to the GRBE consensus was a poor predictor of 

GR binding, as many GRBEs with a high matching score were not occupied by GR. 

However, we observed that many occupied GRBEs harbored distinct instantiations of the 

consensus sequence comprising specific combinations of non-degenerate bases (Fig. 2b).

To quantify the global relationship between these combinations and chromatin 

reprogramming, we partitioned the ~2.3 million candidate GRBEs into motif sequence 

classes such that all members of a given class shared identical non-degenerate consensus 

base sequences. Next, we computed a Chromatin Context Coefficient (CCC) for each GRBE 

sequence class that quantified its relative dependence on pre-hormone chromatin 

accessibility as a pre-requisite for post-hormone GR occupancy (Fig. 2c–d and 

Supplementary Notes). High CCC values denote strong chromatin context-dependence of 

GR binding, while low values mark classes with potential to override the dominant effect of 

chromatin structure and initiate local remodeling. Notably, no CCC values <1 were 

observed, indicating that GR occupancy was universally enhanced by residence of GRBE 

within pre-hormone accessible chromatin. 526/1,100 statistically well-defined GRBE 

sequence classes lacked any occupancy at GRBE instances in pre-hormone closed chromatin 

John et al. Page 3

Nat Genet. Author manuscript; available in PMC 2019 February 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(i.e., CCC = ∞), indicating an absolute requirement of pre-existing chromatin accessibility 

for GR occupancy (Supplementary Notes and Supplementary Table 6). Ranking the 

remaining 574GRBE sequence classes with finite CCC values revealed a hierarchy of 

chromatin dependence among GRBE elements, with the quantitative effect of pre-existing 

chromatin accessibility on the probability of GR occupancy ranging from 2-to 473-fold (Fig. 

2c and Supplementary Table 6). CCC values and GRBE class size were uncorrelated (R2 = 

0.15).

We next profiled both DNaseI sensitivity and GR binding pre-and post-dexamethasone in a 

highly divergent cell type (mouse pituitary cell line AtT-20), (Fig. 3, Supplementary Fig. 8a–

c, and Supplementary Tables 7–10). In pituitary cells, we found an even tighter targeting of 

de novo GR occupancy to pre-hormone accessible chromatin, with 95% (3,079/3,242) of GR 

occupancy sites occurring within pre-hormone DNaseI-sensitive regions (Fig. 3c). As in 

mammary cells, no pre-hormone GR occupancy was observed, and substantially all (99%) 

post-hormone GR occupancy was accompanied by increased DNaseI sensitivity. Pre-

hormone chromatin accessibility patterns in mammary vs. pituitary cells were highly 

discordant (~30% overlap), consistent with cell type-specific cis-regulatory landscapes (Fig. 

3d). The cell-selectivity of GR occupancy was even more pronounced, with only 11.4% 

(371/3,242) of GR occupancy sites shared between pituitary and mammary cells (Fig. 3e).

83% (473/572) GRBE sequence classes with well-defined CCC values in both 3134 and 

AtT-20 cells showed statistically significant enhancement of GR binding in both cell types 

(CCC > 1, Supplementary Fig. 8d). In AtT-20, enhancement of GRBE occupancy by 

chromatin context ranged from 3-to 596-fold ((Supplementary Table 6). The effects 

associated with specific GRBE classes were largely stable between cell types (R= 0.48, 

P<0.01; Supplementary Fig. 8e). Notably, we were unable to identify a unique or specific 

GRBE sequence class that functioned exclusively to render closed chromatin more 

accessible.

In 3134 cells, ~25% of baseline accessible DHSs contained GRBEs, yet only 23% are 

occupied by GR, suggesting additional requirements for GR binding. GR has been reported 

to interact with a number of cell-restricted and ubiquitous transcriptional regulators. We 

therefore examined GR sites for evidence of accessory factor motifs by performing de novo 

motif discovery on pre-programmed vs. re-programmed GR sites from each cell type. This 

analysis revealed distinct complements of highly significant (e<10−5) motifs enriched in 

conjunction with classical GRBEs (Fig. 4 and Supplementary Fig.9). In mammary pre-

programmed sites, these included AP-1 most prominently, AML1, NF-κB and a novel 

unassigned motif (Fig. 4a). In pituitary pre-programmed sites, we recovered the canonical 

GRBE plus consensus motifs for HNF3, TAL1 and NF1 (Fig. 4b). Notably, both HNF3 and 

NF1 have previously been connected with both nuclear receptor binding generally and with 

GR interaction specifically ,. ChIP analyses confirmed that at least a proportion of the 

identified sequence motifs were occupied by their cognate factors (Supplementary Fig. 10a–

e).

Analysis of re-programmed GR sites revealed a strikingly different picture. In 3134 cells, we 

found only the canonical GRBE and AP-1 motifs. GRBEs were found in >80% of re-
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programmed sites vs. only 29% of pre-programmed sites (P<10−100) (Fig. 4c and 

Supplementary Figure 9), compatible with direct engagement of DNA following chromatin 

penetration. By contrast, consensus AP-1 sites were found in~10% of re-programmed sites 

vs. 26% of pre-programmed sites (P<10−80), and AP-1 and GR motifs were mutually 

exclusively distributed, such that only 4.8% of pre-programmed sites had both (data not 

shown). In AtT-20 cells, consensus HNF3 motifs were identified in 34% of pre-programmed 

vs. 21% in re-programmed GR sites (P<.003) (Fig. 4c and Supplementary Fig.9), with 

mutual exclusivity between GRBEs and HNF3 in pre-programmed sites (only 5.8% of sites 

with both, P<10−11), analogous to results with AP-1 in 3134 cells (data not shown). Taken 

together, these data suggest that in both cell types, common regulatory factors including 

AP-1 (3134) and HNF3 (AtT-20) – or possibly other factors acting through the same cognate 

motifs – may be mediating GR occupancy within a subset of pre-hormone accessible 

chromatin. However, this effect is quantitatively minor compared with that conferred by 

chromatin accessibility. For example, of the 34,587 positions in the mouse genome where 

AP-1 motifs and GRBEs co-occur, only 1.8%are occupied by GR post-hormone in 3134 

cells, compared with the ~80% of GR binding that occurs with accessible chromatin 

generically (Supplementary Fig. 10f–g).

In summary, our results reveal the marked dominant effect of pre-existing chromatin 

structure on de novo regulatory factor binding. This effect may be secondarily modulated by 

local sequence features such as variations in regulatory factor recognition elements or the 

presence of accessory sequence motifs for well-known regulators. However, even considered 

collectively, these additional sequence features likely account for only a minority of the 

overall effect.

Because of the dramatic dependence of regulatory factor binding on pre-existing chromatin 

architecture, substantial variations in the baseline pattern of chromatin accessibility between 

different cell types is expected to expose distinct patterns and genomic locations of 

regulatory factor recognition sequences. The distribution of such exposed binding elements 

should, in turn, dictate the genomic distribution of de novo regulatory factor binding.

Corticosteroids are one of the most commonly used pharmaceuticals, and exhibit widely 

differing effects on different tissues in spite of the fact that most human cell types contain 

the same glucocorticoid response machinery . Our results provide a simple explanation for 

these effects, namely, that they are a direct consequence of cell type-specific patterns of 

baseline (i.e., pre-hormone) chromatin accessibility and exposed GR recognition sequences.

A further implication of our results is that sequential factor occupancy during developmental 

and differentiation may be largely pre-specified by the chromatin landscape as a form of 

cellular memory. Re-programming of chromatin structure at a limited number of sites may 

incrementally alter this pattern, and create new potential occupancy sites for subsequently 

available factors, resulting in a directional process that is difficult to reverse without 

extraordinary measures such as the simultaneous introduction of multiple potent regulators.
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ONLINE METHODS

Cell lines and culture conditions

The 3134 cell line was derived by transformation of C127, originally isolated from a 

mammary adenocacinoma tumor of the RIII mouse. The AtT-20 cell line is an anterior 

pituitary corticotroph of murine origin (ATCC). Both cell lines were maintained in 

Dulbecco’s Modified Eagle Medium (DMEM) (Invitrogen, Carlsbad, CA) supplemented 

with 10% fetal bovine serum (Gemini, Woodland, California), 2 mM L-glutamine, 1 mM 

sodium pyruvate, 0.1 mM non-essential amino acids, 5 mg/ml penicillin-streptomycin 

(Invitrogen, Carlsbad, CA) and kept at 37°C incubator with 5% CO2. Cells were transferred 

to 10% charcoal-dextran-treated, heat-inactivated fetal bovine serum for 48 hrs prior to 

hormone treatment (1hr with 100 nM dexamethasone).

ChIP assays

Chromatin immunoprecipitations were performed as per standard protocols (Upstate). 

Briefly, cells were treated with either vehicle or 100 nM dexamethasone for 1 hr. Cells were 

cross-linked for 10 min at 37 °C in 1% formaldehyde followed by a quenching step for 10 

min with 150 mM glycine. A single chromatin immunoprecipitation contained 400ug of 

sonicated, soluble chromatin and a cocktail of antibodies to the glucocorticoid receptor (7.5 

μg ofPA1-511A antibody, ABR, 15ug of MA1-510 antibody, ABR and 3 ug of sc-1004, 

Santa Cruz). The ChIP reaction was scaled 5× for ChIP-seq. DNA isolates from 

immunoprecipitates were used as templates for real-time quantitative PCR amplification or 

sequenced as described below. All ChIP experiments were performed at least two times.

Digital DNaseI mapping

Digital DNaseI mapping was performed essentially as described in. Briefly, 3134 and 

AtT-20 cells were grown as described above. 1×108 cells were pelleted and washed with 

cold phosphate-buffered saline. We resuspended cell pellets in Buffer A (15 mM Tris-Cl (pH 

8.0), 15 mM NaCl, 60 mM KCl, 1 mM EDTA (pH 8.0), 0.5 mM EGTA (pH 8.0), 0.5 mM 

spermidine, 0.15 mM spermine) to a final concentration of 2×106 cells/ml. Nuclei were 

obtained by dropwise addition of an equal volume of Buffer A containing .04% NP-40 to the 

cells, followed by incubation on ice for 10 min. Nuclei were centrifuged at 1,000g for 5 min, 

and then resuspended and washed with 25 ml of cold Buffer A. Nuclei were resuspended in 

2 ml of Buffer A at a final concentration of 1×107 nuclei/ml. We performed DNaseI (Roche, 

10–80 U/ml) digests for 3 min at 37 °C in 2 ml volumes of DNase I buffer (60 mM CaCl2, 

750 mM NaCl). Reactions were terminated by adding an equal volume (2 ml) of stop buffer 

(1 M Tris-Cl (pH 8.0), 5 M NaCl, 20% SDS, 0.5 M EDTA (pH 8.0), 10 μg/ml RNase A, 

Roche) and incubated at 55 °C. After 15 min, we added Proteinase K (25 μg/ml final 

concentration) to each digest reaction and incubated them overnight at 55 °C. After DNase I 

treatments, careful phenol-chloroform extractions were performed. Control (untreated) 

samples were processed as above except for the omission of DNase I. DNaseI double-cut 

fragments and sequencing libraries constructed as described in ,.
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High-throughput sequencing data analysis

High-throughput sequencing output is processed similarly for both DNase I and ChIP data. 

27bp Illumina sequence reads were mapped to the human genome (UCSC HG18), and only 

uniquely mapping read positions were considered. For DNaseI sequence tags, 5’ ends 

represent in vivo cleavage events. Significantly enriched regions were identified in both 

DNaseI and GR CHiP-seq data sets using a version of the HotSpot algorithm (and Thurman 

et el, in preparation; see also description below).

Delineation of DNaseI-sensitive regions

DNaseI cleavage sites were represented computationally as the single base pair from the 5’ 

end of each sequence tag. Enrichment of tags along the genome is gauged in a small window 

(200–300bp) relative to a local background model based on the binomial distribution, using 

the observed tags in a 50kb surrounding window. Each mapped tag gets a z-score (explained 

below) relative to the surrounding small and background windows centered on the tag. A 

‘hotspot’ is defined as a succession of neighboring tags within a 250bp window, each of 

whose z-score is greater than 2. Once a hotspot is identified, the hotspot itself is assigned a 

z-score relative to the small and background windows centered on the average position of 

the tags forming the hotspot.

Z-score calculation—Suppose n observed tags are mapped to the small window, and N 

total tags are mapped to the 50kb surrounding background window (N≥n ). Each tag in the 

background window is considered an “experiment,” with favorable outcome if it falls in the 

smaller window. Assuming each base in the 50kb window is equally likely, the probability of 

success for each tag is therefore p=250/50000 . Not all bases in the 50kb window may be 

uniquely mappable by 27-mers (the tag length for our data), however, so p is adjusted to 

account for the number of uniquely mappable bases for that window. Under these 

assumptions, the binomial distribution applies, and the expected number of tags falling in 

the smaller window is μ=Np.

The standard deviation of this expected value is

σ = N p(1 − p)

Finally, the z-score for the observed number of tags in the smaller window is z = n−μ/σ.

We also compute the expected number of tags and z-score using the entire genome as 

background, rather than the 50kb window, and, to be conservative, report the lower of the 

two z-scores.

Correction for regional DNaseI sensitivity background—In regions of very high 

enrichment, the resulting hotspots can inflate the background for neighboring regions, and 

deflate neighboring z-scores. The effect is that regions of otherwise high enrichment can be 

shadowed by a neighboring extreme hotspot. To address this problem, we implement a two-

pass procedure. After the first round of hotspot detection, we delete all tags falling in the 

first-pass hotspots. We then compute a second round of hotspots with this deleted 
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background. The hotspots from the first and second passes are combined, and all are re-

scored using the deleted background: the number of tags in each hotspot is computed using 

all tags, but 50kb background windows use only the deleted background.

Identification of DNaseI hypersensitive peaks

Hotspots were resolved into discrete 150bp peaks using a peak-finding procedure. First, 

neighboring hotspots within 150bp of each other are merged. We compute a sliding window 

tag density (tiled every 20bp in 150bp windows), and then perform peak-finding of the 

density in each merged hotspot region. Each 150bp peak is assigned the z-score from the 

unmerged hotspot that contains it. Peak-finding proceeds in two phases, so that each hotspot 

has at least one peak. Phase-I peaks are local maxima occurring in regions above the 99th 

percentile of the density and satisfying certain ad-hoc criteria for ensuring a sustained 

increase to or decrease from the local maxima. For each hotspot that does not contain at least 

one phase-I peak, a phase-II peak is simply defined as the maximum density value in the 

hotspot. For details, see the code available from the authors.

False Discovery Rate (FDR) calculations

We assign FDR (false discovery rate) z-score thresholds to a given hotspot set using random 

data. As a null model, we computationally generate tags uniformly over the uniquely 

mappable bases of the genome. We use the same number of tags for observed and random 

data. The random data also coalesce into hotspots, which we identify and score as usual. For 

a given z-score threshold T, the FDR for the observed hotspots with z-score greater than T is 

estimated as

FDR(T) ≅
# o f random hotspots with z ≥ T

# o f observed hotspots with z ≥ T

Since the numerator, which is calculated on a dataset that is entirely null, likely 

overestimates the number of false positives in the observed data, this is likely a conservative 

estimate of the FDR. FDR 0% hotspots are constructed by taking all hotspots with a z-score 

greater than the maximum z-score attained in the paired random set. We construct FDR-

thresholded peak sets by performing peak finding in FDR-thresholded hotspots.

Generation of tables of DNaseI sensitive regions and DHSs for pre- and post-hormone data 

sets

We observe that Dex- DNase I hotspots (DNase I sensitive regions) that occur outside of 

Dex+ DNase I hotspots are generally of low intensity and significance. We therefore restrict 

our published tables of Dex- hotspots and peaks to those that also intersect Dex+ hotspots. 

For 3134 we pool samples from two replicates for each condition (Dex− and Dex+), whereas 

for AtT-20, we use a single replicate per condition. See, however, the section on “Replicate 

concordant sets,” below, which details methods for defining DNase I sets for CCC analysis 

and aggregate plots.
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Analysis of ChIP-seq data

The preceding sections describe procedures for handling DNase I tag data. Modifications are 

made to this process to account for unique properties of ChIP data. For one, duplicate tags 

(tags mapped to the same location) are used for DNase I, but unique tags only are retained 

for ChIP calculations. This is because multiple tags mapping to the same position for DNase 

I provide biological meaning (the more tags at a given position, the more locally accessible 

the chromatin is at that location), whereas for ChIP data we expect the relevant information 

to be only the locations of measured binding. The most important difference between the 

processing of DNase I and ChIP data is the use of sequence data for the ChIP input 

experiment, which gives, for each ChIP experiment, a measure of non-binding background 

signal, which can be significant. We use input tags at the scoring phase for ChIP hotspots. 

Once two-pass hotspots have been identified as usual, we score each hotspot by first 

subtracting the number of tags in the paired input experiment from the observed ChIP tags in 

the hotspot window before applying the binomial model. We normalize the number of input 

tags subtracted in each window by a factor that brings the total number of input tags to the 

same number of ChIP tags. We do not subtract input tags from the surrounding 50kb 

background window, so the scoring should be conservative.

Adjusted scoring for maximum sensitivity analyses using deep sequencing data

When scoring the deeper, 100 million tag datasets, we strive for maximum sensitivity in 

detecting accessible chromatin, and therefore we make two adjustments in scoring hotspots. 

First, instead of taking the lower of the two z-scores from using a 50kb local background 

and the genome-wide background, we use the greater of the two; and second, we lower the 

initial z-score threshold for hotspot detection from two to one.

For additional Methods see Supplementary Note.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. Dominant effect of chromatin accessibility on GR occupancy patterns

(a–b) Examples of DNaseI sensitivity and GR occupancy patterns in relation to 

dexamethasone exposure (see Supplementary Figure 2a–c for additional examples). Each 

data track shows tag density (150bp sliding window) from either DNaseI-seq or GR ChIP-

seq, normalized to allow comparison across different samples (Online Methods). Green 

arrows mark sites of post-hormone GR occupancy in pre-existing DNaseI-sensitive 

chromatin (‘pre-programmed’ sites). Red arrows mark GR occupancy sites in pre-hormone 

inaccessible chromatin that result in post-hormone chromatin remodeling (‘re-programmed’ 

sites). Blue arrows mark hormone-induced DHSs not directly associated with GR occupancy 

(see also Supplementary Fig 4c). (c) Venn diagram summarizing global GR occupancy vs. 

chromatin accessibility landscape (~25M read depth) in mammary cells (Note: for legibility, 

GR circle shown at 5X scale). Most GR occupancy occurs within pre-hormone accessible 

chromatin. A small fraction of generally weak GR peaks (5.2% of total) are not associated 

with re-programmed or pre-programmed chromatin. (d) DNaseI sensitivity (tag density) pre-

hormone (horizontal axis) vs. post-hormone (vertical axis). Colors match those used in panel 

(c). Black = pre-hormone accessible regions with no post-hormone GR occupancy. Blue = 

DNaseI-sensitive regions induced post-hormone without GR occupancy (see Supplementary 

Fig 4c). Green = pre-hormone DNaseI sensitive regions occupied by GR post-hormone 

(‘pre-programmed’ sites). Red = pre-hormone inaccessible chromatin remodeled by GR 

occupancy (‘re-programmed’ sites), resulting in marked alteration in DNaseI sensitivity. (see 

Supplementary Fig 4a–b).
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FIGURE 2. Quantitative effect of chromatin context on GR occupancy of GRBEs

(a) Top scoring motif recovered from de novo motif discovery performed on the top 500 GR 

occupancy sites by ChIP-seq tag density (MEME E-value: 8.6e−753) closely matches the 

consensus glucocorticoid receptor binding element (GRBE). (b) 50kb genomic region 

comparing pre-and post-hormone chromatin accessibility and GR occupancy in relation to 

GRBE genomic sequence matches (P<10−3). Only a small fraction of the ~2.3×106 GRBE 

consensus sites are occupied in vivo, and occupied sites differ in their underlying 

combinations of consensus GRBE motif nucleotides. (c) GRBE sequence classes ranked by 

Chromatin Context Coefficient (CCC). Genomic GRBE motif matches can be partitioned 

into discrete sequence classes, each comprising an identical (and distinct) combination of 

consensus nucleotides. Within each class of identical sequence elements, occurrence of 

member genomic sequences in a range of pre-hormone DNaseI sensitivity environments 

(from inaccessible to hyperaccessible) enables quantification of the effect of chromatin 

context on the probability of post-hormone GR occupancy. Ranking specific GRBE 

sequence classes by CCC reveals graded sensitivity to chromatin context, from highly 

context-dependent elements that engender GR occupancy only when situated in accessible 

chromatin, to relatively context-independent elements associated with sites where GR 

occupancy induces chromatin remodeling. (d) Model illustrating the contribution of 

chromatin accessibility to transcription factor binding. CCC encodes the occupancy potential 

of different GRBE sequence classes relative to accessibility.
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FIGURE 3. Cell-specific chromatin landscapes determine cell-selective GR occupancy

(a–b) Pituitary-specific GR occupancy dictated by pituitary-specific DNaseI sensitivity 

transitions. Shown are examples of DNaseI sensitivity and GR occupancy patterns in 

relation to hormone exposure comparing mouse mammary (3134) and pituitary (AtT-20) 

cells (see Fig.1 legend and Supplementary Fig.8a-c for additional examples). (c) Global GR 

occupancy vs. chromatin accessibility landscape in pituitary cells. In pituitary cells, virtually 

all sites of GR occupancy (94.9%, 3,079/3,242 sites) occur within pre-hormone accessible 

chromatin. The small fraction of re-programmed GR sites (138 GR ChIP peaks, 4.2% of 

total) is shown in red. As in mammary cells, only a small fraction of pre-hormone accessible 

chromatin is occupied (note: for legibility, GR circle shown at 5X scale). (d) Significant 

differences in genomic distribution of pre-hormone DNaseI sensitivity in mammary (grey) 

vs. pituitary (green) cells; only 0.78% of genome (20.5Mb) is accessible in both cell types. 

(e) GR occupancy is highly cell-selective. Only 371 GR occupancy sites are shared between 

mammary and pituitary cells (4.5% of 3134 sites and 11.4% of AtT-20 sites).
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FIGURE 4. Regulatory motifs in GR-occupied regions differ substantially between cell types

(a–b) Results of de novo motif discovery (see Supplementary Notes) performed on the top 

500 GR occupancy sites identified in 3134 (panel a) and AtT-20 (panel b). The GR sites 

were further separated into pre-programmed (GR occupancy within pre-hormone accessible 

chromatin) vs. re-programmed (GR occupancy within pre-hormone inaccessible chromatin) 

sites. Shown are motifs with highly significant enrichment (e<10−5). In all cases, the GRBE 

is the most highly enriched single motif (8.6e−753). Notably, AP1 and AML1 motifs are 

enriched in 3134 cells (panel a) while HNF3 and NF1 are correspondingly enriched in 

AtT-20 (panel b). (c). Motif occurrence patterns across all GR occupancy sites. Bar plots 

show percentage of all GR occupancy sites (8,236 sites in 3134 cells vs. 3,242 sites in 

AtT-20) that harbor significant matches to the de novo-identified motifs from panels a–b. 

Note that canonical GRBEs are highly enriched in re-programmed sites vs. pre-programmed 

sites (>80% of re-programmed sites vs. <30% of pre-programmed sites, P<10−4).
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