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Prenatal exposure to valproate (VPA), an antiepileptic drug, has been associated with
fetal valproate spectrum disorders (FVSD), a clinical condition including congenital
malformations, developmental delay, intellectual disability as well as autism spectrum
disorder, together with a distinctive facial appearance. VPA is a known inhibitor of
histone deacetylase which regulates the chromatin state. Interestingly, perturbations
of this epigenetic balance are associated with chromatinopathies, a heterogeneous
group of Mendelian disorders arising from mutations in components of the epigenetic
machinery. Patients affected from these disorders display a plethora of clinical
signs, mainly neurological deficits and intellectual disability, together with distinctive
craniofacial dysmorphisms. Remarkably, critically examining the phenotype of FVSD
and chromatinopathies, they shared several overlapping features that can be observed
despite the different etiologies of these disorders, suggesting the possible existence of
a common perturbed mechanism(s) during embryonic development.

Keywords: fetal valproate syndrome, chromatinopathies, anti-epileptic drugs, neurodevelopment, HDAC inhibitor

INTRODUCTION

Prenatal exposure to antiepileptic drugs (AEDs) are subject to the teratogenic effects associated
with all of the frontline AED medications. Most women with epilepsy receiving adequate prenatal
care will have uneventful pregnancies, but they are at a well-documented increased risk for having
infants with congenital malformations compared to the general population (Viale et al., 2015).
In utero AED exposure places their offspring at increased risk not only for major congenital
malformations, but also for adverse neurological developmental outcomes. However, many of these
risks can be mitigated through comprehensive prenatal maternal care by carefully selecting the
type and dose of AEDs prior to conception and continuing to follow a proper therapeutic regimen
throughout pregnancy (Tomson et al., 2011). Among all AEDs, valproate (2-propylpentanoic
acid, VPA) exposure has been associated with the greatest risks of inducing severe teratogenicity
(Lammer et al., 1987; Tomson et al., 2015). Several studies demonstrated a correlation between
chronic exposure to VPA treatment and higher risk of displaying fetal anomalies–such as neural
tube defects (NTDs), distinctive facial dysmorphia, craniofacial, and skeletal defects–in both in
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humans and in animal models (Massa et al., 2005, 2006). Among
the teratogen-induced congenital malformations, the most
commonly observed include spina bifida, atrial septal defects,
cleft palate, hypospadias, polydactyly, and craniosynostosis
(Macfarlane and Greenhalgh, 2018).

Animal experiments demonstrated morphogenic
anomalies throughout the entire axial skeleton and vertebral
transformations in rat embryos due to VPA exposure, suggesting
a possible compromise of the expression of genes involved in
vertebral segments development (Menegola et al., 1998, 1999). In
addition, an altered serotonergic differentiation, which correlates
with autism-like behavioral abnormalities, was observed both in
rodent and zebrafish models in response to prenatal valproate
exposure (Dufour-Rainfray et al., 2010; Jacob et al., 2014). The
amount of fetal harm appears to be linked to the maternal
concentration of the drug (Nau et al., 1981; Nau, 1985), especially
when it occurs in the first trimester during fetal organogenesis
(Macfarlane and Greenhalgh, 2018). In animal models, such
as Xenopus and Hyperolius, the beginning of gastrulation was
delayed up to neurulation upon embryonic exposure to VPA,
and eventually they displayed NTDs of different types and degree
(Oberemm and Kirschbaum, 1992). To date, the correlation
between typical dysmorphic facial features and developmental
outcomes is unclear (Kini et al., 2006; Nicolini and Fahnestock,
2018).

Fetal valproate syndrome (FVS, OMIM #609442) is a
condition resulting from the therapeutic management of epileptic
mothers with VPA during their pregnancy, and it is observed
in up to 20–30% of children exposed to high VPA dosage in
utero (Nau et al., 1991; Ornoy, 2009; Tomson et al., 2011). FVS
is characterized by a constellation of congenital malformations
and developmental delay, with patients displaying intellectual
disability (ID) as well as autism spectrum disorder (ASD),
and a distinctive facial appearance strikingly similar to the
one described in genetic disorders known as chromatinopathies
(DiLiberti et al., 1984). A new term “fetal valproate spectrum
disorder” (FVSD) has recently been proposed to describe the
range of clinical and developmental effects that are attributed to
in utero VPA exposure (Clayton-Smith et al., 2019).

Valproate has been commonly used as an anti-seizure
medication for over half a century (Meunier et al., 1963).
Given its broad antiepileptic effect, it has also been clinically
utilized as a mood stabilizer in the treatment of bipolar
disorders and in other neurological conditions–i.e., migraine and
neuropathic pain, exposing many more women of reproductive
age to this medication (Johannessen and Johannessen, 2003). In
addition, this antiepileptic drug has shown anticancer properties
for several tumors (Shah and Stonier, 2019), and its use in
combination regimens with cytotoxic chemotherapy seems to
be promising (Brodie and Brandes, 2014). VPA is also known
to be a potent histone deacetylase inhibitor (HDACi) and
therefore acts on chromatin. It is known to have dose-related
teratogenic properties resulting in altered gene expression and
potent inhibition of the histone deacetylases (HDAC) enzymes
family (Schölz et al., 2015). Among the various hypotheses that
have been proposed for the teratogenicity of VPA, its HDACi
effects that is believed to be represent the principle underlying

teratogenic mechanism. VPA’s anti-seizure activity can also be
explained by its ability to modulate gene expression through the
inhibition of HDAC enzymes (Göttlicher et al., 2001; Jacob et al.,
2013; Brunton et al., 2018).

Valproate perturbs the cell’s epigenetic machinery controlling
its chromatin state. In this context, a group of heterogeneous
genetic disorders known as the chromatinopathies, are believed
to be caused by mutations in genes that regulate the conformation
and function of chromatin, thus acting in concert with epigenetic
mechanisms. Defects in the functional network between the
complexes associated with chromatin could lead to alterations
in gene expression and protein function. As estimated, there
are over 80 Mendelian diseases associated with incorrect
functioning of the “epigenetic machinery”, the majority of
which presents with neurological defects and ID (Fahrner
and Bjornsson, 2019). Kabuki syndrome (OMIM #147920 and
#300867) (Niikawa et al., 1981) and CHARGE syndrome (OMIM
#214800) (Pagon et al., 1981) are among the most well-known
and studied chromatinopathies, for the cascading effect of the
causative genes on different cell pathways. These syndromes are
associated with ID and distinctive craniofacial dysmorphisms
that are pathognomonic.

In this review, we explore shared features between FVSD and
selected chromatinopathies, leading us to the hypothesis that
these disorders, despite divergent etiologies (i.e., environmental
or genetic), could operate through a common perturbed
mechanism during embryonic development. As such, VPA-
induced FVSD is a phenocopy of select chromatinopathies.

VALPROATE MECHANISM OF ACTION

Valproate has multiple cellular mechanisms of action consistent
with its broad clinical efficacy. This compound appears to
suppress repetitive high-frequency neuronal focus by blocking
voltage-dependent sodium channels, but at sites that are
different from other AEDs. VPA also appears to increase GABA
concentrations in the brain at clinically relevant doses, without
having direct effects on the GABA (A) receptors, potentiated
by a presynaptic effect of valproate on GABA (B) receptors. In
addition, VPA can increase GABA synthesis by activating the
enzyme glutamic acid decarboxylase (GAD).

The molecular mechanisms underlying FVSD have not been
fully established, although the consequences of in utero VPA
exposure have been investigated for several decades. Such effects
include apoptotic neurodegeneration observed in the developing
rat brain (Bittigau et al., 2002), enhanced synaptic plasticity
exhibited in the rat medial prefrontal cortex (Sui and Chen,
2012), and a decrease in folic acid (Wegner and Nau, 1992),
suggesting that inadequate embryonic and fetal antioxidant
defense mechanisms and consequent oxidative stress could be
responsible for brain damage secondary to VPA teratogenicity
(Ornoy, 2009).

Despite the fact that VPA has been shown to be
neuroprotective in neurons through Bcl-2 upregulation (Chen
et al., 1999), its administration in critical developmental stages
causes morphological defects and impaired social behavior in
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rats (Kim et al., 2011). In utero VPA exposure in mouse pups
on gestational day 11 leads to dysfunctional pre-weaning social
behavior, together with delayed development, impaired olfactory
discrimination and reduced cortical Bdnf expression, suggesting
that VPA-driven perturbations in neuronal plasticity may
underlie the behavioral phenotype (Roullet et al., 2010). Similar
to the results of VPA exposure of pregnant rats, neural progenitor
cells (NPCs) of murine embryos exposed on gestational day E12
showed a reduced apoptotic cell death, which is fundamental to
the proper regulation of NPCs during a developmentally critical
period, suggesting another possible mechanism underlying
FVSD defects (Go et al., 2011).

Alterations in embryonic gene expression following VPA
exposure appears to be one of the primary mechanisms
underlying VPA’s teratogenicity. Previous studies showed that
VPA alters Wnt signaling by inducing Wnt-dependent gene
expression at doses that cause developmental effects (Phiel
et al., 2001; Wiltse, 2005). This is due to its role as an HDAC
inhibitor, which consists of deregulating class I HDACs, thus
counteracting their normal activity of histone acetylation marks
removal. This action induces chromatin changes converting
segments of heterochromatin into euchromatin. VPA exposure
can lead to hyperacetylation of histones and following activation
of genes related to cell cycle and apoptosis, possibly explaining
its teratogenic action (Göttlicher et al., 2001). For instance,
hyperacetylation of all Hoxb developmental genes has been
observed in mouse embryonic stem cells exposed to VPA, with
increased levels of H3K9ac at upstream, promoter and coding
regions across the entire Hoxb cluster (Boudadi et al., 2013).

Previous studies showed how HDACi is involved in early
neuronal processes: exposure of neurulation-stage mouse
embryos to VPA can cause NTDs and skeletal malformations
(Finnell et al., 2002), supported by in vivo studies on chick
embryos in which a complete failure of neural tube closure
occurred (Murko et al., 2013). Since VPA exposure alters gene
expression in the somitic tissues of mouse embryos (Massa
et al., 2005) and an increased histone H4 acetylation in the
caudal neural tube was observed, modulation of acetylation was
hypothesized as mediating the effect of VPA on neurulation
(Massa et al., 2005, 2009; Menegola et al., 2005).

VALPROATE IN CLINICAL PRACTICE

Valproate is a wide-spectrum anti-seizure medication that can be
used to treat almost all types of seizure disorders (tonic clonic
seizures, absence seizures, myoclonic seizures, less frequently
in clonic seizures, tonic seizures and atonic seizures) (Perucca,
2002). It is used as first-line antiepileptic drug in generalized
seizures; VPA may also be used in focal seizures, although it is
no longer the first choice of neurologists (Tomson et al., 2015).

Valproate is also a mood stabilizer that is used in the treatment
of bipolar disorders and other psychiatric conditions, including:
anxiety disorders, post-traumatic stress disorder, substance
abuse, and schizophrenia. VPA also appears to be an effective
treatment for tardive dyskinesia thanks to its GABA-potentiating
properties (Swann et al., 2002), for migraine prophylaxis, and for

the treatment of neuropathic pain, in particular for trigeminal
neuralgia (Johannessen and Johannessen, 2003).

Typically, the initial dose of oral valproate is 10–15 mg/kg
per day. If necessary, the dose can be increased with weekly
increments of 5–10 mg/kg up to a maximum dose of
60 mg/kg/day. It is recommended to monitor VPA blood level
during treatment, as well as blood count, liver enzymes, and
coagulation tests, in order to avoid any potential side effects
of the drug.

Valproate can alter vitamin D metabolism and affect bone
mineral density, therefore 25-hydroxyvitamin D levels should
be monitored. It may be useful to obtain serum amylase and
lipase levels in cases where symptoms suggestive of pancreatitis,
such as abdominal pain, nausea, vomiting and anorexia have
occurred. Furthermore, ammonium levels should be monitored
in patients receiving VPA who exhibit signs of vomiting or
lethargy as the treatment inhibits N-acetyl glutamate, leading
to systemic disruption and hyperammonemia (Bruni et al.,
1979; Batshaw and Brusilow, 1982; Asconapé et al., 1993;
Patsalos et al., 2008).

It is strongly recommended that VPA administration should
be avoided during pregnancy; however, if necessary, a slow-
release formulation that limits peak concentrations of the drug
using the lowest efficacious dose possible should be given along
with the administration of a high dose of folic acid. While folic
acid has not be shown to be effective in reducing the prevalence
of NTDs, it has been shown to be protective in limiting adverse
cognitive consequences of VPA treatment, especially with respect
to language skills (Meador et al., 2020).

CLINICAL FEATURES ASSOCIATED
WITH FVSD

Studies conducted by Robert and Guibaud (1982) first drew
attention to the increased risk of spina bifida after exposure to
VPA in pregnancy. Subsequently, the initial reports of children
suffering from FVSD were published (DiLiberti et al., 1984).
FVSD is characterized by major and minor malformations, facial
dysmorphia and impaired development with particular risks
related to NTDs (Lindhout and Schmidt, 1986), congenital heart
disease, ophthalmological, (Glover et al., 2002) and genitourinary
abnormalities (DiLiberti et al., 1984; Ozkan et al., 2011), cleft
palate (Jackson et al., 2016), overlapping fingers, and scalp defects
(DiLiberti et al., 1984; Clayton-Smith and Donnai, 1995; Clayton-
Smith et al., 2019).

Neurological development is impaired in many affected
individuals. An increased risk of attention deficit hyperactivity
disorder (ADHD) and ASD is often observed in these patients
(Bromley et al., 2013, 2014, 2019; Christensen et al., 2013).

The typical facial features of FVSD include: swelling of the
metopic suture, highly-arched eyebrows, hypertelorism, wide
nasal bridge, short nose with anteverted nostrils, small mouth
with thin upper lip and flat filament of the inverted lower lip
(Ardinger et al., 1988; Clayton-Smith and Donnai, 1995; Kozma,
2001; Schorry et al., 2005; Kini et al., 2006; Chandane and Shah,
2014; Mohd Yunos and Green, 2018) (Figure 1).
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FIGURE 1 | Facies of fetal valproate spectrum disorders (FVSD) and related overlapping chromatinopathies. Distinctive facial phenotypes of patients affected by
FVSD (Schorry et al., 2005), KLEFS (Willemsen et al., 2012), KS (Makrythanasis et al., 2013), CHARGE (Hefner and Fassi, 2017), MRD1 (Talkowski et al., 2011),
ARTHS (Kennedy et al., 2019), and ICF1 (Gössling et al., 2017).

DIFFERENTIAL DIAGNOSES OF FVSD

Fetal valproate spectrum disorder diagnosis has been challenging
in many ways, from gathering correct information about prenatal
VPA exposure, to obtaining a comprehensive grasp of the
clinically varied diagnostic phenotypic signs. Indeed, clinical
presentations of affected patients show variability and the
prevalence of neurocognitive dysfunction is higher than the
prevalence of structural malformations, complicating the path
toward reliable diagnosis (Clayton-Smith et al., 2019). In fact,
not all the FVSD individuals even display dysmorphisms, which
can be age dependent and rather subtle, thus recognizable
only by experienced dysmorphologists. When FVSD signs are
ascertained, physicians are often challenged by overlapping
phenotypes associated with the following syndromes (Figure 1
and Table 1).

Kleefstra Syndrome
Kleefstra syndrome (KLEFS, OMIM #610253, #617768) is a rare
condition characterized by heterozygous genomic deletions at
chromosome 9q34.3 removing the EHMT1 gene or EHMT1
point mutations (KLEFS1), or pathogenic variants in KMT2C
on chromosome 7q36.1 (KLEFS2), mostly de novo. EHMT1
and KMT2C genes encode two histone methyltransferases. The
prevalence is estimated to be 1:120,000 individuals affected by
neurodevelopmental disorders. Patients with Kleefstra syndrome
exhibit a distinctive phenotype including hypotonia; major
anomalies such as congenital heart defects and genitourinary
abnormalities; behavioral and developmental manifestations with

ID of variable severity, and in some cases severe speech delay.
Typical facial dysmorphisms include: microcephaly, arched or
straight with synophrys eyebrows, mildly up-slanted palpebral
fissures, hypertelorism, short nose with anteverted nares and
bulbous nasal tip, thick mouth, and everted lower lip (Kleefstra
and De Leeuw, 1993; Kleefstra et al., 2006, 2012; Koemans et al.,
2017) (Figure 1).

Fetal valproate spectrum disorders has been recently defined
as a “phenocopy” of Kleefstra syndrome by Arora et al. (2018).
Despite a preliminary diagnosis of FVSD–due to maternal intake
of VPA during pregnancy and with clear facial characteristics that
are typically attributable to FVSD–a more thorough examination
of the facial features revealed subtle differences. Specific features
of the proband included the presence of a broad forehead
and brachycephaly in a child with FVSD, who had cephalic
deformation due to the premature fusion of the metopic
suture, scattered eyebrows, and pointed chin. Genetic testing
revealed a de novo deletion on 9q34.3 that is known to cause
Kleefstra syndrome. The convergent mechanism present in both
conditions is their role in epigenetic modulation that mediates
the modification (acetylation, methylation, etc.) of histone
proteins and DNA demethylation, which might be responsible
for the overlapping phenotype of FVSD and Kleefstra Syndrome
(Willemsen et al., 2012; Hadzsiev et al., 2016; Arora et al.,
2018) (Table 1).

Kabuki Syndrome
Specific dysmorphisms, postnatal growth delay, skeletal
anomalies, and ID are typical features of another
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TABLE 1 | Fetal valproate spectrum disorders (FVSD) clinical signs in chromatinopathies.

FVSD clinical signs KLEFS KS CHARGE MRD1 ARTHS ICF

Facial dysmorphisms

Scalp defects − − − − − −

High/prominent
forehead

+ − + Broad − ±

Bitemporal narrowing − − ± − + −

Arched eyebrows + + − + − ±

Hypertelorism + ± ± − − +

Epicanthal folds + − + − ± +

Ears abnormalities + + + + ± +

Midface hypoplasia + − + ± − −

Short nose + − ± + − ±

Broad/flat nasal bridge + + − + Broad tip +

Anteverted nostrils + − − − − ±

Long smooth philtrum + − − − − −

Small mouth − − − − − −

Thin upper lip − − ± + + −

Downturned corners of
the mouth

+ − + ± −

Congenital anomalies

Cleft palate + + + ± ± ±

Macroglossia − − + − − ±

Micro/retrognathia − + + + ± ±

Microcephaly + + + + + na

Trigonocephaly − − − − − −

Brachycephaly + − − + ± −

Other malformations

Neural tube or CNS
defects

+ + + − ± ±

Ophthalmological
defects

± + + ± + −

Muscoskeletal
anomalies

− + + + ± −

Congenital heart
defects

+ + + + + ±

Genitourinary
anomalies

+ + + ± ± −

Developmental delay + + + + + ±

Intellectual disability + + + + + ±

Speech delay + + + + + +

Behavioral problems + ± + + + −
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chromatinopathy such as Kabuki syndrome (KS, OMIM
#147920 and #300867) (Kuroki et al., 1981; Niikawa et al., 1981;
Adam et al., 2019). KS is caused by heterozygous pathogenic
variants in KMT2D or KDM6A genes (Ng et al., 2010; Banka et al.,
2012; Lederer et al., 2012; Miyake et al., 2013), on chromosome

12q13.12 and Xp11.3, causing KS1 and KS2, respectively. These
genes altered in KS encode for a histone methyltransferase and
a histone demethylase exerting their effect on different histone
residues that favor the opening of chromatin and leading to
the same downstream effects on gene expression, ultimately
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resulting in the same condition. Aside from ID, developmental
impairment and congenital heart defects, KS shares with FVSD
specific craniofacial features such as arched eyebrows, wide nasal
bridge, and cleft palate (Makrythanasis et al., 2013; Adam et al.,
2019; Shangguan et al., 2019) (Figure 1 and Table 1).

CHARGE Syndrome
CHARGE syndrome (OMIM #214800) is an acronym that
summarizes the main clinical manifestations, namely Coloboma
of the eye, Heart defect, choanal Atresia, Retardation of
psychomotor development and growth, Genital hypoplasia, and
Ear abnormalities. This syndrome is caused by heterozygous
pathogenic variants in CHD7 (OMIM # 608892), encoding
an epigenetic regulator that is involved in the ATP-dependent
remodeling of chromatin (Vissers et al., 2004; van Ravenswaaij-
Arts and Martin, 2017). Interestingly, Shah et al. (2014) and
Jackson et al. (2014) reported on five children affected by
FVSD exhibiting unilateral or bilateral ocular coloboma, one
of the main manifestations of CHARGE syndrome. Indeed,
VPA acting as a HDAC inhibitor reduces the expression of
PAX2 and PAX6, which are implicated in ocular development
(Pennati et al., 2001; Balmer et al., 2012). Of note, CHARGE
syndrome shares autism-like disturbances, congenital anomalies
and malformations together with specific facial features with
FVSD (Hefner and Fassi, 2017; van Ravenswaaij-Arts and Martin,
2017) (Figure 1 and Table 1).

Mental Retardation Autosomal
Dominant 1
Mental retardation autosomal dominant 1 (MRD1, OMIM
#156200) or MBD5 haploinsufficiency is a neurodevelopmental
disorder caused by heterozygous variants in MBD5 or a deletion
encompassing all or part of this gene sequence on chromosome
2q23.1 (Vissers et al., 2003; Talkowski et al., 2011). MBD5 encodes
for a methyl-CpG-binding domain protein. MBD5 is part a class
of proteins that bind to DNA with a transcriptional repressor
activity. In Camarena et al. (2014) MBD5 was shown to act as
transcriptional activator in vitro. Hence, MBD5 is considered a
“reader” of the epigenetic machinery (Camarena et al., 2014).
Patients display ID and developmental delay, sleep disturbances,
seizures, severe speech impairment, behavioral problems, feeding
difficulties, congenital anomalies mainly affecting the skeletal
and cardiovascular systems, and dysmorphic signs. Among
them, MRD1 is characterized by broad forehead, highly arched
eyebrows, outer ear abnormalities, short nose with broad nasal
bridge, thin upper lip, and downturned mouth angles, which
are remarkably overlapping with FVSD (Van Bon et al., 2010;
Talkowski et al., 2011; Hodge et al., 2014; Mullegama et al., 2016)
(Figure 1 and Table 1).

Arboleda-Tham Syndrome
Pathogenetic variants in the KAT6A gene, located on
chromosome 8p11.21 cause Arboleda-Tham syndrome
(ARTHS, OMIM #616268) or Mental retardation autosomal
dominant 32 (MRD32), a recently described disorder affecting
neurodevelopment and associated with ID (Arboleda et al., 2015;

Tham et al., 2015). KAT6A is a lysine-acetyltransferase involved
in chromatin opening, transcriptional regulation, cellular
replication and therefore, in multiple developmental programs
(Voss et al., 2009). Kennedy et al. (2019) extensively described
phenotypes of novel and previously reported ARTHS patients,
who display distinctive clinical signs such as ID, developmental
and speech delay, cardiac and ophthalmological defects,
gastrointestinal problems, sleep disturbance, autism-like
behavior and typical dysmorphisms (Arboleda et al., 2015; Tham
et al., 2015; Millan et al., 2016; Murray et al., 2017), many of them
overlapping with the FVSD phenotype (Figure 1 and Table 1).

Immunodeficiency, Centromeric
Instability and Facial Anomalies
Syndrome
Immunodeficiency, centromeric instability and facial anomalies
syndrome 1 (ICF1, #OMIM 602900) is a rare autosomal recessive
disorder characterized by hypogammaglobulinemia leading to
severe recurrent infections, instability of pericentromeric regions
of chromosomes 1, 9, and 16 in mitogen-stimulated lymphocytes,
and facial dysmorphisms (Maraschio et al., 1988; Ehrlich et al.,
2006). When the mapping of a locus associated to ICF syndrome
on chromosome 20 was performed in 1998 (Wijmenga et al.,
1998), pathogenic variants in de novo DNA methyltransferase
gene DNMT3B were identified, occurring in about half of ICF
patients (Hansen et al., 1999; Xu et al., 1999). DNMT3B is
involved in the establishment of DNA methylation patterns in
early life and during cell differentiation. Hypomethylation of
pericentromeric satellite 2 and 3 repeats represents the molecular
hallmark of ICF syndrome (Jeanpierre et al., 1993), making
it the first human disorder linked to a constitutive defect in
DNA methylation. In addition to distinctive signs such as
immunoglobulin deficiency and consequent recurrent infections
(mainly respiratory and gastrointestinal), ICF1 patients also
display some features that are common to FVSD: hypertelorism,
epicanthus, flat nasal bridge, macroglossia, micrognathia, low-
set ears, speech, and developmental delay, and–in a minority
of affected individuals–CNS anomalies, congenital heart defects
and ID (Hagleitner et al., 2008; Weemaes et al., 2013; van den
Boogaard et al., 2017; Kamae et al., 2018) (Figure 1 and Table 1).

Other Genetic Disorders
Qiao et al. (2019) recently described a 19 years-old man
with ID and distinctive facial features who had a clinical
diagnosis of FVSD and was later found to carry a de novo
pathogenic variant in the PURA gene on chromosome 5q31.
PURA-related neurodevelopmental disorders include Mental
Retardation autosomal Dominant 31 (MRD31, #OMIM 616158)
or PURA syndrome, caused by heterozygous mutations in
the PURA gene or a 5q31.3 deletion affecting completely or
partially eliminating the PURA sequence (Brown et al., 2013;
Hunt et al., 2014; Lalani et al., 2014; Tanaka et al., 2015).
This causative gene encodes for a DNA- and RNA-binding
protein critical for survival and development of mammalian
hematopoietic and central nervous systems (Daniel and Johnson,
2018). Shared phenotypic features between PURA disorders
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and FVSD are ID and developmental delay, heart defects,
urinary and ophthalmological abnormalities, and distinctive
facial dysmorphism such as high/broad forehead, hypertelorism,
wide nasal bridge, and thin upper lip (Reijnders et al., 2018).
Furthermore, fetal valproate exposure has been reported to cause
other malformation complexes such as Baller-Gerold syndrome
(BGS, OMIM #218600), an ultra-rare disorder caused by
pathogenic variants in the RECQL4 gene on chromosome 8p24,
and inherited in an autosomal recessive manner (Baller, 1950;
Gerold, 1959). BGS patients display a plethora of phenotypic
features (Van Maldergem et al., 1992), some of which are
overlapping with FVSD. These include: ID, developmental delay,
limb and congenital heart defects, genitourinary anomalies
and facial dysmorphisms (Iype et al., 2008). Mutations in the
RECQL4 gene that codes for an ATP-dependent DNA helicase

essential for genome integrity and involved in DNA replication,
recombination and repair (Bachrati and Hickson, 2008) have also
been reported in Rothmund-Thomson (RTS, OMIM #268400)
families (Kitao et al., 1999). In particular, children affected with
type II RTS share a variety of clinical features with BGS patients
(Rothmund, 1868; Thomson, 1936; Megarbane et al., 2000; Van
Maldergem et al., 2006; Larizza et al., 2010). Considering the
similarities among BGS and RTS patients, there are multiple
overlapping features with FVSD that can be observed–e.g., head
and nose dysmorphisms, developmental delay, cardiac defects
and skeletal anomalies. Although these neurodevelopmental
disorders are not considered chromatinopathies, it is worthy of
note that PURA and RECQL4 are transcriptional regulators, and
helicases are considered a guardian of the genome, such that they
are involved in proper chromatin maintenance.

TABLE 2 | Shared pathways between FVSD and chromatinopathies.

Shared pathways KLFS KS CHARGE MRD1 ARTHS ICF1

Axon guidance

Beta1 integrin cell surface interactions

Cyclins and cell cycle regulation

ECM-receptor interaction

Ensemble of genes encoding core extracellular matrix including ECM glycoproteins, collagens and
proteoglycans

Ensemble of genes encoding extracellular matrix and extracellular matrix-associated proteins

Epithelial cell signaling in Helicobacter pylori infection

Eukaryotic translation elongation

Eukaryotic translation termination

Extracellular matrix organization

Formation of a pool of free 40S subunits

GABA receptor activation

GABA ergic synapse

GTP hydrolysis and joining of the 60S ribosomal subunit

HIF-1-alpha transcription factor network

Interactions of neurexins and neuroligins at synapses

L13a-mediated translational silencing of ceruloplasmin expression

L1CAM interactions

MAPK signaling pathway

Morphine addiction

Neuronal system

Non-sense mediated decay (NMD) enhanced by the exon junction complex (EJC)

Non-sense mediated decay (NMD) independent of the exon junction complex (EJC)

Non-sense-mediated decay (NMD)

p73 transcription factor network

Peptide chain elongation

Protein-protein interactions at synapses

Rac 1 cell motility signaling pathway

Regulation of Commissural axon pathfinding by Slit and Robo

Ribosome

Selenoamino acid metabolism

Selenocysteine synthesis

SRP-dependent cotranslational protein targeting to membrane

Transmission across chemical synapses

Viral mRNA translation

KLEFS, Kleefstra syndrome; KS, Kabuki syndrome; CHARGE, CHARGE syndrome; MRD1, mental retardation autosomal dominant 1; ARTHS, Arboleda-Tham syndrome;
ICF1, immunodeficiency, centromeric instability, and facial anomalies syndrome 1.
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SHARED EPIGENETIC AND GENE
EXPRESSION ALTERATIONS

Gene expression deregulation by VPA has been widely
investigated over the last few decades (Marchion et al.,
2005; Jergil et al., 2009, 2011; Chiu et al., 2013; Shinde et al.,
2016; Balasubramanian et al., 2019; Kotajima-Murakami et al.,
2019; Lin et al., 2019; Sanaei and Kavoosi, 2019). Interestingly,
some of the causative genes of the aforementioned syndromes
are dysregulated in different experimental models. Ehmt1 was
found to be downregulated in brains of mice exposed to VPA
in utero, Kdm6a, and Dnmt3b appeared to be upregulated
in the same model (Kotajima-Murakami et al., 2019), while
Chd7 was downregulated in embryonal carcinoma cells upon
VPA exposure (Jergil et al., 2009). In addition, Ehmt1 and its
human orthologs were downregulated in neural stem/progenitor
cells of a mouse model for KS1 (Carosso et al., 2019) and in
lymphoblastoid cell lines derived from 2q23.1 deletion syndrome
patients (Mullegama et al., 2016), respectively. Expression of
DNMT3B was decreased in iPSCs derived from KS1 patient
(Carosso et al., 2019). Furthermore, Kdm6a and Chd7 have been
reported to be interlinked in terms of gene expression regulation
(Mansour et al., 2012; Hsu et al., 2020), and in a mouse model
expressing catalytically inactive Dnmt3b, they share opposite
behavior (Lopusna et al., 2021).

In Table 2, shared pathways with genes deregulated by VPA
and downregulated in models of causative genes for KLEFS,
KS, CHARGE, MRD1, and ARTHS or ICF1 are summarized
(Katsumoto et al., 2006; Issaeva et al., 2007; Min et al., 2007; Fan,
2008; Gupta-Agarwal et al., 2012; Mansour et al., 2012; Balemans
et al., 2014; Chen et al., 2014; Kim et al., 2014; Schulz et al.,
2014; Turner-Ivey et al., 2014; Gigek et al., 2015; Dhar et al.,
2016, 2018; Fang et al., 2016; Mullegama et al., 2016; Sheikh
et al., 2016, 2017; Feng et al., 2017a,b; Shpargel et al., 2017;
Whittaker et al., 2017; Baell et al., 2018; Marie et al., 2018; Yao
et al., 2018, 2020; Carosso et al., 2019; Machado et al., 2019;
Nowialis et al., 2019; Cieslar-Pobuda et al., 2020; Frega et al.,
2020; Hsu et al., 2020; Kong et al., 2020; Liu et al., 2020; Xu et al.,
2020; Ying et al., 2020; Fei et al., 2021; Lopusna et al., 2021).
Of note, the most commonly shared pathways involve either
morphogenesis signals (for example, beta1 integrin cell surface
interactions and extracellular matrix organization), or possible
defects of the central nervous system (such as axon guidance
and neuronal system). As such, given the recent description of
ARTHS, it would be interesting to reassess this matter in the
future utilizing state of the art molecular studies.

CONCLUSION

It is well established that the mammalian epigenome can change
during embryonic development and be influenced by genetic
and/or environmental factors, even though some molecular
mechanisms underlying these modifications are yet not clear
(Finnell et al., 2002; Xu and Xie, 2018). Chromatinopathies
represent a heterogeneous group of Mendelian disorders with
defects in the epigenetic apparatus, leading to an imbalance in

the chromatin state and consequent aberrant gene expression.
As described above, these disorders share several overlapping
clinical signs, though with some specific features allowing
dysmorphologists to recognize each individual syndrome. We
highlighted similarities between the discussed chromatinopathies
and FVSD, pointing out shared features in these genetic- and
teratogen-induced disorders. As reported in Table 1, overlapping
clinical signs are primarily ID and developmental delay, present
in 5 out of 5 chromatinopathies described herein (6/6), speech
delay (6/6), ASD-like behavior (5/6), microcephaly (5/6), cardiac
(6/6) and ophthalmological defects with different degree of
severity (5/6), cleft palate (6/6), musculoskeletal anomalies (4/6),
and dysmorphic features such as highly arched or thick eyebrows
(4/6) and ears abnormalities (6/6).

Intriguingly, despite the different etiology of a FVSD and
the chromatinopathies, the action of VPA–i.e., an HDACi acting
on chromatin–can suggest a similar pathogenetic mechanism
common to the other rare genetic disorders, giving rise to the
observed shared phenotypic signs. Furthermore, recent work
showed that recognition of FVSD facies can identify individuals
with high risk of cognitive deficits, independently of VPA
exposure and even in the absence of major malformations
(Bromley et al., 2019). Taken together, these pieces of evidence
support the hypothesis that FVSD may be considered as
a phenocopy of chromatinopathy, caused in this case by
environmental factors, and that a further investigation of this
aspect could help elucidate the correlation between typical
congenital anomalies and neurodevelopment.
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