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ABSTRACT

Chromatin disruption and modification are associated
with transcriptional regulation by diverse coactivators
and corepressors. Here we discuss the possible
structural basis and functional consequences of the
observed alterations in chromatin associated with
transcriptional activation and repression. Recent
advances in defining the roles of individual histones
and their domains in the assembly and maintenance of
regulatory architectures provide a framework for
understanding how chromatin remodelling machines,
histone acetyltransferases and deacetylases function.

INTRODUCTION

Chromatin appears to be an inhospitable environment for the
molecular machines that use it as a substrate for transcription,
replication, recombination and repair. Nucleosomes are remarkably
stable to physical perturbation and under physiological conditions
nucleosomal arrays fold into stable higher order structures that
self-associate within the nucleus to achieve concentrations in
excess of 50 mg/ml (1,2). In spite of this apparent stability and
compaction, complex metabolic processes involving DNA occur
very efficiently in vivo. This contrasting requirement between
storage and functional utility is met through the use of specialized
molecular machines that reversibly disrupt and modify chromatin.
These dynamic properties of the chromatin template are the focus
of this Survey and Summary.

We will briefly review the roles of individual histones and their
domains in chromatin structure and stability. We summarize their
known relevance to the control of gene expression. The structural
and functional consequences of covalently modifying the histones
through acetylation and phosphorylation are discussed in light of
the evidence that histone tail domains are key arbiters of
chromatin function. These issues have special relevance due to
the increasing evidence for the control of transcription by histone
acetyltransferases and deacetylases. Finally we speculate on
mechanisms of chromatin disruption and reassembly in response
to the action of molecular machines requiring ATP, including
RNA and DNA polymerase and the SWI/SNF family of complexes.

STRUCTURAL FEATURES OF THE NUCLEOSOME
CORE RELEVANT TO STABILITY AND DISRUPTION

Histone–histone and histone–DNA interactions are now under-
stood in considerable structural detail (3–6). The assembly of a
stable nucleosome core depends on the initial heterodimerization
of H3 with H4 and the subsequent dimerization of H3 to form the
(H3/H4)2 tetramer (7,8). The (H3/H4)2 tetramer can form a stable
complex with >120 bp of DNA (9). Histones H2A and H2B form
a stable heterodimer in a manner structurally homologous to
H3/H4, but do not self-assemble into stable tetramer complexes
(3–6). Rather, dimers of (H2A/H2B) bind to either side of the
(H3/H4)2 tetramer (7) and extend the wrapping of DNA within
the nucleosome to >160 bp (6,9,10). This creates a left-handed
superhelical ramp of protein onto which the DNA is wrapped and
that is essentially comprised of the four histone dimers linked
end-to-end: (H2A/H2B)-(H4/H3)-(H3/H4)-(H2B/H2A) (3). The
H3:H3 and H2B:H4 dimer–dimer interfaces are comprised of a
structurally similar four helix bundle, however, the latter does not
remain stably associated in the absence of DNA in solutions
containing physiological concentrations of salt (3–6). Given the
stability of the individual heterodimers (8,9), the H2B:H4
interface is a likely site for initial disruption of histone–histone
interactions upon unfolding of the nucleosome core in vivo (7).

In order to follow the left-handed spiral formed by the histone
fold domains, the nucleosomal DNA is severely distorted into
roughly two 80 bp superhelical loops. Extended α-helical
structures allow the histone fold domains within each heterodimer
of the octamer structure to contact approximately three double
helical turns (∼30 bp) of DNA. Each contact involves an arginine
residue penetrating the minor groove, several main polypeptide
chain amide interactions with two consecutive phosphates on
each DNA strand and, surprisingly, substantial hydrophobic
interactions with the faces of the deoxyribose sugars in the DNA
(4,6,11). These precise histone–DNA interactions constrain all
DNA sequences, regardless of inherent sequence-dependent
structure, to adopt a relatively similar conformation in the
nucleosome (9,12,13). Because of the inherent anisotropic
bending moments of most unique DNA sequences, a small
number of preferred rotational orientations are found for most
nucleosomal DNAs. However, precise sequence-dependent
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Figure 1. Core histone tail sequences and histone secondary structure. Tail
sequences for the main human histone variants are shown with every tenth
residue in bold type. The first (N-termini) or last (C-terminus of H2A) residues
to be included in the molecular models from the crystal structures of the core
histone octamer (3) or a nucleosome core (6) are indicated as A or L,
respectively. L1 and L2 indicate cases where different numbers of residues for
each of the two proteins present in the core structure were included in the model.
α-Helical regions are indicated as columns and the three α-helices comprising
the histone fold domain in each protein are indicated by the gray box. The T
indicates the bond closest to the histone fold domain susceptible to trypsin
proteolysis in the nucleosome.

translational positioning of the nucleosome has been observed for
only a small number of DNA sequences (14,15). Although still
poorly understood, translational positioning probably depends on
how the inherent DNA structure matches the local variations in
DNA curvature and helical periodicity found in the nucleosome
(6,16).

External to the histone fold domains, ∼25% of the mass of the
core histones is contained within the ‘tail’ domains. These
domains, located at the N-termini of all four core histone proteins
and the C-terminus of histone H2A, were initially defined by their
sensitivity to proteases (17; Fig. 1). Proteolytic removal of the tail
domains does not drastically alter the conformation or hydro-
dynamic properties of individual nucleosomes and the tails do not
play a role in nucleosome positioning or the correct assembly of
nucleosomes in vitro (9,18). These N-termini, if fully extended,
can project well beyond the superhelical turns of DNA in the
nucleosome (6; Fig. 2). Consistent with their length, centrifugation
studies with nucleosomal arrays lacking linker histones indicate
that the histone tails mediate internucleosomal contacts as
extended chains of nucleosomes are compacted to form the 30 nm
chromatin fiber (19,20). Further, the tails are critical for the
self-assembly of condensed fibers into higher order structures
(21,22). Interestingly, histone tail interactions change as the
chromatin fiber undergoes folding or compaction, suggesting that
specific tail interactions are correlated with specific conformations
of the fiber (23). Thus, certain post-translational modifications may
evoke specific functional and/or conformational states of the
chromatin fiber by inducing a defined alteration in the array of
histone tail interactions (24; below).

It is known that in vivo and in vitro the N-termini interact with
DNA and protein within chromatin (25–28). Unfortunately, the
high ionic strength of the crystal environment and the lack of
linker DNA preclude the observation of many of these interactions
in the crystal structure of the nucleosome core (6,27). However,
in vitro experiments under commonly used transcription conditions
have allowed mapping of some contacts between the N-termini
and nucleosomal DNA (29–31). For example, H2A has an
extended C-terminal tail that makes contact with DNA near the
dyad axis at the center of the nucleosome core (32,33). However,
in nucleosome structures which contain linker DNA similar to

native chromatin, significantly different interactions are found
(32,33; Fig. 3). Consistent with the centrifugation studies
mentioned above, mapping experiments indicate that significant
rearrangements in tail–DNA interactions are found to occur as a
result of the binding of linker histones and during the assembly of
higher order chromatin structures (33–36). Thus these experiments
provide additional evidence for a precise set of molecular inter-
actions of the core histone tails which depends critically on the
context and conformation of the chromatin fiber (24).

HISTONE H1 AND HIGHER ORDER CHROMATIN
STRUCTURE

Incorporation of linker histones into chromatin stabilizes nucleo-
somes and facilitates the assembly of higher order chromatin
structures. However, whereas core histones are essential for
chromatin and chromosome assembly, linker histones are not
required (37,38). Metazoan linker histones have a three domain
structure, a central globular domain, flanked by N- and C-terminal
tails. The globular domain has a winged-helix domain structure
(39) and can associate with the nucleosome core in a number of
distinct ways (40,41). The N- and C-terminal tails of the linker
histones bind to DNA within the nucleosome core and in the
linker DNA between nucleosome cores. The preponderance of
basic residues within these tail domains serves to neutralize the
polyanionic backbone of DNA thus facilitating the folding of
nucleosomal arrays into higher order structures (42–46). Inclusion
of the linker histone into the nucleosome requires the presence of
an octamer of core histones and restricts the translational mobility
of histone octamers with respect to DNA sequence (47–49).
Under physiological conditions the association of histone H1
with chromatin is much less stable than that of the core histones
(50). As mentioned above, binding of linker histone leads to a
partial rearrangement of the core histone interactions in the
nucleosome (33,35,51). Removal of histone H1 is therefore likely
to represent a relatively simple means of destabilizing both local
and higher order chromatin structures and altering core histone–
DNA interactions.

GENETIC EVIDENCE FOR INDIVIDUAL HISTONES
AND THEIR DOMAINS IN TRANSCRIPTIONAL
CONTROL

Genetic experiments in Saccharomyces cerevisiae provide com-
pelling evidence for general and specific roles for the histones in
transcriptional control (52,53). Nucleosome depletion leads to
the widespread activation of yeast promoters and all four core
histone N-termini are required for the repression of basal
transcription (54). Acetylatable lysines in the N-termini of H3
and H4 have roles in transcriptional activation and repression
(55,56). Interestingly, a region in the N-terminal tail of H4 known
to be critical for silencing in yeast is observed to make
protein–protein contacts with the surface of a (H2A/H2B) dimer
in an adjacent core in the crystal structure of a nucleosome core
particle (6). Certain mutations of lysine to glutamine in the
N-termini of H3 and H4 relieve the requirement for histone
acetyltransferase activity in transcriptional activation (57). This
suggests that histone acetylation is a major function of particular
coactivators. Mutation of the histone fold domains of the core
histones can also lead to activation of certain yeast genes by
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Figure 2. Sites of post-translational modifications within the histone tail domains. The histone tail domains and the nucleosome core proper are viewed along the
superhelical DNA axis. The tail domains are modeled as fully extended polypeptide chains to show the approximate length of these domains with respect to the largely
α-helical histone fold domains (columns). Tail sequences are positioned according to the X-ray crystal structure of a nucleosome core (6). The top and bottom
superhelical turns of core DNA are colored blue and light blue, respectively. H2A, H2B, H3 and H4 are colored cyan, green, yellow and magenta, respectively, while
arginine and lysine residues in the tails are colored red. The H2A C-terminal tail is indicated as H2AC. Note that only the top four polypeptides are shown in their
entirety; a portion of H3 from the bottom half of the nucleosome is shown (light yellow). Likewise, tails from histones in the bottom half of the nucleosome are shaded
lighter than those from the top half. Well-characterized sites of acetylation on lysines are indicated by an asterisk (1). Sites of methylation (M), the site of
phosphorylation (P) in the H3 tail (Ser10), and sites of ribosylation (R) and ubiquitination (U) in H2A and H2B are also indicated (1). Note that other sites of
modifications such as phosphorylation of the N-terminal serines of H2A and H2B are not represented here.

Figure 3. Location of the C-terminal tail of H2A in nucleosome core particles
(A) and in nucleosomes containing linker DNA (B). The sites of DNA contact
by the C-terminal tail as mapped by general and specific crosslinking
experiments are shown (31,32,51). The DNA is shown as a red tube, the core
histones as a blue column and residues comprising the C-terminal tail of H2A
as light blue spheres.

relieving the requirement for the SWI/SNF family of molecular
machines known to disrupt chromatin (below; 58,59).

Saccharomyces cerevisiae has an unusual non-essential linker
histone, containing two globular domains, deletion of which has
no detectable effects on gene expression (60,61). Deletion of
Tetrahymena histone H1, which lacks the globular domain, does
not influence transcription of the majority of genes, however, a
subset of genes are either activated or repressed in H1-deficient
strains (62). Ablation of histone H1 during Xenopus laevis
development leads to constitutive activation of certain oocyte-
specific 5S rRNA genes and mesodermal-specific genes (63–65).
Repression can be restored by expression of the globular domain
lacking N- and C-terminal tails (66). The molecular mechanism
involved is now understood in some detail for one type of
developmentally regulated gene. The globular domain of histone
H1 has a precise architectural role for selective repression of the
oocyte 5S rRNA genes compared with somatic 5S DNA in
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Xenopus laevis. It binds to the 5S nucleosome asymmetrically
serving to position the histone octamer to repress certain genes
while allowing continued activity of others (67–71). Comparable
mechanisms may operate on the highly divergent Xenopus
borealis oocyte and somatic 5S rRNA gene repeats (72), however,
functional studies remain to be carried out. Taken together, the
histones can be seen as integral components of the transcriptional
machinery with highly specific roles in gene control.

STRUCTURAL AND FUNCTIONAL CONSEQUENCES
OF ACETYLATION OF THE CORE HISTONES

It has been known for some time that histone acetylation is
intimately connected to transcriptional regulation (53,73–75).
However, a direct link between chromatin function and acetylation
was established by the discovery that coactivator complexes
required for transcriptional activation function as histone acetyl-
transferases (76–78), while corepressors containing histone
deacetylases confer transcriptional repression (79–84). Histones
are locally modified on target promoters (78,85) and specific lysines
in particular histones are functional targets for acetyltransferases and
deacetylases (57,85). Activator-dependent targeting of histone
acetylase activity has recently been recapitulated in vitro (86).
Histone acetylation states are dynamic, with the acetylated
lysines of hyperacetylated histones turning over rapidly with
half-lives of minutes within transcriptionally active chromatin,
but much less rapidly for the hypoacetylated histones of
transcriptionally silent regions (87,88). The dynamics of histone
acetylation provides an attractive mechanistic foundation for the
reversible activation and repression of transcription (89,90).

Although the exact mechanism by which acetylation affects the
biophysical properties of chromatin remains somewhat undefined,
it is clear that acetylation of the core histone N-termini affects the
transcriptional properties of chromatin at several levels of
chromatin structure. Acetylation can facilitate the binding of
transcription factors to their recognition elements within isolated
nucleosomes (91–94). Proteolytic removal of the N-termini of the
core histones leads to comparable increases in transcription factor
access to nucleosomal DNA and transcription of chromatin
templates as histone acetylation (91,94–98), consistent with
acetylation reducing the stability of interaction of the histone tails
with nucleosomal DNA (99). It should nevertheless be noted that
the N-termini of the core histones always make contact with DNA
even when they are acetylated (100). Acetylated histones wrap
DNA less tightly in mononucleosomes which may result in a
decrease in the amount of DNA superhelical writhe constrained
by the nucleosome (101–103; but see ref. 104). These changes
might be due to the fact that the acetylated N-terminal histone tails
bind DNA with reduced affinity (99,105) and are more mobile
with respect to the DNA surface than unmodified tails (29).
Another interesting possibility is that acetylation disrupts the
secondary structures that are known to exist within the H3 and H4
N-termini when they are bound to nucleosomal DNA (106). This
might further destabilize interactions with DNA and the nucleosome
itself.

Beyond effects on individual nucleosomes, acetylation facilitates
factor access and transcription from nucleosomal arrays by
decreasing the stability of the completely compacted 30 nm fiber
(20,22,95,96; but see ref. 107). It is also likely that acetylation
leads to the destabilization of long range structures through which
the chromatin fiber is folded into the chromosome itself (108).

Interactions between adjacent nucleosomal arrays are reduced
when they are reconstituted with acetylated histones (22) and
chromatin solubility is increased (22,109). In vivo, the region of
DNase I sensitivity within the active β-globin locus also
correlates with a region of increased histone acetylation (110).
Acetylation of core histones does not have major consequences
for the association of histone H1 with mono- or dinucleosomes
(95,111) or for the recovery of H1 from nuclear chromatin (112).
However, maintenance of diacetylated histone H4 in the nascent
chromatin assembled on newly replicated DNA reduces the
incorporation of histone H1 (113). Thus, in some circumstances,
acetylation of the core histones, which causes the destabilization
of the chromatin fiber (20,22), might lead to increased dissociation
of histone H1 (113). Within the 75 mg/ml nucleoprotein
environment of the eukaryotic nucleus all of these structural
transitions might contribute to facilitating transcription.

Interestingly, the level of histone modification required to
facilitate the transcription process is relatively low and a total of
12 acetylated lysines per histone octamer (out of 28 potential
acetylated lysines) will promote in vitro transcription >15-fold
(22). This level of modification reduces chromatin compaction to
the same extent as proteolytic removal of the N-termini (21,22),
again suggesting that the primary consequence of hyperacetylation
is to reduce the interaction of the tails with the other components
of chromatin, including nucleosomal DNA, linker DNA (99) and
the histones of adjacent nucleosomes (24). However, the level of
charge neutralization necessary to facilitate the destabilization of
chromatin higher order structure is so low that other structural
features must amplify the consequences of acetylation. As
discussed, these might include alterations to secondary structure
in the tail domains and/or changes in the association of the tails
with other non-histone proteins (114). Acetylation of the histones
probably serves to illuminate particular nucleosomes and/or
segments of chromatin for interaction with other chromatin
remodeling factors or components of the transcriptional machinery
(115–117). The potential combination of direct chromatin structural
transitions and modulation of protein–protein interactions following
acetylation or deacetylation of the histone tails provides a powerful
means of regulating transcription.

STRUCTURAL AND FUNCTIONAL CONSEQUENCES
OF PHOSPHORYLATION, UBIQUITINATION,
ADP-RIBOSYLATION AND METHYLATION
OF THE CORE HISTONES

In contrast to the many studies on the structural and functional
consequences of histone acetylation, the impact of other post-
translational modifications of the core histones is relatively
unexplored. Significant future opportunities undoubtedly lie in
this research area. Histone H3 is rapidly phosphorylated on serine
residues within its basic N-terminal domain, when extracellular
signals such as growth factors or phorbol esters stimulate
quiescent cells to proliferate (118). Global phosphorylation of
Ser10 in H3 occurs in pericentromeric chromatin in late G2 phase,
completely spreads throughout the chromosome just before
prophase of mitosis and is rapidly lost during anaphase (119).
This modification is spatially and temporally correlated with
mitotic and meiotic chromatin condensation (120). H3 Ser10 is
located within the basic N-terminal domain of histone H3 and,
like the N-terminal domain of histone H4, may interact with the
ends of DNA in the nucleosomal core particle and therefore
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perhaps with histone H1 (121). Interestingly, the low level of
phosphorylation of H3 that is detectable in interphase cells is
likely to be related to preparing chromatin for transcription.
Indeed, based on charge effects phosphorylation of histone H3
might be expected to have structural consequences comparable
with acetylation. Several studies have suggested a change in
either nucleosomal conformation or higher order structure
concomitant with phosphorylation of H3 within the chromatin of
the proto-oncogenes c-fos and c-jun following their rapid
induction to high levels of transcriptional activity by phorbol
esters (118,122,123). DNase I sensitivity of chromatin rapidly
increases and proteins with exposed sulfydryl groups accumulate
on the proto-oncogene chromatin. The proteins containing
exposed sulfydryl groups include both non-histone proteins, such
as RNA polymerase, and molecules of histone H3 with exposed
cysteine residues. The histone H3 cysteine residues, the only ones
in the nucleosome, are normally buried within the particle.
Exposure of the sulfydryl groups implies that a major disruption
of nucleosome structure occurs which could involve the dissociation
of a H2A/H2B dimer. Phosphorylation and acetylation of histone
H3 might act in concert to cause these changes. There is likely to
be an important link between cellular signal transduction pathways
and chromatin targets for post-translational modification.

Ubiquitin is a 76 amino acid peptide that is attached to the
C-terminal tail of histone H2A and perhaps H2B. Ubiquitinated
H2A is incorporated into nucleosomes, without major changes in
the organization of nucleosome cores (124,125). Ubiquitination
of histone H2A is associated with transcriptional activity. Only
one nucleosome in 25 contains ubiquitinated histone H2A within
non-transcribed chromatin. This increases to one nucleosome in
two for the transcriptionally active hsp70 genes (126). Enrichment
in ubiquitinated H2A is especially prevalent at the 5′-end of
transcriptionally active genes (127). Since the C-terminus of
histone H2A contacts nucleosomal DNA at the dyad axis of the
nucleosome (32), ubiquitination of this tail domain might be
anticipated to disrupt higher order chromatin structures.

ADP-ribosylation of core histones may also lead to localized
unfolding of the chromatin fiber. ADP-ribosylation may play a
particularly important role in DNA repair. Here the disruption of
chromatin structure cannot always rely on the processive enzyme
complexes involved in DNA replication or transcription or the
specific recruitment of acetyltransferases or SWI/SNF complexes.
The synthesis of long negatively charged chains of ADP-ribose
may well facilitate a partial disruption of nucleosomes, presumably
by exchange of histones to this competitor polyanion (1,2).

Core histones are methylated on their lysine residues without
clearly defined functional consequences. Most methylation in
vertebrates occurs on histone H3 at Lys9 and Lys27 and histone
H4 at Lys20. These are not known sites of acetylation (1,2).
Methylation of H3 seems to be correlated with acetylated regions
of chromatin while methylation of H4 seems to have the opposite
correlation (128). However, the exact role(s) of this modification
has not been elucidated.

PHOSPHORYLATION OF LINKER HISTONES

Phosphorylation of histone H1 has been shown directly to weaken
interaction of the basic tails of the protein with DNA. Surprisingly,
these changes influence the binding of the protein to chromatin
even more than to DNA and thereby potentially destabilize the
chromatin fiber (129). Phosphorylation of the histone H1 tails

occurs predominantly at conserved (S/T P-X- K/R, serine/threonine,
proline, any amino acid, lysine/arginine) motifs of which several
exist along the charged tail regions (130). Linker histone becomes
heavily phosphorylated on transcriptional activation of the
micronucleus of Tetrahymena during the sexual cycle (131).
Transcriptional competence of the mouse mammary tumor virus
(MMTV) promoter depends on the phosphorylation of histone
H1 (132) and the active MMTV promoter is known to be
selectively depleted in H1 (133). In these examples it seems
probable that the transcriptional machinery will target the
phosphorylation of linker histones as a component of activation
pathways to alleviate the repressive influence of linker histones.
In some cases, phosphorylation may also inhibit transcription.
For example, phosphorylation of Tetrahymena H1 appears to
inhibit activation of the Cyp gene in vivo, an effect similar to that
observed in H1 knockouts (Y.Dou and M.A.Gorovsky, personal
communication; 62). A possible explanation of these seemingly
contradictory effects of H1 phosphorylation in vivo is that cell
cycle or developmentally regulated phosphorylation weakens the
association of H1 with chromatin in vivo, allowing access by
transcriptional repressors whose cognate sequences are blocked
by H1 or, alternatively, preventing H1 from functioning as a
coactivator (M.A.Gorovsky and Y.Dou, personal communication).

CHROMATIN DISRUPTION BY DNA POLYMERASE,
RNA POLYMERASE AND SWI/SNF COMPLEXES

In addition to the consequences of covalent modification,
chromatin can also be disrupted by molecular machines driven by
ATP hydrolysis, including DNA and RNA polymerases and
SWI/SNF-type complexes, such as NURF, RSC, CHRAC and
ACF (134). Nucleosomes are disrupted by DNA polymerase with
the pre-existing histone (H3/H4)2 tetramers being distributed
between both daughter DNA duplexes and reassociating with
pre-existing and newly synthesized histone (H2A/H2B) dimers
(1,2,135,136). Nucleosomes appear to fall apart once the
replication complex has penetrated into the structure (135). Half
of the newly assembled nucleosomes on nascent DNA contain
newly synthesized diacetylated H4 and consequently will be
more accessible to the transcriptional machinery (95). Felsenfeld
and colleagues have shown that RNA polymerase needs to disrupt
histone–DNA contacts in half of the nucleosome approximately
up to the dyad axis in order to effect cooperative displacement of
the remaining histone–DNA interactions (137–139). Prokaryotic
DNA and RNA polymerases have remarkable success in
traversing chromatin templates (136–138), however, eukaryotic
RNA polymerases II and III have some difficulty progressing
along nucleosomal arrays (140–144).

Eukaryotic polymerases make use of additional factors to
promote elongation through chromatin (145,146). These include
proteins of the SWI/SNF class (146). Components of the yeast
SWI/SNF complex and their metazoan homologs were originally
identified from genetic analysis (147,148). Molecular insights
into how these molecular machines are targeted to particular
promoters are beginning to emerge (149), however, the majority
of studies have concerned the untargeted disruption of chromatin
(150). Mononucleosomal substrates lose the rotational constraint
of DNA on the histone surface in the presence of yeast or
mammalian SWI/SNF complexes (151–153). This loss requires
ATP hydrolysis and facilitates the access of DNA-binding
proteins to DNA in the nucleosome. Interestingly DNA remains
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wrapped on the core histones over at least 80 bp under these
conditions (154). The continued wrapping of DNA but the increase
in conformational flexibility is similar to the consequences of
histone acetylation (102,103). Experiments using nucleosomal
arrays lacking H1 establish that the yeast SWI/SNF complex
facilitates the association of transcription factors, thereby generating
a DNase I hypersensitive site that persists after removal of the
SWI/SNF complex. Nucleosomes within the array lose defined
boundaries and their DNA becomes more accessible to restriction
endonucleases (155,156). This latter endonuclease accessibility
assay has been used to unequivocally demonstrate a catalytic
activity for the yeast SWI/SNF complex in disrupting nucleosomes
within arrays (156). The metazoan SWI/SNF complexes show a
comparable disruption of nucleosomal arrays dependent on ATP
hydrolysis (157,158).

How does the SWI/SNF complex disrupt nucleosomes? So far
no covalent modifications of the core histones have been shown
to be conferred by SWI/SNF components. One model for
disruption is that the complex tracks along DNA rather like RNA
and DNA polymerases and displaces nucleosomes in a comparable
way (159). However, this is difficult to reconcile with the continued
wrapping of DNA on the surface of the histones in SWI/SNF-
disrupted nucleosomes and the recovery of normal histone
stoichiometries from SWI/SNF-treated nucleosomes (150,154).
An alternative idea is that histones H2A and H2B are displaced
or destabilized within the nucleosome (160). Removal of H2A
and H2B facilitates access of transcription factors to nucleosomal
DNA (161,162) and facilitates transcription (141). Although
complete displacement of (H2A/H2B) dimers seems unlikely
(151), destabilization of (H2A/H2B) association would be
consistent with genetic and structural data. This disruption might
generate a structure prone to homologous dimerization (163).

Mutation of the core histone fold domains can generate yeast
strains that are SWI/SNF independent (SIN). These SIN mutations
lie either in regions of the core histones that mediate interaction
between the (H3/H4)2 tetramer and the (H2A/H2B) dimers (59)
or at sites that destabilize histone–DNA interactions (58,164–166).
The boundaries of the nucleosome core are known to be mainly
defined by the (H2A/H2B) dimers (4,6). Destabilization of
(H2A/H2B) interactions in the nucleosome alone are insufficient
to explain all of the features of SWI/SNF-mediated nucleosomal
disruption, because removal of (H2A/H2B) dimers will not
eliminate rotational constraint of DNA in the nucleosome cores.
Such loss of rotational constraint as assayed by DNase I cleavage
is seen in the presence of SWI/SNF (154) and in nucleosome
cores containing SIN2 mutant histones (164). The (H3/H4)2
tetramer rotationally constrains DNA as efficiently as the histone
octamer (9), thus the interaction of the (H3/H4)2 tetramer with
DNA must also be destabilized during SWI/SNF-mediated
nucleosome disruption. This essential role for the (H3/H4)2
tetramer lends a note of caution to experiments in which histone
H4 is mutated at an amino acid (Ser47) in the vicinity of key
tetramer–DNA contacts in order to reconstruct nucleosomes that
can be used for positioning studies (72,167,168). Mutation at
Arg45 of histone H4 within the nucleosome leads to a SIN2
phenotype (58,166). Interference with the association of key
arginine residues in the (H3/H4)2 tetramer with DNA might
suffice to reduce rotational constraint of the double helix. We
speculate that the binding of the SWI/SNF complex to the
nucleosome destabilizes both (H2A/H2B) dimer and (H3/H4)2
tetramer interactions with DNA and that this is accomplished by

protein–protein interactions with the SWI/SNF complex on the
face of the nucleosome. This interaction may require contact with
the core histone tails (169) and may resemble the interaction of
other nucleosome core-binding proteins, such as the globular
domain of linker histones, HNF3 and NF1 (67,170,171). Binding
of SWI/SNF to the face of the nucleosome would allow contact
with all four core histones and might be predicted to alter the
contacts with DNA, as has been observed following binding of
linker histones (33,35,51). Replacement of histone H1 might also
facilitate nucleosome mobility as reflected in the loss of clearly
defined spacing (155,157,158) and destabilize higher order
chromatin structure. Protein compositional analysis within
nucleosome arrays containing H1 and SWI/SNF crosslinking to
nucleosomal substrates will be necessary to test this hypothesis.

FUTURE PROSPECTS

Structural work on chromatin has lagged behind the impressive
advances made in documenting the existence of coactivators and
corepressors that target the covalent modification of histones and
the genetic definition of the role of individual histone domains in
transcriptional control. There is a compelling need to determine
the exact structural and functional consequences of modifying the
histones in the exact manner inferred to be of major significance
by genetic analysis. These modifications are likely to elicit
concerted rearrangments of histone–DNA and histone–protein
interactions, especially those involving the histone tail domains.
Assays are now available with sufficient sensitivity to assess the
effect of particular histone tails and modest levels of histone
acetylation on higher order structure (21,22). As histones are now
established as bona fide regulators of gene expression, this type
of analysis will be of increasing importance until eventually the
transcriptional machinery itself ought to be incorporated into an
integrated structural model. We still do not know at which point(s)
histone acetylation exerts influence in the regulation of transcription.
It could be during pre-initiation complex assembly, recruitment
of RNA polymerase, escape of RNA polymerase into the
transcription unit or transcriptional elongation. Our lack of
knowledge concerning the structural and functional consequences of
other histone modifications is even more extreme and offers
considerable opportunity for analysis.

Chromatin is conformationally dynamic with DNA polymerase
gaining access to the entire genome once every cell cycle and
RNA polymerase to the active transcription units several times
per hour for an active gene (172). Histone modifications and
nucleosome disruption will follow as a consequence of these
events as chromatin is reassembled after the polymerase.
Although the replication fork will provide an opportunity to alter
a state of gene activity, it is unlikely to be used in the control of
gene expression in the absence of cell division. The SWI/SNF
complex provides an ATP-driven motor that can disrupt chromatin
independent of cell cycle progression. The assays for chromatin
disruption by SWI/SNF complexes currently use low resolution
techniques such as nucleases and topological assays. Here
protein–DNA crosslinking and sedimentation analysis could
provide much useful information. A challenge so far unexplored
for SWI/SNF is not only how to take a nucleosome apart but how
to reconstitute chromatin as a component of repression pathways.
Here the recent discovery of an SWI/SNF family ATPase as a
component of a histone deacetylase complex suggests that
SW1/SNF might have an important role in the covalent modification
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of the histones coupled to repression (173,174). The future offers
the exciting prospect of integration of both covalent modification
of histones and the ATP-driven molecular machine into the
regulation of transcription through the targeted reversible disruption
of chromatin.
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