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ARTICLE

Chromatin dysregulation and DNA methylation at
transcription start sites associated with
transcriptional repression in cancers
Mizuo Ando 1,2, Yuki Saito1,2, Guorong Xu3, Nam Q. Bui 4,5, Kate Medetgul-Ernar1, Minya Pu1,

Kathleen Fisch 3, Shuling Ren1, Akihiro Sakai1, Takahito Fukusumi1, Chao Liu1, Sunny Haft1, John Pang1,

Adam Mark3, Daria A. Gaykalova6, Theresa Guo6, Alexander V. Favorov 7,8, Srinivasan Yegnasubramanian7,

Elana J. Fertig7, Patrick Ha 9, Pablo Tamayo 1, Tatsuya Yamasoba 2, Trey Ideker4, Karen Messer1 &

Joseph A. Califano1,10

Although promoter-associated CpG islands have been established as targets of DNA

methylation changes in cancer, previous studies suggest that epigenetic dysregulation out-

side the promoter region may be more closely associated with transcriptional changes. Here

we examine DNA methylation, chromatin marks, and transcriptional alterations to define the

relationship between transcriptional modulation and spatial changes in chromatin structure.

Using human papillomavirus-related oropharyngeal carcinoma as a model, we show aberrant

enrichment of repressive H3K9me3 at the transcriptional start site (TSS) with methylation-

associated, tumor-specific gene silencing. Further analysis identifies a hypermethylated

subtype which shows a functional convergence on MYC targets and association with

CREBBP/EP300 mutation. The tumor-specific shift to transcriptional repression associated

with DNA methylation at TSSs was confirmed in multiple tumor types. Our data may show a

common underlying epigenetic dysregulation in cancer associated with broad enrichment of

repressive chromatin marks and aberrant DNA hypermethylation at TSSs in combination with

MYC network activation.
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E
pigenetic abnormalities are heritable and collaborate with
genetic changes to cause the evolution of cancer. Global
hypomethylation at non-coding regions and focal hyper-

methylation, typically at promoter-associated CpG islands asso-
ciated with gene silencing, are hallmarks of cancer cells and this
process may be linked to a gain of histone repressive marks1–3.
Epigenetic regulatory mechanisms modulate cell-specific tran-
scription by packaging DNA into chromatin; combining these
epigenetic profiles with gene expression data have provided sig-
nificant insights into the biological processes such as develop-
ment, differentiation, and proliferation4,5. In addition, the
potential reversibility of these epigenetic alterations makes them
attractive targets for therapeutic intervention.

Although DNA methylation at promoter-associated CpG
islands is well known to be correlated with gene repression1,
genome-wide studies utilizing massively parallel sequencing have
described a role for DNA methylation outside these well-
described CpG sites and thus expanded the focus of epigeneti-
cally mediated transcriptional regulation to much larger regions
of interest. For example, CpG island shores which extend up to
2 kb from an island were identified as crucial elements for gene
regulation with variable DNA methylation level between normal
and cancer cells6, and sites of alternative transcription and
enhancer regions including super-enhancers may be targeted by
methylation alterations7,8. DNA methylation-related transcrip-
tional changes in cancer cells are often consistent with increasing
density of methylation, but whether density itself or spreading
toward specific regions is correlated with gene silencing is not
clear9. The discovery of clinically relevant methylation analysis
would preferably be broader and CpG density-independent.

Broad, genome-wide analyses of CpG methylation and chro-
matin structure in solid tumors have been challenging as they are
more resource and computationally intensive than broadly
available whole genomic sequencing approaches and ChIP-seq
experiments have been challenging in primary tumors and have
focused on cell line systems. Large-scale data sets, i.e. the Cancer
Genome Atlas (TCGA), have employed array-based analyses of
DNA methylation that provide coverage limited in density and
with limited coverage in areas outside regions immediately
proximate to actively transcribed genes, limiting the capacity to
examine tumor-specific methylation alterations outside of
promoter-associated CpG islands. Whole genome methylation
analyses that have examined broad, non-coding regions in
intergenic regions have identified large regions (up to several Mb)
that are broadly hypomethylated in cancer as well as small
regions where loss or shift of methylation boundaries have par-
ticular relevance10,11. Differentially methylated regions have been
reported as common in high-CpG-density promoters and most
cancer-related DNA methylation changes correspond to DNA
methylation variation among normal tissues, particularly at genes
associated with development6,8. To gain insight into DNA
methylation-related transcriptional alterations in cancers we
analyzed data sets that employed a relatively unbiased
sequencing-based analysis of chromatin structure, DNA methy-
lation, and transcription in human papillomavirus-related oro-
pharyngeal squamous cell carcinoma (HPVOPSCC) as well as
other tumor types using published data sets.

Unlike traditional head and neck squamous cell carcinoma
(HNSCC), the major risk factors for HPVOPSCC are not tobacco
or alcohol use, and less common somatic mutations in key cancer
genes implies that epigenetic mechanisms might drive
oncogenesis12,13. Viral oncoproteins E6 and E7 of HPV16 are
known to modulate the DNA methylation; E6 can induce upre-
gulation of the DNA methyltransferase DNMT1 via suppression
of p53, whereas E7 can directly bind to and activate DNMT114.
Indeed, recent studies using probe-based methods reported that

HPVOPSCC have higher levels of gene promoter methylation
compared with HPV-negative HNSCC15. Here we describe a
tumor-specific shift in association of transcriptional repression
from DNA methylation at conventional promoter regions in
normal tissue, to cancer-specific transcriptional repression asso-
ciated with broad repressive chromatin marks and DNA
methylation at transcriptional start sites (TSSs) regardless of CpG
island presence. These findings are complemented by identifica-
tion of a hypermethylation phenotype in HPVOPSCC, char-
acterized by MYC pathway activation and mutation in
chromatin-regulating gene CREBBP/EP300.

Results
Overview of DNA methylation in HPVOPSCC. To determine
functionally relevant methylation events in HPVOPSCC, we
performed MBD-seq and RNA-seq analysis on 47 primary
HPVOPSCC tumors and 25 normal oropharyngeal mucosal tis-
sues. Clinical characteristics are previously described16. Utilizing
MACS-processed MBD-seq data we divided the entire human
genome into 100 bp regions and scored each region with a binary
methylation value. We then compared DNA methylation level
between tumor and normal tissues, demonstrating that tumor-
associated alterations in DNA methylation profile occurred on a
genome-wide scale (Supplementary Figure 1).

To explore the general effect of DNA methylation on gene
expression in relation to TSS location and CpG island presence,
for each gene we plotted the methylation levels at each 100 bp
segment in a region surrounding the gene’s TSS ± 5 kb according
to gene expression divided into quartiles. Comparing tumor and
normal data sets across all genes and samples; we analyzed genes
with CpG island(s) in the promoter region (referred to as ‘CGI
genes’) and those without (referred to as ‘noCGI genes’)
separately. Within these categories, we further divided genes by
their expression level from low (Q1- first quartile) to high (Q4-
fourth quartile). We then plotted both the individual and mean
methylation ratios for all genes within each quartile, by distance
from the TSS. To separate out the effects of CpG methylation on
large stretches of DNA with variable CpG content and location,
we analyzed genomic regions within CpG islands surrounding the
TSS ± 5 kb separately, and found a reduction in DNA methylation
levels proximal to the TSS (approximately ± 1 kb) for both normal
and tumor tissues in actively expressed CGI genes (Fig. 1a). CGI
genes with low expression levels showed higher DNA methylation
levels around the TSS in tumor compared to normal tissues,
implying DNA methylation-mediated silencing of tumor sup-
pressor genes is more pronounced in transcriptionally silent
genes with promoter-associated CpG islands. Interestingly, the
increase in methylation associated with cancer compared to
normal samples in transcriptionally repressed CGI genes
extended to include CpG islands located several kb both 5’ and
3’ from TSSs. DNA methylation levels were also examined in
regions excluding CpG islands surrounding the TSS ± 5 kb, and
transcriptionally repressed CGI genes showed higher methylation
levels in cancer compared to normal, yet similar reductions of
methylation around TSS for actively transcribed genes were
observed (Fig. 1b), suggesting the importance of DNA methyla-
tion and transcription at regions with lower CpG density. In
addition, transcriptionally repressed genes not associated with
CpG islands promoters (noCGI genes) demonstrated high
methylation levels centered around the TSS in both normal and
tumor samples (Supplementary Figure 2).

TSS DNA methylation and transcription in HPVOPSCC. Next
we sought to profile the distribution of genomic regions that are
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potentially involved in aberrant epigenetic transcriptional
regulation.

To infer which gene-specific regions are specifically involved in
gene activation in normal and tumor states, we identified the
genomic regions most closely associated with transcriptional
activation and repression for all expressed genes. We measured

the correlation of gene expression with DNA methylation across
TSS ± 5 kb region for tumor and normal samples separately. We
then plotted the distribution of significant genomic coordinates
spatially in relation to the TSS. In normal tissue, methylation
status 1 kb upstream of TSS tended to be more highly associated
with expression of genes, consistent with traditional models of
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Fig. 1 DNA methylation and gene expression in HPVOPSCC and normal oropharynx. Scatter plots (left panels) separated by gene expression quartiles

based on the expression levels in either tumor or normal samples (n= 3290, 3289, 3289, 3290 for Q1, Q2, Q3, Q4, respectively; Q4 is the highest

expression) showing methylation ratio at 100 bp segments including genomic loci within (a) and outside (b) CpG islands in genes with promoter-

associated CpG islands (CGI genes, n= 13158). CGI genes have the CpG island-containing promoter by definition, though they may have additional CpG

island(s) outside of the promoter region. a Shows methylation status at each 100 bp segment with such CpG island. As CGI genes also have various

methylation profiles at CpG sites outside of the island(s), i.e. shore(s) etc., such 100 bp segments are plotted in b. Thus non-overlapping 100 bp segments

of an identical set of CGI genes are shown in a, b. Right panels show the mean values. TSS transcription start site
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modulation of expression in association with promoter methyla-
tion status. Unexpectedly in tumors, we found that the genomic
region where DNA methylation was most significantly correlated
with gene expression was located directly at the TSS (Fig. 2a).
This shift was particularly striking in those genes that contained
CpG island(s) within the promoter region (CGI genes) and had a
negative methylation-expression correlation. We confirmed these
findings by a permutation test comparing the areas under the
curve (AUCs) between ± 500 bp from TSS for tumor and normal
in each density plot (Fig. 2b). Two representative genes with
negative correlation between DNA methylation and RNA
expression level are shown in Fig. 2c. ALDH7A1 was generally
hypomethylated in normal tissues and actively expressed, whereas
hypermethylated and repressed in one third of tumor samples. In
contrast, SEPT10 was generally hypomethylated and active in
tumors.

To validate the MBD-seq data, we also examined differential
DNA methylation status between tumor and normal samples in
two representative genes using bisulfite sequencing of primary
tumor samples (Fig. 2d). We confirmed that tumor-specific
methylation changes are not always mere methylation gain in
CpG island around TSSs, but instead accompanied by loss of
methylation distant from the TSS. These findings implied that
methylation events at low CpG density regions are also related to
cancer-related gene expression alterations.

DNA methylation subtypes within HPVOPSCC. Seeking
insights into the DNA methylation-based heterogeneity of
HPVOPSCC, we selected 59 genes that exhibited strongly sig-
nificant (FDR q < 0.001) negative correlation between methyla-
tion levels within the TSS ± 5 kb region and RNA expression
levels in our discovery cohort (Supplementary Data 1). Among
selected 59 genes, 52 (88%) showed increased methylation and
were repressed in tumor compared to normal samples, suggesting
tumor-suppressive function of these dysregulated genes (Fig. 3a).
We then conducted unsupervised hierarchical clustering using
this gene set and identified three methylation subtypes in our
discovery cohort (Fig. 3b). Validation of this gene set in a separate
TCGA HPVOPSCC cohort yielded similar results (Fig. 3c),
demonstrating that integrated DNA methylation and gene
expression analysis could define methylation subtypes in this
tumor type.

To explore which methylation subtype drives the changes of
aberrant DNA hypermethylation across TSSs between tumor and
normal samples in Fig. 2a, we plotted the distribution of
significant genomic coordinates in high, intermediate, and low
methylation subtypes separately and found the hypermethylation
phenotype with negative methylation-expression correlation as
the dominant subgroup contributing to this tumor-specific shift
to TSSs (Supplementary Figure 3).

Repressive histone marks around TSS in HPVOPSCC. Using
cancer-unaffected normal mucosa and tumor PDX models
derived from highly and lowly methylated tumors defined in our
discovery cohort, we performed genome-wide analysis of chro-
matin and DNA methylation status (Fig. 4a), demonstrating that
DNA hypermethylation occurs at the TSS specifically in the
highly methylated tumor. Supplementary Figure 4a shows parallel
DNA methylation status of PDX models and the parental tumors
for representative genes in Fig. 3a. We have also confirmed that
the PDX models were similar to the parental tumors by com-
paring the RNA-seq gene expression profiles17. Interestingly,
ALDH7A1, a representative gene with negative methylation-
expression correlation (hypermethylated in tumor), showed a
gain of repressive H3K9me3 at TSS and a shift of sharp DNA

methylation peaks toward TSS, particularly in the highly
methylated tumor (Fig. 4b). SEPT10, another representative gene
with negative correlation (hypomethylated in tumor), showed no
obvious gain of H3K9me3 and loss of DNA methylation at the
promoter-associated CpG island in tumors, with an enrichment
of active H3K4me3 around the TSS.

We next compared ChIP-seq data for active H3K4me3 and
repressive H3K9me3 histone marks using normal oropharyngeal
tissue as well as these PDX models generated from highly and
lowly methylated tumors present in our discovery data set. When
mean read counts were plotted, H3K4me3 was found to be
enriched across the region proximal to the TSS annotated for
actively expressed genes (Fig. 4c). The TSS was generally devoid
of nucleosomes and stronger enrichment of H3K4me3 occurred
1 kb downstream. No obvious difference between normal and
tumor samples was found, though the latter showed broader
range of mean signal levels. In contrast, repressive H3K9me3 in
normal samples was underrepresented focally at TSS but broadly,
and densely distributed in tumors, demonstrating slightly higher
signal levels in inactive genes and a higher signal in the high-
methylation tumor. Interestingly, for tumor samples, we found
uniformly high levels of enrichment of H3K9me3 throughout
TSS ± 5 kb regions in inactive genes, whereas biphasic peaks
occurred within TSS ± 1 kb in active genes. Overall, the GREAT
algorithm revealed that tumor-specific H3K4me3 peaks were
enriched for oncogenic signaling including p53, EGFR, differ-
entiation and cell adhesion pathways, whereas normal-specific
H3K4me3 showed immune response pathway signatures (Sup-
plementary Figure 4b). Since H3K9me3 depletion at TSS was not
seen in tumors compared to broad depletion over several kb seen
in normal samples, especially in inactive genes, this implies that
there is broad dysregulation of repressive histone marks in tumor
across inactive and actively transcribed genes.

We then focused on 407 genes with significant (FDR q < 0.05)
methylation-expression association between DNA methylation
and gene expression in our discovery cohort. When plotted
against 1000 randomly selected control gene sets of the same size,
we found that H3K9me3 enrichment for these genes was
constantly higher throughout TSS ± 5 kb regions in both tumor
and normal samples, in contrast to H3K4me3 within the range of
background levels (Fig. 4d). Observed H3K9me3 profiles in each
tumor sample were similar to those of inactive genes in Fig. 4c, in
line with the fact that most of these 407 genes had negative
methylation-expression correlation and were silenced. Of note,
H3K9me3 depletion at TSS was less evident in highly methylated
tumor samples, indicating that changes in repressive H3K9me3
marks might be related to DNA methylation levels.

TSS DNA methylation and transcription in TCGA
HPVOPSCC. To validate these findings and exclude potential
methylation platform bias from our initial cohort analyzed using
MBD-seq, we analyzed 54 HPVOPSCC and 20 normal samples
available from TCGA cohort that uses a probe-based Infinium
HumanMethylation 450 K BeadChip (HM450K) microarray.
Of note, probes upstream of a gene are mainly located within
−1.5 kb of the TSS in HM450K platform, DNA methylation data
beyond this region was scarce, and provides a significant limita-
tion on interrogating genomic regions more than 1.5 kb upstream
of TSS. First we plotted DNA methylation levels at each HM450K
probe in TSS ± 5 kb region according to the quartiles of gene
expression for CGI genes. As expected, we found low DNA
methylation levels of probes within CpG islands around TSS
annotated for actively expressed CGI genes, and tumors exhibited
higher levels of DNA methylation for transcriptionally repressed
CGI genes over a large area extending up to the limit of probe
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Fig. 2 Association of DNA methylation at TSS with gene expression in HPVOPSCC. a Methylation-expression correlation density plots showing where

DNA methylation and gene expression are significantly correlated (FDR q < 0.05), demonstrating a strong, tumor-specific association of expression with

methylation at the TSS. Y-axis represents probability and the area under the curve (AUC) adds up to 1. Plots of any correlation in all genes (n= 19866) in

our discovery HPVOPSCC data set, and negative correlation in genes with and without promoter-associated CpG island (CGI genes (n= 13158) and noCGI

genes (n= 6708), respectively) are shown. b Significance of DNA methylation expression associations in tumor. The red line represents the observed AUC

ratio (tumor/normal) at TSS ± 500 bp region. Histogram represents the null distribution as calculated by multiple permutations (n= 1000). Results of any

correlation in all genes, and negative correlation in CGI genes and noCGI genes are shown. c Scatter plots of two representative genes for expression and

DNA methylation levels at the most significantly correlated 500 bp window determined by MBD-seq. d Bisulfite sequencing confirmation of MBD-seq data

from each two regions of two representative genes. The arrow indicates the TSS of each gene. Brown bars in the upper panel indicate binary methylation

value at each 100 bp segment determined by MBD-seq. Red and blue bars show mRNA level determined by RNA-seq. Vertical lines in the lower

panel represent CpG sites. Open and filled circles denote unmethylated and methylated CpG sites determined by bisulfite sequencing, respectively.

Scale bars, 1 kb
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presence (1.5 kb) upstream and for several kb downstream
(Fig. 5a). For regions excluding CpG islands, transcriptionally
repressed CGI genes showed slightly higher methylation levels in
cancer compared to normal, and decreased methylation around
TSSs were observed for active genes (Fig. 5b). These observations
validated our findings in the MBD-seq data in our initial cohort.

We then applied a correction to the probe design bias in the
HM450K platform used in TCGA data sets by computing a
weighted mean of methylation levels across TSS ± 5 kb regions for
each gene, and profiled the distribution of probes with significant
methylation-expression correlations. A similar increase of a
density peak at TSS in tumor samples was observed, without an
obvious shift toward TSS, probably due to insufficient probes in
upstream region beyond −1.5 kb (Fig. 5c). However, we noted a
tumor-specific significant increase in negative methylation-
expression correlation at the TSS in CGI genes that was
confirmed by permutation testing (Fig. 5d).

TSS DNA methylation and transcription in multiple cancers.
We extended our findings to determine whether the association of
TSS DNA methylation association with transcription was unique

to HPVOPSCC or if it could also be broadened to other tumor
types. We analyzed HPV-negative head and neck (HNSC), colon
(COAD), and breast (BRCA) cancers with corresponding normal
tissue available from TCGA. Similar to findings in HPVOPSCC,
we found that a tumor-specific significant increase in negative
methylation-expression correlation at the TSS in CGI genes in
HPV-negative HNSC and breast cancer. A similar relationship
was noted in colon adenocarcinoma, albeit less pronounced
(Fig. 5e–g). Finally, we tested salivary adenoid cystic carcinoma
(ACC) using an analogous MBD-seq and RNA-seq data sets
available from our cohort of previous study18. Utilizing 15 tumor
and 14 normal samples with an identical computing pipeline to
the current study, we did not find a shift in distribution of
genomic regions having methylation-expression correlations
despite the fact that the promoter region tended to be more
highly associated in normal tissues as expected (Supplementary
Figure 5). Although difference in overall methylation status
between tumor types as well as the batch effect issue should be
taken into consideration, these results demonstrate that a cancer-
specific association of aberrant transcriptional silencing is focused
on the TSS, rather than CpG island promoters in multiple, but
not all tumor types.
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MYC pathway associated with highly methylated HPVOPSCC.
In order to identify key networks associated with DNA methy-
lation subtypes, we identified differentially expressed genes in the
highly methylated tumors compared to lowly methylated tumors

and performed ssGSEA in our original HPVOPSCC cohort.
Interestingly, ssGSEA using motif gene sets revealed that the
transcriptome of the highly methylated subtype is enriched for
motifs related to MYC (Fig. 6a). MYC dimerizes with its partner
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MAX and directly binds to a consensus DNA sequences, known
as Enhancer box (E-box)19. We then expanded three gene sets to
show genes leading to the enrichment of these MYC-related
motifs (Supplementary Data 2). It is noteworthy that DNA
methyltransferase 3 alpha (DNMT3A) was unexpectedly enriched
in the lowly methylated subtype. ssGSEA using hallmark (Fig. 6a,
Supplementary Data 3) and curated gene sets (Supplementary
Data 4) were also applied, revealing that pathways related to MYC
are enriched in a concordant way though there was no significant
difference in MYC expression itself (Fig. 6b).

Interestingly, inactivation of chromatin modifier p300, a
homolog of the histone acetyltransferase CREBBP, has been
associated with deregulation of MYC transcription in lung cancer
cell lines, and loss of MYC expression in the context of CREBBP
and EP300 loss is synthetically lethal20,21. To determine if this
were a component of the hypermethylation phenotype associated
with MYC pathway alteration in HPVOPSCC, we performed
whole-exome sequencing of our initial discovery cohort and
found a statistically significant association of CREBBP/EP300
mutation with the hypermethylation phenotype, further support-
ing a link between MYC pathway activity and transcriptional
dysregulation related to chromatin alterations in this phenotype
(Fig. 6c). We found total five CREBBP mutations; E1566X in
Tumor-L, and Q771X, R1446C, E1550K, and Q2202_Q2203del in
Tumor-H, four of which affect the HAT (histone acetyl
transferase, location 1342–1649) domain as has been reported
for other cancer types22,23.

We further validated these findings in the TCGA HPVOPSCC
cohort. Likewise, ssGSEA analyses based on methylation subtypes
determined by unsupervised clustering (Fig. 3c) showed that
MYCMAX_01 motif was significantly enriched (p= 0.00132, an
empirical phenotype-based permutation test procedure), con-
firming the functional convergence on MYC pathway in highly
methylated subtype in this tumor type (Supplementary
Figure 6a).

p300-mediated MYC deregulation alters DNA methylation. To
obtain the mechanistic insight driving the observed genetic and
epigenetic changes, we used HPV-positive UM-SCC-47 cell line
(CREBBP Q1092X mutant, EP300 wild type) as a model. CREBBP
Q1092X is a loss-of-function mutation unable to interact with
histone, and knockdown of MYC suppressed growth of these cells
as previously reported in the CREBBP-deficient cancer types
(Supplementary Figure 6b)20.

Firstly, we demonstrated that EP300 knockdown significantly
reduced MYC mRNA and protein levels leading to inhibition of
the proliferation of these cells (Fig. 6d) and confirmed that the
EP300-mediated MYC suppression was due to reduced histone
H3K27ac, which is also consistent with the previous study
(Fig. 6e)20. We then examined the impact of EP300 knockdown
on CDK2, one of the MYC target genes that had significantly
different expression levels between high and low methylation
subtypes both in our discovery and the TCGA validation cohorts

(Supplementary Figure 6c). As expected, EP300 knockdown
significantly reduced occupancy of MYC at the CDK2 promoter
and resulted in decreased expression level (Fig. 6f). Finally, we
evaluated alterations in DNA methylation induced by EP300
knockdown. We selected three representative genes in Fig. 3a,
ZNF470, ZNF568, and ZNF569, whose expression level had a
negative correlation with that of MYC both in our discovery and
the TCGA validation cohorts (Supplementary Figure 6d). We
found that DNA methylation status of these genes decreased
significantly indicating the dependence on MYC pathway
alteration in the CREBBP-deficient context (Fig. 6g).

Discussion
Epigenetic changes have been associated with transcriptional
dysregulation in human cancers, although the understanding of
the nature of those associations has evolved1–3,6. Global hypo-
methylation at non-coding regions and focal hypermethylation at
promoter-associated CpG islands associated with gene silencing,
have been seen as the dominant hallmarks of DNA methylation
alterations in human cancers. These DNA methylation changes
have been accompanied by chromatin structural alterations
although the interaction of these histone and DNA methylation
alterations in tumors continues to be defined. In this study, we
define a coordinated alteration of epigenetic changes at the TSS in
tumors that include broad repressive chromatin marks around
genes in tumor with focal loss of repression at the TSS for
expressed genes, as well as tight association with DNA methyla-
tion and high levels of repressive chromatin marks at the TSS for
repressed genes.

These findings are consistent with prior observations including
the following (1) the negative association of CpG island promoter
methylation approximately 1 kb 5′ to the TSS with gene-specific
transcriptional activation in normal head and neck mucosa, and
(2) higher levels of tumor-specific methylation in broad areas,
including CpG shores, islands, and the TSS at CGI genes that
have undergone silencing compared to normal tissue. This
includes previously noted increases in gene-specific promoter
methylation in CpG islands as part of the cancer phenotype, but
also indicates that aberrant methylation extends over 5 kb or
more and includes broad regions without CpG island
presence1,3,6,24,25.

Additional evidence for a key role in TSS chromatin status in
transcriptional dysregulation in cancer comes from ChIP-seq
data, that demonstrate normal patterns of H3K4me3 activating
marks across tumor and normal samples, however, repressive
H3K9me3 marks showed no depletion at tumor TSS in com-
parison to normals, and higher levels in tumors with a hyper-
methylation phenotype. This implies that the aberrant DNA
methylation and repressive histone marks are related to, and
focus on, the TSS for cancer-specific gene alterations, rather than
5-prime CpG island promoters. It has been demonstrated that
widespread changes in DNA methylation patterns and chromatin
modifications are key features of epigenetic reprogramming in

Fig. 4 Chromatin structure correlation in normal oropharynx and PDXs. a DNA methylation profiles of the normal oropharyngeal tissue and highly/lowly

methylated tumors. Mean DNA methylation value of RefSeq genes (n= 20013) determined by MBD-seq are shown. b ChIP-seq data for H3K4me3 and

H3K9me3 histone marks and MBD-seq data of two representative genes (see also Fig. 2c). Genes (blue) and CpG islands (green) are presented in a

forward fashion. Scale bars, 1 kb (left) and 5 kb (right). c Mean H3K4me3 and H3K9me3 levels of all genes in 10 bp windows separated by gene expression

quartiles (Q4 is the highest expression). Plots for normal oropharyngeal tissue, lowly (Tumor-L), and highly (Tumor-H) methylated tumors are shown. The

number of genes for Q1, Q2, Q3, Q4; n= 4366, 4373, 4358, 4382 for Normal, n= 4366, 4336, 4407, 4370 for Tumor-L, and n= 4370, 4369, 4370, 4370

for Tumor-H, respectively. d Mean H3K4me3 and H3K9me3 levels of 407 genes with significant correlation between DNA methylation and gene

expression in our discovery cohort. The shaded region shows signal of 1000 randomized gene lists of the same size (n= 407) selected from the RefSeq

genes, thus represents the genomic background for each window
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malignant transformation and stem cell differentiation unlike in
epithelial-to-mesenchymal transition1,26,27. A breast cancer cell
line study demonstrated mutually exclusive relationship between
DNA methylation and H3K9me3, displaying allelic DNA
methylation where one allele is DNA methylated while the other
allele is occupied by H3K9 modifications28. The mechanism for

epigenetic alteration may not be necessarily DNA methylation-
specific but could be a loss of structural integrity of euchromatin
in TSS that is reflected in methylation changes. It is possible that
CGIs are not rigidly positioned around a window around the TSS,
and that signals could still partly be derived from CGIs outside of
consensus promoter regions. However, we chose the most
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commonly reported and accepted consensus definitions to allow
for our results to be compared to prior studies. The implications
of these data are indeed that the definition of a promoter region
that responds to epigenetic alteration may not universally apply,
and that CGI that don’t fit current definitions may still be
responsive to methylation and histone alteration.

There are additional findings that have not been previously
noted. The increased cancer-specific association of transcription
with TSS methylation is demonstrated in HPVOPSCC, HPV-
negative HNSCC, breast cancer and to a lesser extent in colon
cancer. This implies a common change in transcriptional reg-
ulation associated with DNA methylation that does not fit the
existing paradigm of transcriptional control associated with
aberrant methylation of CpG island promoters in these tumor
types. Interestingly, the association of gene-specific shore
methylation with transcription was previously noted in colon
cancer6, and our examination of colon cancer TCGA data did not
show as dramatic a shift to TSS DNA methylation association
with transcription in colon cancer compared to other solid
tumors, maintaining consistency with the prior study6. Although
there has been efforts to reveal consistent and ubiquitous
methylation changes between tumor and normal tissues on a pan-
cancer scale10,11,29–31, an array-based methylation analysis on
normal and tumor pairs of breast, colon, liver, lung, and stomach
samples reported that colon cancer was farthest from breast
cancer, implying that there appears to be a tissue/tumor-specific
epigenetic cancer pathway32.

Historically, epigenetic alterations in human cancers have
shown significant diversity in terms of CpG methylation at gene-
specific loci including intragenic regions, CpG shores, enhancer
regions, LINE elements, and other classes of regulatory
elements7,24,33,34. Challenges with determining these relation-
ships includes the following (1) use of cell lines that have been
shown to undergo selection pressures that perturb epigenetic
profiles in comparison to primary tumors, (2) lack of normal,
cancer-unaffected tissue from normal controls for comparison,
(3) lack of adequate sample size of primary tumor and normal
tissue to drive power for comparison across multiple samples, (4)
inherent bias from array-based platforms that preferentially
sample loci adjacent to gene promoter regions, and (5) resource
limitations associated with whole genomic bisulfite sequencing
due to cost that results in limited sample sizes11,25,32,35. In this
study, we employed sampling of a robust tumor and normal
tissue comparison to define the association of chromatin structure
and CpG methylation with transcription over a broad region. We
used a relatively unbiased whole genome MBD-seq approach to
define key local methylation changes associated with cancer-
related transcription in a broad 10 kb surrounding the TSS that
included CpG shore, CpG island, TSS, and intragenic regions33.
To demonstrate that these findings were independent of DNA
methylation platform, we validated these findings in TCGA data
sets that employed a different methylation platform to derive
different data sets from multiple solid tumor types. We couldn’t

clearly identify DNA methylation subtypes among TCGA HPV-
negative HNSCC nor breast cancer when using 59 genes deter-
mined by MBD-seq for our discovery HPVOPSCC cohort. We
also tried to determine an optimized gene set using each TCGA
cohort, but probably due to limited coverage provided by
HM450K microarray, subsequently failed to identify DNA
methylation subtypes. Although we think that integrated DNA
methylation and gene expression analysis might define subtypes
in these tumor types, the specific gene set according to tumor type
is needed for successful clustering and the discovery analysis
would preferably be broader than using HM450K microarray.

To define the biologic pathways underlying this particular
phenotype, we used our initial HPVOPSCC cohort for ssGSEA,
demonstrating activity of the MYC pathway associated with a
hypermethylation phenotype. This was easily validated in the
separate TCGA HPVOPSCC cohort, reinforcing the validity of
this association. Although previous studies have confirmed a
distinct DNA methylation signature in HPV-associated HNSCC
when compared to HPV-negative counterpart15,35–39, few studies
including ours demonstrated distinct heterogeneity and possibly
causal mechanisms within HPVOPSCC40–42. For example, a
recent study using DNA methylation-based clustering approach
successfully identified an epigenetically distinct subgroup in
HPV-negative HNSCCs characterized by H3K36 alteration and
DNA hypomethylation, but HPV-positive tumors represented a
different subset39. Of note, TCGA Network has described a small
number of differentially methylated and expressed genes in HPV-
associated HNSCC tumors with and without HPV integration
though the roles of these genes are yet to be determined13.

MYC has first been described as a classic transcription factor
forming MYC-MAX complexes that binds to E-box19, but an
emerging role for MYC as a global regulator of the cancer epi-
genome and transcriptome is clear. MYC complexes were shown
to recruit DNA methyltransferase 3 alpha (DNMT3A), increasing
DNA methylation at specific promoter regions43. MYC has also
been demonstrated to modify histone marks, preserving active
marks such as H3K4 methylation while decreasing repressive
H3K9 marks44. Another chromatin regulatory protein identified
as a direct MYC target is the insulator protein CCCTC-binding
factor (CTCF), which is thought to define the boundaries between
active and heterochromatic DNA, affecting transcriptional
alterations of wide regions of the genome45. It is noted that MYC
is rarely mutated in HNSCC, although these data are consistent
with the prior identification of MYC network activation in
HNSCC12,46,47. Interestingly, the association of CREBBP muta-
tion with MYC network activation is concordant with prior data
in solid tumors showing synthetic lethality between CREBBP
mutation and MYC inhibition, implying that MYC network
activation support carcinogenesis driven by CREBBP
mutation20,21. This also raises the possibility that targeting MYC
indirectly in CREBBP mutant or other chromatin component
mutants could be an attractive therapeutic approach. We were
able to demonstrate a phenotype of aberrant transcription

Fig. 5 Validation using TCGA cohort. Note the insufficient data in upstream region beyond −1.5 kb of TSS due to lack of HM450K probes. a, b Scatter plots

(left panels) separated by gene expression quartiles based on the expression levels in either tumor or normal samples (n= 3208, 3208, 3208, 3208 for Q1,

Q2, Q3, Q4, respectively; Q4 is the highest expression) showing methylation ratio at HM450K probes located within (a) and outside (b) CpG islands. Right

panels show the mean values. c Methylation-expression correlation density plot showing an increase of a density peak where DNA methylation and gene

expression are significantly correlated (FDR q < 0.05). Plots of any correlation in all genes (n= 19004) in the TCGA validation data set, and negative

correlation in CGI genes (n= 12832) and noCGI genes (n= 6172) are shown. d Significance of DNA methylation increase in tumor. The red line represents

the observed AUC ratio (tumor/normal) at TSS ± 500 bp region. Gray bars represent the null distribution as calculated by multiple permutations (n=

1000). Results are also shown for CGI genes (n= 12873) among HPV-negative head and neck squamous cell carcinoma (e, HPV(-)HNSCC), colon

adenocarcinoma (f, COAD), and breast invasive carcinoma (g, BRCA) available from TCGA
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associated with TSS methylation in breast cancer as well as HPV-
negative head and neck cancer, but not colon adenocarcinoma. It
is possible that the inclusion of MSI (microsatellite instability)
colon adenocarcinoma or all colon cancers may not present with
a DNA methylation phenotype that demonstrates these
associations30.

Our study had several limitations. First, our discovery cohort
consisted of patients with stage 3/4 HPVOPSCC (AJCC/UICC
7th edition) and almost all received postoperative radiotherapy

with or without concurrent chemotherapy. In consequence, only
three patients, one from each subtype, experienced disease
recurrence. Although the identified subtypes of HPVOPSCC
cannot be used for stratification of patients treated with intensive
multimodal therapy, we believe that our findings may provide
clues to future de-escalation therapy. Second, it is challenging to
obtain adequate normal tissues from matched healthy individuals.
In this study we analyzed normal oropharyngeal tissues obtained
from unmatched controls, as tumor adjacent tissues are known to
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carry genetic and epigenetic alterations. On the other hand,
TCGA has a limited number of matched normal tissues and its
cohort assembly is biased toward larger, surgically treated late
stage tumors. Nonetheless, TCGA is still the largest data set
available to date. Finally, although we analytically and experi-
mentally demonstrated the dependence of DNA methylation on
MYC pathway alteration in the CREBBP-deficient context, further
studies with a large, well-characterized clinical sample are war-
ranted to obtain a complete picture of a hypermethylation phe-
notype in human cancers.

In summary, we show a common underlying mechanism that
drives transcriptional dysregulation and silencing in solid tumors
that is associated with dense chromatin repressive marks and
aberrant hypermethylation at TSSs independent of CpG island
presence, and is associated with MYC network activation. The
fact that the association of transcription with TSS methylation
status is present in multiple, but not every tumor type indicates
that there are specific molecular networks that facilitate this
pathologic epigenetic program, and that there is potential
opportunity to treat cancers with this type of epigenetic dysre-
gulation by targeting this pathway that drive this phenotype.

Methods
Patient characteristics. Primary tumor tissue samples were obtained from a
cohort of 47 patients with HPVOPSCC, as previously described48. Normal oro-
pharynx tissue from uvulopharyngoplasty (UPPP) surgical specimens were
obtained from 25 cancer-unaffected controls. Tissue samples were collected from
the Johns Hopkins Tissue Core, part of the Head and Neck Cancer Specialized
Program of Research Excellence (HNC-SPORE) under an approved IRB protocol
(NA_00036235) and written informed consent was obtained from each patient
prior to collection of samples. This protocol also permitted the use of the tumor
tissue for patient-derived murine xenograft (PDX) model development, including
establishment of two murine PDXs from two separate primary tumors in this
cohort. This study qualified for exemption under the U.S. Department of Health
and Human Services policy for protection of human subjects [45 CFR 46.101(b)].
Analysis of deidentified data sets at UCSD was performed under an approved IRB
protocol. To perform validation within TCGA, publicly available data were
obtained for head and neck squamous cell carcinoma (HNSC), colon adeno-
carcinoma (COAD), and breast invasive carcinoma (BRCA). Primary salivary
gland adenoid cystic carcinoma (ACC) tissue and adjacent normal parotid samples
were also obtained via the Johns Hopkins Pathology Department under an
approved protocol (92-07-21-01)18.

RNA sequencing analysis. RNA was extracted from frozen tissue sections from
tissue samples and RNA sequencing was performed. Samples were required to
achieve an RNA Integrity Number (RIN) of at least 7.0. In brief, a stranded RNA
library was prepared using the TruSeq stranded total RNA seq poly A+Gold kit
(Illumina), and then ribosomal RNA reduction was performed and purified with
AMPure XP magnetic beads (Beckman Coulter). Sequencing was performed using
the HiSeq 2500 platform sequencer and the TruSeq Cluster Kit (Illumina), resulting

in approximately 80 million paired reads per sample. Next, the RNA sequencing
data were normalized based on the version 2 protocols developed by TCGA12.
Alignment was performed using MapSplice2 version 2.0.1.9 to the GRCh37/hg19
genome assembly. Gene expression values were quantified from RNA sequencing
data using RSEM version 1.2.9 and upper quartile normalization according to the
TCGA RSEM v2 normalization pipeline12.

MBD-seq data and analysis. DNA was extracted from frozen tissue samples and
methyl-binding protein domain sequencing (MBD-seq) was performed. Briefly,
DNA was sonicated, end-repaired, and ligated to SOLiD P1 and P2 sequencing
adaptors lacking 50 phosphate groups (Life Technologies), using the NEBNext
DNA Library Prep Set for SOLiD according to the manufacturer’s protocol (NEB).
Libraries were then nick-translated with Platinum Taq polymerase and divided into
two fractions: an enriched methylated fraction that was subjected to isolation and
elution of CpG-methylated library fragments by using MBD2-MBD–bound mag-
netic beads, and a total input fraction that was left unenriched33. The resulting
libraries were subjected to emulsion PCR, bead enrichment, and sequencing on a
SOLiD sequencer to generate on average approximately 25–50 million 50 bp single-
end reads per sample according to the manufacturer’s protocols. Based on the
MBD-seq data, DNA methylation status of each 100 bp segment across the genome
was determined with MACS49 peak calling for each sample (https://github.com/
favorov/differential.coverage). Circos version 0.6.9 plotting was used to show the
genome-wide difference between tumor and normal in 1Mb windows50. The DNA
methylation level in a non-overlapping 500 bp window was determined as the sum
of the binary score defined as the presence or absence of a MACS peak for each
100 bp segment. A gene promoter was defined as the region 1,500 bp upstream and
500 bp downstream from TSS. CpG islands data was downloaded from the UCSC
genome annotation database for GRCh37/hg19 (https://genome.ucsc.edu). Protein-
coding genes were classified into those containing CpG island(s) within the pro-
moter region (CGI genes) and those without (noCGI genes). Gene expression
(RSEM normalized) was correlated with DNA methylation level in each 500 bp
window using Spearman’s rank correlation followed by a false discovery rate (FDR)
correction using Benjamini-Hochberg method for multiple comparisons. The FDR
adjusted p-values (FDR q-values) below 0.05 were used to define windows with
significant methylation-expression correlation. Kernel density estimation was then
used for plotting the distribution of significant genomic coordinates as a function
of the distance to TSS for the indicated gene group (all/CGI/noCGI) and corre-
lation (any/negative). To obtain a null distribution, DNA methylation and gene
expression levels were permuted across the samples 1,000 times and the Spear-
man’s correlation analysis were repeated.

Bisulfite sequencing. Primers specific for bisulfite-converted DNA were designed
for the region where DNA methylation profile in tumor was noted to be altered
both near and distant from TSS on MBD-seq data. Representative highly methy-
lated tumor samples determined by unsupervised clustering of the original cohort
were selected. The Epitect Bisulfite Kit (Qiagen) was used to convert unmethylated
cytosines in genomic DNA to uracil. Touchdown PCR was used and purified PCR
products were subjected to Sanger sequencing (Eton Bioscience).

TCGA RNA-seq and DNA methylation data for validation. Publicly available
normalized beta values generated using Illumina Infinium HumanMethylation450
(HM450K) BeadChip, normalized gene expression data obtained by RNA
sequencing, and clinical data were downloaded from the Broad TCGA GDAC
(http://gdac.broadinstitute.org). Similarly, within TCGA data set, gene expression

Fig. 6MYC pathway associated with CREBBP/EP300 loss in highly methylated HPVOPSCC. a Single-sample gene set enrichment analysis (ssGSEA) scores

ranked by their degree of association (IC) between highly and lowly methylated HPVOPSCC tumors. MYC-related motif (C3) and hallmark (H) gene sets

enriched in highly methylated tumors in our discovery cohort are shown. An empirical phenotype-based permutation test procedure is used to estimate P

values. Tumor-H, highly methylated HPVOPSCC. Tumor-L, lowly methylated HPVOPSCC. b MYC expression of each sample in our discovery cohort (n=

35, excluding normal samples, t-test). In boxplots, the ends of the boxes and the middle line represent the lower and upper quartiles, and medians,

respectively. Whiskers extend to show the rest of the distribution, except for points that are determined to be outliers using a function of the inter-quartile

range. c CREBBP/EP300mutations show significant association with the hypermethylation phenotype Fisher’s exact test. d Suppression of MYC expression

(left and center panel) and growth of UM-SCC-47 cells (right panel) by EP300 knockdown. mRNA and protein detection were performed on lysates of UM-

SCC-47 cells collected at 48 h after siRNA transfection. Growth is normalized to day 0 and measured over 3 days. e Reduced histone H3K27ac at MYC

locus by EP300 knockdown measured by ChIP-qPCR (upper panel). Red marks in the lower panel indicate the regions ChIP enrichment were measured. The

arrow indicates the TSS ofMYC gene. ChIP assays were performed on UM-SCC-47 cells collected at 48 h after siRNA transfection. f Reduced occupancy of

MYC at the indicated gene promoter determined via ChIP-qPCR (left panel) and suppression of CDK2 expression (center and right panels) by EP300

knockdown in UM-SCC-47 cells. CDK4 and NPM1 as positive controls66, and GCK as a negative control were used. mRNA and protein detection were

performed on cell lysates collected at 48 h after siRNA transfection. g Effects of EP300 knockdown on DNA methylation (left panel) and mRNA expression

(right panel) levels in ZNF470, ZNF568, and ZNF569, whose expression level had a significant negative correlation with that ofMYC in the discovery cohort.

All experiments in UM-SCC-47 cells were performed at least in triplicate, and data are expressed as mean ± SE. *P < 0.05 and **P < 0.01, t-test. Source data

are provided as a Source Data file
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was correlated with the normalized beta value at each HM450K probe using
Spearman’s rank correlation followed by FDR correction using Benjamini-
Hochberg method. FDR q value of less than 0.05 was considered significant and
kernel density estimation was used to plot the distribution of significant probes
around the TSS ± 5 kb. Permutation tests were also performed 1000 times to obtain
null distributions.

Unsupervised hierarchical clustering. FDR adjusted P values were used to
determine regions or probes with the most significant methylation-expression
correlation for a given gene. Unsupervised hierarchical clustering analysis based on
DNA methylation status was then performed using Euclidean distance metric and
Ward’s linkage rule.

Chromatin immunoprecipitation sequencing (ChIP-seq). Two HPVOPSCC
were used for the preparation of the first generation PDX models using xeno-
grafting procedures described elsewhere17,51,52. ChIP-seq data were analyzed with
the pipeline tool Omics Pipe53 using the ChIPseq_HOMER pipeline running
HOMER v4.854. The utility program homerTools was used to trim the adapters off
of the raw reads prior to aligning to the reference human genome (hg19) with
Bowtie v1.0.1. HOMER v4.8 was used to identify regions of the genome where
more reads are present than random with default parameters for histone marks.
Genomic Regions Enrichment of Annotations Tool (GREAT) prediction version
3.0.0 was performed using default settings55. Of note, limited data from these
experiments have been previously reported in a separate analysis17.

Gene ontology and pathway analyses. Single-sample gene set enrichment ana-
lysis (ssGSEA)56 was carried out using C2, C3, and H libraries in MsigDB v5.1
(http://software.broadinstitute.org/gsea/msigdb). Gene sets of interest were
expanded to show genes leading to the enrichment of certain pathways.

Whole-exome sequencing (WES) analyses. WES pipeline was performed on
94 samples, which included 47 patients with HPVOPSCC and 47 paired-normal
samples. The genomes were realigned to the human 1000 genomes v3757. To
generate sequence alignment and variant calls on these WES samples, we imple-
mented our WES analysis pipeline on the cfncluster v1.3.1 of Amazon Web Service
(https://github.com/awslabs/cfncluster). Short reads were mapped to the human
1000 genomes v37 by BWA-mem v.0.7.1258. Subsequent processing was carried out
with SAMtools v.1.159, Picard Tools v.1.96, Genome Analysis Toolkit (GATK)
v2.4-960. MuTect61 version 1.1.5 and VarDict62 was used to identify somatic
mutations, indels, complex and structural variants, and germline variants by
directly comparing normal and tumor data at every position of sufficient coverage.
To functionally annotate genetic variants identified, we applied ANNOVAR
2017Jun0163. To further evaluate and filter our variants, a filter was created in
which insertions, deletions, and nonsynonymous variants with ExAC and 1000
Genomes population allele frequency < 0.05 passed.

Cell culture and siRNA knockdown. HPV-positive cell line UM-SCC-47 was
obtained from the Gutkind Laboratory at the University of California San
Diego64,65 and cultured in Dulbecco’s modified Eagle’s medium (Sigma Aldrich),
supplemented with 10% fetal bovine serum plus penicillin (50 U ml−1) and
streptomycin (50 μg ml−1). Cells have been authenticated by short tandem repeat
(STR) profiling and tested by PCR for mycoplasma contamination. Cells were
transfected with ON-TARGETplus SMART-pool siRNA for EP300 or MYC (GE
Dharmacon) using Lipofectamine RNAiMAX (Thermo Fisher Scientific) according
to the manufacturer’s protocols. A scrambled ON-TARGETplus Non-targeting
pool siRNA was used as a negative control. Cell growth was assessed on the day of
transfection, and at 24, 48 and 72 h after transfection using AquaBluer Solution
(MultiTarget Pharmaceuticals LLC).

Western blot. Protein analysis was performed on lysates of UM-SCC-47 cells
collected at 72 h after siRNA transfection. Primary antibodies used were c-Myc
(D3N8F, 1:1000, Cell Signaling Technology), Cdk2 (M2 sc-163, 1:500, Santa Cruz
Biotechnology), and GAPDH (14C10, 1:1000, Cell Signaling Technology).
Immobilon Western Chemiluminescent HRP Substrate (Thermo Fishcer Scientific)
reagent was used for western blot development.

Quantitative PCR (qPCR). RNA was isolated from UM-SCC-47 cell pellets at 48 h
after siRNA transfection using RNeasy Plus Mini Kit (Qiagen). Reverse tran-
scription was performed using High Capacity cDNA Reverse Transcription Kit
(Thermo Fisher Scientific). Quantitative reverse transcription PCR (RT-qPCR) was
then performed using primers for MYC, EP300, CDK2, ZNF470, ZNF568, ZNF569,
and ACTB obtained from TaqMan Gene Expression Assays (Thermo Fisher
Scientific).

ChIP were performed using digested chromatin from UM-SCC-47 cells and the
ChIP-grade histone H3K27ac (D5E4, 1:100) and c-Myc (D3N8F, 1:50) monoclonal
antibodies (Cell Signaling Technology), according to the manufacturer’s protocol
of the SimpleChIP Enzymatic Chromatin IP Kit (Cell Signaling Technology).
Purified DNA was analyzed by quantitative PCR (ChIP-qPCR) using primers for

MYC20, CDK2, GCK as a negative control, CDK4 and NPM1 as positive controls66.
Primers for CDK2 and GCK were designed using ChIP-Atlas (http://chip-atlas.org).
The sequences of primers were listed in Supplementary Table 1 and 2.

Quantitative methylation-specific PCR (qMSP). DNA methylation analysis
using qPCR was performed. In brief, DNA was isolated from UM-SCC-47 cell
pellets at 48 h after siRNA transfection using QIAamp DNA Mini Kit (Qiagen).
Epitect Bisulfite Kit was used for bisulfite conversion. TaqMan primers and probes
were designed to specifically amplify the bisulfite-converted DNA for genes of
interest. The sequences of TaqMan primers and probes were listed in Supple-
mentary Table 3.

Reporting Summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data sets generated from RNA-seq, MBD-seq, and ChIP-seq have been deposited in

the Gene Expression Omnibus (GEO) repository with the following accession numbers:

GSE112026 (RNA-seq), GSE112023 (MBD-seq), and GSE112021 (ChIP-seq). MuTect

and VarDict analyses are included in Supplementary Data 5. Publicly available TCGA

data were downloaded from the Broad TCGA GDAC (http://gdac.broadinstitute.org;

HNSC, COAD, and BRCA). All other remaining data supporting the findings of this

study are available within the Article and Supplementary Files, or available from the

authors upon reasonable request. A reporting summary for this article is available as a

Supplementary Information file. The source data underlying Fig. 6d–g, Supplementary

Figures 6b and 6c are provided as a Source Data file.

Code availability
Custom R script for MBD-seq analyses is available at GitHub (https://github.com/

favorov/differential.coverage). The authors declare that all the other scripts generating

the figures and supporting the findings of this study are available from the corresponding

author upon reasonable request.
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