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Summary 

Cell differentiation and function are regulated across multiple layers of gene regulation, including the 

modulation of gene expression by changes in chromatin accessibility. However, differentiation is an 

asynchronous process precluding a temporal understanding of the regulatory events leading to cell fate 

commitment. Here, we developed SHARE-seq, a highly scalable approach for measurement of chromatin 

accessibility and gene expression within the same single cell. Using 34,774 joint profiles from mouse skin, 

we develop a computational strategy to identify cis-regulatory interactions and define Domains of Regulatory 

Chromatin (DORCs), which significantly overlap with super-enhancers. We show that during lineage 

commitment, chromatin accessibility at DORCs precedes gene expression, suggesting changes in chromatin 

accessibility may prime cells for lineage commitment. We therefore develop a computational strategy 

(chromatin potential) to quantify chromatin lineage-priming and predict cell fate outcomes. Together, 

SHARE-seq provides an extensible platform to study regulatory circuitry across diverse cells within tissues. 
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Introduction  

Regulation of chromatin structure and gene expression underlies key developmental transitions in cell lineages 

(Novershtern et al., 2011; Shema et al., 2018; Spitz and Furlong, 2012). In recent years, genome-wide 

profiling of gene expression and chromatin has helped uncover mechanisms of chromatin change at key points 

of multi-lineage cell fate decisions (Shema et al., 2018; Spitz and Furlong, 2012). Prior studies comparing 

profiles of purified populations at distinct differentiation states have observed that changes in histone 

modifications and binding of lineage associated transcription factors (TFs) may precede and foreshadow 

changes in gene expression creating poised or primed chromatin states that bias genes for activation or 

repression to alter lineage outcomes (Bernstein et al., 2006; Lara-Astiaso et al., 2014; Rada-Iglesias et al., 

2011).  

 

Primed or poised chromatin states are classically defined by the acquisition of specific histone modifications. 

As one example, deposition of the histone modification H3K4me1 has been shown to prime regulatory 

elements biasing cells (lineage-priming) for differentiation (Lara-Astiaso et al., 2014; Rada-Iglesias et al., 

2011) or immune cell activation (Heinz et al., 2010; Ostuni et al., 2013). However, approaches to analyze 

primed chromatin states rely on bulk measurements of histone modifications largely restricting analysis to 

well-defined chromatin states and synchronous cell culture models or stem cell systems with well-defined 

markers for FACS isolation. Prior work has shown that primed (H3K4me1) and active (H3K4me3) chromatin 

states reflect a stepwise increase of chromatin accessibility at regulatory elements (Lara-Astiaso et al., 2014). 

We therefore reasoned that an experimental approach to measure chromatin accessibility and gene expression 

within the same single-cell may enable identification of primed versus active accessible chromatin, providing 

a means to identify new mechanisms for chromatin mediated lineage-priming, in new cellular contexts, at 

single-cell resolution.  

 

We and others have reasoned that methods for combining measurements of different layers of gene regulation 

within single cells may serve to determine regulators of cell differentiation in tissues and function as sensitive 

markers of cell identity and cell potential (Kelsey et al., 2017; Shema et al., 2018). Computational methods 

(Stuart et al., 2019) have had some success in integrating single cell epigenome, transcriptome and protein 

measurements (Rusk, 2019) profiled separately; however, because these methods assume these distinct 

measurements align and reflect a common cell identity, they may not be able to correctly recover changes 

unique to one data type such as chromatin accessibility mediated lineage-priming or lineage-foreshadowing. 

Emerging single cell “multi-omic” technologies offer a direct means to determine the coordination between 

layers of gene regulation, including the epigenome and gene expression. Prior studies have sought to correlate 
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gene expression with regulatory element accessibility (Cao et al., 2018; Chen et al., 2019; Zhu et al., 2019). 

However, these approaches have either limited throughput or limited sensitivity (Cao et al., 2018; Chen et al., 

2019; Zhu et al., 2019), prohibiting their ability to recover fine but important distinctions between chromatin 

accessibility and gene expression. 

 

Here, we investigate the dynamics of the epigenomic and transcriptomic basis of cellular differentiation, by 

developing Simultaneous High-throughput ATAC (Buenrostro et al., 2013) and RNA Expression with 

sequencing (SHARE-seq), for individual or joint measures of single-cell chromatin accessibility and gene 

expression at low-cost and massive scale. Using SHARE-seq, we profiled 84,426 cells across 4 different cell 

lines and 3 tissue types, including mouse lung, brain, and skin. In particular, applying SHARE-seq to mouse 

skin shows that cell type definitions are correlated between chromatin accessibility and gene expression, with 

notable exceptions including high expression variability for cell cycle genes with little to no associated 

changes in chromatin accessibility. We leverage the heterogeneity across cells to infer chromatin-expression 

relationships and identify 63,110 peak accessibility-gene expression associations in adult mouse skin. High-

density peak-gene associated regions, which we refer to as Domains Of Regulatory Chromatin (DORCs), are 

enriched for lineage-determining genes and overlap with known super-enhancers (Adam et al., 2015). 

Strikingly, during hair follicle differentiation, chromatin at DORC-regulated genes become accessible before 

induction of the corresponding gene’s expression, identifying a role for chromatin accessibility in priming 

chromatin states. Finally, building upon this finding, we use lineage-priming of chromatin accessibility to 

predict cellular trajectories during cell differentiation. We develop an analytical framework to systematically 

compute differences in chromatin and gene expression to predict cell fate choices de novo (chromatin 

potential). Thus, we describe an experimental and analytical basis for integrated measurements of the 

epigenome and transcriptome enabling new avenues to uncover principles of gene regulation and cell fate 

specification across single cells in diverse systems. 

 

Results 

SHARE-seq for joint profiling of chromatin accessibility and gene expression at scale 

To create a chromatin accessibility and mRNA expression co-profiling approach that is both scalable and 

sensitive, we built upon SPLiT-seq (Rosenberg et al., 2018), a combinatorial indexing method for scRNA-

seq, to develop SHARE-seq, which uses multiple rounds of hybridization-blocking to uniquely and 

simultaneously label mRNA and chromatin fragments in the same single cell (Fig. 1A, Fig. S1A,B, STAR 

Methods). Briefly, in SHARE-seq (i) fixed and permeabilized cells or nuclei are transposed by Tn5 

transposase to mark regions of open chromatin; (ii) mRNA is reverse transcribed using a poly(T) primer 
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containing a unique molecular identifier (UMI) and a biotin tag; (iii) permeabilized cells or nuclei are 

distributed in a 96-well plate to hybridize well-specific barcoded oligonucleotides to transposed chromatin 

fragments and poly(T) cDNA; (iv) hybridization is repeated three times, expanding the barcoding space to 

approximately 106 (963) barcode combinations (Fig. S1B, Table S1), and, following hybridization, cell 

barcodes are simultaneously ligated to cDNA and chromatin fragments; (v) reverse crosslinking is performed 

to release barcoded molecules; (vi) cDNA is specifically separated from chromatin using streptavidin beads 

and each library is prepared for sequencing; and finally, (vii) paired profiles are identified using the common 

combination of well-specific barcodes (Fig. S1A). This barcoding strategy may be extended to even larger 

experiments, by using additional rounds of hybridization (Fig. S1B). 

 

 
Figure 1. SHARE-seq provides an accurate co-measure of chromatin accessibility and gene expression. 

(A) Workflow for measuring scATAC and scRNA from the same cell using SHARE-seq. (B,C) Unique 

ATAC fragments (B), or RNA UMIs (C), aligning to either the human or mouse genome. The experiment is 

performed using a mix of human (GM12878) and mouse (NIH/3T3) cell lines. (D) The percent of ATAC or 

RNA reads aligning to the human genome relative to all reads mapping uniquely to the human or mouse 

genomes. (E) Number of ATAC fragments in peaks or RNA UMIs for SHARE-seq (this study), sci-CAR 

(Cao et al., 2018), SNARE-seq (Chen et al., 2019) , or Paired-seq (Zhu et al., 2019). Boxplots denote the 

medians and the quartile ranges (25 and 75%), length of whiskers represents 1.5 × interquartile ranges (IQRs). 

(F) Aggregated single-cell chromatin accessibility and gene expression profiles in GM12878 cells (top), 

individual cell profiles (bottom) and single-cell average (right). Single-cells are sorted by the normalized 

ATAC-seq yield of the depicted NFkB1 locus. 
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SHARE-seq generates high-quality chromatin and expression profiles across diverse cell lines and 

tissues 

To validate specificity and data quality, we first performed SHARE-seq on a mixture of human (GM12878) 

and mouse (NIH/3T3) cell lines. Human and mouse reads were well separated on both chromatin and 

transcriptome profiles resulting in 903 human and 1,341 mouse cells passing filter out of 2,000 expected cells 

(Fig. 1B-D). We identified only one cell doublet representing a remarkably low 0.04% collision rate 

(consistent with the expected rate of 0.052%, Fig. S1C), a benefit from the large SHARE-seq barcoding space. 

Cells passing filter (STAR Methods) had on average 2,545 RNA UMIs (9,660 estimated UMI library size) 

and 8,252 unique ATAC-seq fragments (19,723 estimated library size with 65.5% fragments in peaks) (Fig. 

S1D,S1E).  

 

SHARE-seq had similar performance across replicates and additional cell lines (Fig. S1F-M) and showed 

high concordance with previously published ATAC-seq datasets (STAR Methods, Fig. S1J). SHARE-seq 

also consistently outperformed previously published joint ATAC-RNA approaches (Cao et al., 2018; Chen et 

al., 2019; Zhu et al., 2019) (Fig. 1E), including a technically similar approach (Zhu et al., 2019). Notably, 

SHARE-seq RNA reads (starting with cells or nuclei) are enriched for intronic regions, similar to single 

nucleus RNA-seq (snRNA-seq) (Habib et al., 2016) (Fig. S1N), which may be due to cell membrane lysis and 

serial washes used in the protocol. Intronic RNA is enriched for nascent RNA, which can be used not only to 

identify cell types (Habib et al., 2017), but also to investigate temporal processes within single cells (La Manno 

et al., 2018). Finally, chromatin accessibility at the NFkB1 locus and NFkB1 gene expression significantly co-

varied across single-cells (Spearman ρ = 0.31, p < 10-6, Z-test), validating our expectation that increased 

chromatin accessibility results in higher gene expression and that SHARE-seq may be used to query 

chromatin-gene expression relationships (Fig. 1F). 

 

Further validating SHARE-seq’s utility, we found that it performed well with cells or nuclei from a broad 

range of tissues, including mouse skin, brain and lung tissues (Fig. 2A-C, Fig. S2). SHARE-seq performed 

comparably to scATAC-only approaches (Lareau et al., 2019; Mezger et al., 2018) applied to adult mouse 

lung (STAR Methods, Fig. 2B), and to snRNA-seq (Habib et al., 2017) 

(https://support.10xgenomics.com/single-cell-gene-expression/datasets/2.1.0/nuclei_2k) and scRNA-seq 

(Saunders et al., 2018; Zeisel et al., 2018) from adult mouse brain (Fig. 2C and Fig. S2D-I). Importantly, 

SHARE-seq also enabled experiments at a substantially lower cost than prior methods (Supplementary 

Note). Altogether, these validate the accuracy and utility of this approach for integrated measures of chromatin 

accessibility and gene expression within cell lines or primary tissues. 
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Figure 2. SHARE-seq enables joint profiling of chromatin accessibility and gene expression in tissues. 
(A) A schematic of tissues profiled with SHARE-seq, highlighting the cellular diversity within mouse skin. 
(B,C) Comparison of library size estimates of SHARE-seq and other single-cell or nuclei-based approaches 
for scATAC-seq (B) and scRNA-seq (C) approaches. Boxplots denote the medians and the quartile ranges 
(25 and 75%), length of whiskers represents 1.5× interquartile ranges (IQRs). (D) SHARE-seq UMAP 
visualization of single-cells derived from mouse skin showing UMAP coordinates defined by RNA. Points 
colored by clusters are defined by RNA clustering, cell types are assigned to clusters on the basis of marker 
genes, TF motifs, and chromatin accessibility peaks. Computational pairing (Stuart et al., 2019) of scATAC-
seq to scRNA-seq (right), colored by predicted cell type. The IRS cluster is highlighted. (E) SHARE-seq 
UMAP visualization of single-cells derived from mouse skin showing UMAP coordinates defined by ATAC. 
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(F) Heatmap showing the proportion of cells in the RNA cluster that overlaps with chromatin defined clusters. 
(G) Marker gene expression and TF motif scores for each cluster. (H) Aggregated scATAC-seq tracks 
denoting marker chromatin accessibility peaks for each cluster. (I) The cluster-cluster correlation (spearman) 
of scATAC-seq (top right) and scRNA-seq (bottom left). (J) Cells colored by the activity of cell cycle genes 
(left panel). An RNA cluster marked by high expression of cell cycle genes is highlighted in scRNA UMAP 
(top right panel) and scATAC UMAP space (bottom right panel).  
 
Broad congruence between chromatin and RNA defined cell types from SHARE-seq 

To utilize SHARE-seq to query the relationship between chromatin accessibility and gene expression, we 

focused on murine skin. Mammalian skin is enriched for cell types from diverse lineages (including multiple 

populations of epithelial cells, fibroblasts, immune cells, and neural crest-derived cells) — some are highly 

proliferative while others are dormant or slow-cycling — with multiple populations of stem cells giving rise 

to well-defined cell types. Moreover, previous analyses of cellular diversity and chromatin state provide a rich 

resource to further validate SHARE-seq (Adam et al., 2015; Cohen et al., 2018; Fan et al., 2018; Joost et al., 

2018; Lien et al., 2011; Salzer et al., 2018). Thus, we reasoned the skin may be an ideal tissue to resolve 

cellular and regulatory diversity across cells at different proliferation or differentiation status (Hsu et al., 

2014).  

 

Leveraging the increased throughput and resolution of SHARE-seq, we assessed the congruence between the 

epigenome and transcriptome across an atlas of 34,774 high-quality profiles from adult mouse skin (Fig. 2D, 

Fig. S3A,B). To define cell subsets, we clustered the RNA portion of SHARE-seq data and identified 

consensus expression signatures for each cluster, highlighting known and novel markers (Table S2). We 

projected the cells based on the ATAC-seq and RNA-seq independently to a low dimensional space using 

UMAP (STAR Methods), and found that both projections separated these scRNA-seq defined clusters (Fig. 

2D,E). SHARE-seq not only resolved cell types from distinct lineages (epithelium, fibroblasts, melanocytes, 

immune cells), but could also distinguish between cells of closely related types (for example, αhigh CD34+ 

bulge vs. αlow CD34+ bulge (Blanpain et al., 2004)). Moreover, cell membership in subsets identified by 

scATAC-seq was highly congruent with their membership within scRNA-seq clusters (Fig. 2F, Fig. S3C), 

and both measures revealed the same major cell type classes, such as transit-amplifying cells (TACs), inner 

root sheath (IRS), outer root sheath (ORS), and hair shaft cells (Fig. 2D-F). 

 

The cells within the RNA-based clusters can also be distinguished by chromatin accessibility features, further 

confirming their identity (Fig. 2G,H). We annotated clusters by the activity of lineage-determining TFs, 

which we inferred by TF activity scores from the scATAC-seq data (Fig. 2G) (Schep et al., 2017), and their 

correlation to TF expression levels (Fig. S3D-F, STAR Methods). This analysis revealed global 

transcriptional activators Dlx3 (Adam et al., 2015) (a hair follicle differentiation gene) and Sox9 (Adam et al., 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 18, 2020. ; https://doi.org/10.1101/2020.06.17.156943doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.17.156943


Ma et al. SHARE-seq 

9 

2015) (a key regulator of the hair follicle stem cell identity), and repressors Zeb1 (Spaderna et al., 2008) and 

Sox5 (Huang et al., 2008), among many others (Fig. S3F,G). Thus, we found SHARE-seq provides insight 

into cell identity at multiple scales, including chromatin regulation by key lineage-determining TFs, enabling 

the analyses of cellular and regulatory atlases at scale. 

 

Nevertheless, some cell subsets (e.g., in differentiation) or states (e.g., cell cycle) may be identified at higher 

resolution by either chromatin or gene expression features. Specifically, grouping clusters by their aggregate 

(pseudo-bulk) profiles more distinctively revealed chromatin accessibility differences between permanent 

portion (clusters 1-4) and regenerative portion (clusters 5-9) of hair follicle. Conversely, cells corresponding 

to the granular layer are easier to distinguish as a unique cluster at the gene expression level (Fig. 2I and Fig. 

S3C). Moreover, a subset of actively proliferating basal cells strongly expressing cell-cycle genes (Fig. 2J) 

was not identified as a coherent cluster by chromatin accessibility (with either of four different dimensionality 

reduction approaches, Fig. 2J, Fig. S3H-J, STAR Methods).  

 

We reasoned that SHARE-seq can be used to directly test the accuracy of computational approaches (Stuart 

et al., 2019) that pair data from scATAC-seq and scRNA-seq from separately measured cells; such methods 

typically assume congruence, and may miss asynchrony or distinctions between these features of cellular 

identity. We thus tested a Canonical Correlation Analysis (CCA)-based method (Stuart et al., 2019) by 

providing the computational approach the scATAC-seq and scRNA-seq portions of the SHARE-seq 

measurements separately, and comparing its inferred pairing (defined as membership in the same cluster) to 

the correct (measured) coupling. Profiles from the same cell were properly assigned to the same cell subset 

with variable accuracy (74.9% in skin and 36.7% in mouse brain) (Fig. S4), with most mis-assignments 

between clusters representing similar cell types (e.g., IRS to TACs, Fig. 2D). The mis-assignments may result 

from chromatin changes preceding or succeeding gene expression during differentiation from TACs to IRS, 

as we discuss below. Such computational errors may be exasperated in differentiating cell types as seen in the 

skin or across highly diverse populations as seen in the brain. Together, this suggests SHARE-seq may help 

either train computational pairing approaches across tissues or test their performance and help with further 

improvements. 

 

Paired measurements associate chromatin peaks and target genes in cis 

Cells exhibit significant variation in both gene expression (Marinov et al., 2014) and the underlying regulation 

of chromatin (Buenrostro et al., 2015), due to both intrinsic (e.g., bursts of expression (Larsson et al., 2019)) 

and extrinsic (e.g., cell size, level of regulatory proteins (Lin and Amir, 2018)) factors. We reasoned that joint 

measurements in SHARE-seq may allow us to infer the relationship between variation in chromatin and gene 
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expression. To test this, we developed an analytical framework to link distal peaks to genes in cis, based on 

the co-variation in chromatin accessibility and gene expression levels across cells, while controlling for 

technical biases in chromatin accessibility measurements (Fig. 3A, STAR Methods). We first applied this 

approach to a data set of 23,278 GM12878 cells, and identified 13,277 significant peak-gene associations 

(Fig. S5, p < 0.05, FDR = 0.11). Importantly, we found down-sampling of either cell numbers or number of 

detected reads (matching library quality to those of previous chromatin/RNA reports (Cao et al., 2018)) 

dramatically reduces the ability to discover peak-gene associations (Fig. 3B, Table S3). 

 

Applying this framework to murine skin dataset, we identified 63,110 significant peak-gene associations 

(within ±50kb around transcription start sites (TSSs), p < 0.05, FDR = 0.1, after filtering peaks associated 

with multiple genes, Table S4). These peak-gene associations were enriched proximally to the TSS (Fig. 

S6A,B, p < 2.2×10-16, KS-test). We found, only 10,154 additional peaks were associated with more than a 

single gene (Fig. S6C,D) suggesting most regulatory elements (83.9%) only regulate a single gene. 

Interestingly, most of the chromatin peaks (82%, Fig. S6E) were not correlated with the expression of any 

gene, a finding that  may support a previous observation that only a small portion of candidate enhancers 

significantly alter the expression of genes (Gasperini et al., 2019).  
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Figure 3. Cis-regulation determines Domains Of Regulatory Chromatin (DORCs). (A) Schematic 

depicting an analytical framework for analysis of distal regulatory elements and expression of genes. (B) 

Number of peak-gene associations after down-sampling the number of cells or reads within the GM12878 

SHARE-seq data set. Reads are down-sampled to match the number of reads recovered to match those 

obtained by sci-CAR (Cao et al., 2018). (C) Loops denote the p-value of chromatin accessibility of each peak 

and Dlx3 RNA expression. Loop height represents the significance of the correlation. H3K4me1 and H3K27ac 

ChIP-seq tracks and super-enhancer annotation generated from isolated TAC population (Adam et al., 2015). 

(D, E) The number of significant peak-gene associations for all genes (D) and previously defined (Adam et 

al., 2015) super-enhancer genes (E). (F) The number of significantly correlated peaks (p < 0.05) for each 

gene. Known super-enhancer regulated genes are highlighted. (G) Representative DORCs for each defined 

cluster, values are normalized by the min and max activity. (H) The peak counts of all Dlx3 correlated peaks 

(left) and Dlx3 gene expression (right) colored in UMAP. The arrows point to regions with differential signals. 
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A subset of genes, including key fate-determination genes, were associated with a large number of peaks (p 

< 2.2×10-16, permutation test, STAR Methods). For example, 83 and 53 peaks were significantly associated 

(within ±500kb around TSSs, p < 0.05) with Dlx3, highly expressed in TACs (Fig. 3C), and Cxcl14, highly 

expressed in bulge (Fig. S6F), respectively (Adam et al., 2015). These results are reminiscent of previous 

observations describing regulatory locus complexity at key lineage genes (González et al., 2015). Further, we 

found regions with high-density of peaks-gene associations significantly overlap known super-enhancers 

(Adam et al., 2015) (Fig. 3C, Table S5, 2.1 fold enrichment, p = 10-238, hypergeometric test) — enhancer 

regions that are cell-type specific and highly enriched in histone H3K27 acetylation (Whyte et al., 2013). This 

relationship was not simply driven by super-enhancer length (Spearman ρ = 0.04; Fig. S6G). Furthermore, 

super-enhancers regulated genes are associated with more peaks compared to all genes (10.9 vs. 4.4 associated 

peaks per gene on average p < 2.2×10-16, KS-test, Fig. 3D,E, Fig. S6H). Notably, while peak-gene 

associations are enriched at known super-enhancers, we find that densely regulated genes also exhibit 

interactions outside the annotated super-enhancer which may reflect the false discovery of our approach (FDR 

= 0.1) or limitations in calling super-enhancers using ChIP-seq which often does not incorporate the 3D 

configuration of the locus (Schoenfelder and Fraser, 2019). Finally, most annotated cell cycle genes (n = 97) 

had lower than expected number of peak-gene interactions (on average 3.4 interactions for cell cycle genes 

vs. 4.4 interactions for all genes; p = 0.026, t-test), further supporting a limited contribution of chromatin 

accessibility to cell cycle associated gene expression and suggesting that variable expression is not sufficient 

for determining peak-gene associations.  

 

Domains Of Regulatory Chromatin (DORCs) identify key lineage-determining genes de novo 

We define the 857 regions with an exceptionally large (>10) number of significant peak-gene associations as 

“Domains Of Regulatory Chromatin” (DORC), identified as those exceeding an inflection point (“elbow”) 

when ranking genes by the number of significant associations (Fig. 3F). Genes associated with super-

enhancers were strongly enriched in DORC-regulated genes (p = 10-97, hypergeometric test). We quantified 

the activity of DORCs as the sum of accessibility at peaks significantly associated with the DORC-regulated 

gene. DORC accessibility scores were highly cell-type specific, and DORC-regulated genes were identified 

when conducting the analysis within a cell type (GM12878 cells) or across diverse cells types in tissues (Fig. 

S5). The DORCs identified within sub-populations strongly overlap with DORCs identified with all cells (p 

= 10-201, hypergeometric test, Fig. S6I). Moreover, chromatin accessibility of DORCs were strongly enriched 

for known key regulators of lineage commitment across the expected lineages (Fig. 3G, Fig. S6J). For 

example, Sox9, a master regulator of stem cell fate commitment (Nowak et al., 2008), is a DORC-regulated 

gene, and this DORC has high activity in stem cell populations (Fig. 3G).  
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There were significant differences between DORCs even in closely related populations, suggesting DORCs 

may help predict novel regulators that distinguish them. Interestingly, in some cases, high DORC activity in 

a particular cell subset presented little to no gene expression of the DORC-regulated gene, suggesting a gain 

of chromatin accessibility does not always equate to productive transcription. For example, while Dlx3 DORC 

activity and Dlx3 gene expression were generally correlated in TAC/IRS/Hair shaft cells, this was not the case 

within cuticle/cortex cells (Fig. 3H, Fig. S6K). Thus, DORCs provide an unsupervised, readily accessible 

approach to simultaneously identify key lineage-determining genes and the regions that regulate them at 

single-cell resolution, without the need to know the cell type identity in advance, isolate cell subsets, and 

conduct challenging ChIP-seq experiments from primary samples (see Discussion). 

Figure 4. Lineage dynamics of chromatin and expression defines lineage priming. (A) Pseudotime for 
three cell fate decisions shown on scATAC UMAP coordinates. (B) Difference (residuals) for Wnt3 between 
chromatin accessibility and gene expression for the regenerative portion of the hair follicle. (C) Histogram of 
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the average difference (residuals) for each gene between chromatin accessibility and gene expression. (D) 
Dynamics of gene expression (intron and exon) and individual chromatin accessibility peaks for the 
Cuticle/cortex lineage. (E) Hierarchical clustering of chromatin accessibility, expression of DORC-regulated 
genes and the difference between chromatin accessibility and gene expression (residuals) for the cuticle/cortex 
lineage. Cells are ordered by pseudotime. (F) Lineage dynamics for individual DORC-regulated genes 
highlighting lineage-priming in Wnt3 (left), Tubb6 (middle), and the mean of the lineage-priming module (red 
cluster in panel E). (G) TF motif enrichment in lineage-priming DORCs plotted against Spearman correlation 
of the lineage-priming module DORC score and gene expression of individual TFs. (H) Lineage dynamics of 
Lef1 and Hoxc13 motif scores and gene expression precede Wnt3 DORC activation in the hair shaft lineage.  
 
Lineage priming at enhancers precedes gene expression in DORCs 

The hair follicle is a highly regenerative epithelial tissue that cycles between growth (anagen), degeneration 

(catagen), and rest (telogen). At the anagen onset, hair follicle stem cells located at the bulge and hair germ 

proliferate transiently to produce the short-lived TACs. These TACs are one of the most proliferative cells in 

adult mammals — they proliferate rapidly to produce multiple morphologically and molecularly distinct 

downstream differentiated cell types that constitute the mature hair follicle, including the companion layer, 

IRS (Henle’s layer, Huxley’s layer, IRS cuticle) and hair shaft (hair shaft cuticle, cortex, medulla) (Zhang and 

Hsu, 2017; Zhang et al., 2016). Previous studies have shown that TACs display molecular heterogeneity but 

still maintain a degree of lineage plasticity (Xin et al., 2018; Yang et al., 2017). The unique features of TACs 

provide an interesting context to study chromatin-expression relationships in cells that are required to 

dynamically change their epigenome to choose lineage fates, while undergoing rapid proliferation. 

 

We readily recovered hair follicle differentiation trajectories from chromatin accessibility (Fig. 4A), whereas 

similar analysis of the RNA profile led to challenges, due to the strong expression of cell cycle genes in the 

rapidly proliferating TACs (Fig. 2I, Fig. S7). Single cell chromatin profiles were ordered into three lineage 

trajectories, IRS, medulla, and cuticle/cortex, differentiated from TACs (Fig. 4A). The detailed structures in 

IRS (including Henle’s layer, Huxley’s layer, and the IRS cuticle) were not fully resolved due to the rareness 

of these cell types (672 (~2%) IRS cells out of 34,774 cells, consistent with previously reported 1-3.8% cell 

types (Joost et al., 2016), though we did identify a subset of cells located between the IRS and medulla lineages 

(Fig. 4A), which may suggest distinct differentiation routes to these IRS subsets, as we explore below. 

 

Systematically analyzing the onset of accessibility and gene expression along differentiation pseudotime from 

TACs to cuticle/cortex cells revealed that DORCs generally become accessible prior to the onset of their 

associated gene’s expression, consistent with lineage-priming. Given their particular association with lineage-

determining TFs, we hypothesized that DORCs may play an important role in differentiation. For example, 

Wnt3 RNA became detectable at the late stage of hair shaft differentiation, consistent with previous findings 

(Millar et al., 1999). However, accessibility in the Wnt3 DORC activated at TACs prior to gene expression 
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before lineage commitment (Fig. 4B), which we quantified by computing “residuals” (defined as the 

difference of chromatin accessibility and expression of the gene). Systematic analysis typically found positive 

residuals across all DORC-regulated genes and lineages (Fig. 4C, Fig. S8A), despite the overall correlated 

accessibility of DORCs and the expression of the DORC-regulated genes (by definition, Fig. S8B). Thus, 

sufficiently high RNA expression may be detectable only within a subset of cells with accessible chromatin 

at that gene’s locus.  

 

To further understand the possible underlying cause of these residuals, we tracked the changes in accessibility 

in individual peaks in the Wnt3 DORC along differentiation pseudotime from TACs to cuticle/cortex cells 

(Fig. 4D). We found a sequential activation of peaks, with individual enhancer peaks activating much earlier 

(in pseudotime) than the Wnt3 promoter, followed by activation of nascent RNA expression (estimated by 

intron counts) and finally mature RNA expression (estimated by exon counts) (Fig. 4D). This pattern of peak 

activation in enhancers prior to expression is apparent across many but not all genes, which we refer to as the 

“lineage-priming module” defined by sharing similar residuals (Fig. 4E, Fig. S8C). To more directly quantify 

these differences, we calculated a lag of 0.20 or 0.13 pseudotime units between the respective onset of 

accessibility in the Wnt3 or Tubb6 DORCs and the onset of expression of these genes, first at pre-mRNA and 

then by mRNA (Fig. 4F). Notably, some TACs at late pseudotime are still proliferative (estimated by cell 

cycle gene expression); however, they already show activated enhancer peaks, suggesting the proliferation 

and differentiation switch transitioning from TACs to cuticle/cortex lineage (Fig. 4D). Altogether, these 

analyses support the long-standing hypothesis that enhancer activation foreshadows expression of target genes 

(Lara-Astiaso et al., 2014; Rada-Iglesias et al., 2011) and implicates chromatin accessibility as a marker for 

lineage-priming (Olsson et al., 2016). 

 

We further investigated the mechanisms leading to chromatin accessibility primed chromatin states and 

hypothesized that TFs that prime are distinct from TFs that activate enhancers, suggesting a subset of specific 

TFs may induce lineage-priming. Indeed, we found that binding sites for Lef1 and Hoxc13 TFs are strongly 

enriched (p < 10-4, KS-test, Fig. 4G) in hair shaft lineage-priming DORCs (including the Wnt3 DORC). Gene 

expression and TF motif activity (inferred from ATAC-seq) of Lef1, a known regulator of the Wnt signaling 

pathway (Clevers, 2006), activated prior to Hoxc13 (Godwin and Capecchi, 1998), implicating Lef1 as the 

lineage-priming TF (Merrill et al., 2001). This was followed by expression of Hoxc13 (Godwin and Capecchi, 

1998), likely inducing Wnt3 DORC accessibility and promoting Wnt3 gene expression (Fig. 4H, Fig. S8D). 

Together, this supports a model, whereby distinct modes of regulation exist to prime chromatin accessibility 

and foreshadow lineage choice.  
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Figure 5. Chromatin potential describes chromatin-to-gene expression dynamics during differentiation. 
(A) Schematic of the conceptual workflow for determining chromatin potential (left). Chromatin potential 

visualized on the scATAC UMAP space, arrows denote the extrapolated gene expression state of the cell 

(right). (B) RNA velocity visualized on scRNA UMAP coordinates. (C) The difference between the 

neighborhood predicted by chromatin potential and RNA velocity. (D) Chromatin accessibility of the Notch1 

DORC, highlighting the lineage-priming region. (E) Distribution of Notch1+ and Notch1- lineage primed cells 

in the scRNA UMAP. (F) Aggregated chromatin accessibility profiles of lineage primed cells (Notch1+/-), 

progenitor cells (TACs), and differentiated cells (cuticle/cortex, medulla). 

 
 
Chromatin potential describes chromatin-to-gene expression dynamics during differentiation 

Empowered by our findings, we hypothesized that lineage priming by chromatin accessibility may 

foreshadow gene expression and may be used to predict lineage choice prior to lineage commitment. To 

explore this possibility, we focused on DORC-regulated genes, which encompass lineage-determining genes 

and coincide with strong chromatin signals. We devised an approach to calculate “chromatin potential”, 

defined as the future RNA state most compatible with a cell’s current chromatin state. To calculate chromatin 

potential, we first address data sparsity, by smoothing each cell by computing a k-nearest neighbor graph (k-

NN defined by chromatin state, k = 50) and averaging chromatin and expression profiles for cells in this 

neighborhood. Next, we computed RNA-chromatin neighbors (k-NN, k=10) whereby we find, for each cell 

(cell x, chromatin neighborhood), 10 cells (cell y, RNA neighborhood) whose RNA expression of DORC-

regulated genes is most correlated to the current chromatin state. Chromatin potential (arrow) is the direction 

and distance between each cell (cell x, chromatin neighborhood) and 10 nearest cells (cell y, RNA 

neighborhood) in chromatin low dimensional space (Fig. 5A, Fig. S8E,F, STAR Methods). We note here 
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that this analysis did not rely on the inferred pseudotime. Chromatin potential relates a potential “future” RNA 

state (observed in another cell) which is best predicted by the chromatin state of a given cell.  

 

In general, chromatin potential flows from progenitor cells (TACs) to differentiated cells (IRS/Hair shaft). 

Long arrow length represents a chromatin state reflecting a more differentiated transcriptome. Regions of long 

arrows suggest lineage commitment at these lineage events occurs as a switch rather than as a gradient (Yang 

et al., 2017). Chromatin potential is higher at key multi-lineage defining transitions, including the branch point 

that defines the cuticle/cortex and medulla lineages. 

 

In many key developmental transitions, chromatin potential exceeds our ability to predict future RNA states 

from the cell’s current RNA state, by either its mRNA or its nascent RNA (as shown by RNA velocity (La 

Manno et al., 2018)), emphasizing the longer time scales foreshadowed by chromatin states. This is clear by 

several different measures. First, the “future” RNA state predicted by chromatin potential extends 

significantly further than that predicted with the current RNA state (Fig. S8G-I). Second, RNA velocity 

derived vectors, which use intronic RNA as a measure of nascent transcription to determine future states, 

validated our end-point trajectories; however, they provided little resolution of cell fate dynamics within 

TACs (Fig. 5B) (La Manno et al., 2018). In particular, when we predict for each cell its RNA velocity (from 

RNA) and its chromatin potential (from chromatin-RNA), cells reflecting the “future” RNA state (defined by 

RNA velocity) results in substantially less chromatin-RNA correlation when compared to the “future” state 

predicted by chromatin potential (p < 2.2×10-16, t-test, Fig. S8J). The discrepancy between RNA velocity and 

chromatin potential is most prominent in TACs (Fig. 5C). Interestingly, chromatin potential has longer reach 

(prediction timescales) at early stages, whereas RNA velocity (extended to a k-NN neighborhood) has further 

reach (longer arrows) at late pseudotimes (p < 2.2×10-16, KS-test, Fig. S8K). Generally, chromatin potential 

supported the measure of pseudotime; however, it identified a distinct root-like position, which suggests either 

an alternative lineage origin or plasticity and route reversal (Fig. 5A). Chromatin potential also suggested an 

alternative route to the IRS which is not identified by RNA velocity (Fig. 5B); however, additional 

experiments using lineage tracing are needed to better elucidate the dynamics of this transition. Thus, 

chromatin potential allows us to relate the chromatin state of one cell to future RNA states not yet realized in 

that cell, and to span longer time scales especially in early developmental transitions (see Discussion). 

 

Finally, we sought to see how early we could identify markers of lineage commitment, searching for genes 

whose chromatin state foreshadows lineage commitment far preceding the lineage choice as reflected in their 

RNA state. To investigate this, we identified DORCs that were differentially active between cuticle/cortex 
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and medulla cells preceding the lineage decision, including Notch1, Cux1, and Lef1 (Fig. S8L). Interestingly, 

Notch1 is highly expressed in hair shaft cells, whose DORC encompasses 79 peaks. Notch1 is critical in 

controlling hair follicle differentiation and acts non-autonomously to regulate the formation of hair shaft and 

IRS (Pan et al., 2004). The activation of Notch1 DORC activity coincides with longer arrows associated with 

cuticle/cortex lineage commitment (Fig. 5A). When we partition the lineage-priming region into 3 sub-regions 

by the DORCs’ accessibility (Fig. 5D), Notch1
+
 and Notch1

- regions showed distinct chromatin patterns with 

coordinated changes in gene expression, whereas Notch1
+ cells were not distinctly identified by their gene 

expression pattern alone (Fig. 5E, Fig. S8L,M). Notch1
+ and Notch1

- regions showed chromatin potential to 

differentiate into cuticle/cortex and medulla lineages, respectively. Consistently, we observed clear 

chromatin-gene expression differences (residuals) at multiple loci in the lineage-priming region using 

aggregated genome tracks (Fig. 5F). A similar differential trend was observed between fully differentiated 

cells, which clearly highlights the chromatin evidence of lineage-priming events before gene expression 

activation. Altogether, we demonstrate that analyses of chromatin accessibility mediated lineage-priming 

enable insight into the chromatin potential of cells and predict lineage fate outcomes.  

 

Discussion 

High resolution, massively parallel simultaneous measurement of chromatin landscapes and gene expression 

in diverse tissues including during differentiation provided four key insights: (1) There is a high degree of 

congruence in the definition of differentiated cell types by both measures; (2) co-variation of chromatin and 

RNA across cells—within and between cell types—associates regulatory regions to their target genes; (3) 

among these, we identify DORCs, which reflect regulatory regions that control key lineage genes; and (4) 

focusing on DORCs, we find that chromatin activates prior to gene expression during differentiation, with 

chromatin potential foreshadowing RNA states of cells at longer time scales than RNA velocity. Furthermore, 

by downsampling reads or cells, we show these insights required the improved data quality and throughput 

(up to 106 cells) of SHARE-seq. 

 

To determine congruence, we find that both datasets largely reflect similar clusters of cell types demonstrating 

that cell types in tissues largely coordinate chromatin structure with transcription. Using this approach, we 

show that the joint data in SHARE-seq can provide excellent training for algorithms that aim to 

computationally map chromatin and RNA modalities across cells. Nevertheless, some cell states were not 

reflected equally in both profiles. In one example, a proliferative basal cell population was distinguished 

specifically in the gene expression dataset. In contrast, chromatin accessibility better distinguished cellular 

diversity within the TAC progenitor population, including chromatin-based signatures of lineage-priming.  
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To infer transcriptional regulation and recover key regulatory regions in differentiation, SHARE-seq provides 

a means to infer DORCs reflecting key lineage-determining genes. Leveraging SHARE-seq, it should now be 

possible to identify key regulatory regions, including developmental super-enhancers, and their associated 

target genes, without the need for isolating specific cell subsets or ChIP-seq experiments, which can be 

challenging for in vivo samples. We expect the inclusion of more layers of measurements, and improved 

computational methods for illustrating the differences between chromatin regulators and gene expression, will 

enable a more robust approach for defining chromatin-gene dynamics within complex tissues. This would be 

important in developmental biology, cancer research, and especially human genetics, where genetic variants 

associated with complex human diseases are found in non-coding regions, and relating them to specific cell 

types and target genes can be challenging.  

 

Focusing on the incongruence between chromatin accessibility and gene expression, we demonstrate the 

existence of chromatin accessibility mediated lineage-priming, and define chromatin potential to describe the 

time difference upon hair follicle differentiation. Recently, RNA velocity approaches have predicted a cell’s 

future state from the difference between mature and nascent RNA. SHARE-seq allows us to make stronger 

predictions on a cell’s future potential in several ways. First, when we calculate chromatin potential, we relate 

the chromatin signal of one cell (or neighborhood) to the RNA signal in any cell (or neighborhood) from the 

same experiment, and can transverse longer time scales and identify cell fates earlier in differentiation. 

Second, leveraging the joint measurements of RNA (nascent and mature) and chromatin in every single cell, 

we can relate its current chromatin state to its current and future (by RNA velocity) states, to understand the 

distinction between its realized (in RNA) and as-yet-unrealized potential. 

 

SHARE-seq provides a generalizable platform and opportunity to include additional layers of information per 

cell. With further development, we expect to integrate other scRNA-seq compatible measurements (Stuart et 

al., 2019), such as protein measurements (Stoeckius et al., 2017), genotyping, and lineage barcoding. 

Furthermore, powered by the massive scalability of this approach, SHARE-seq may be adapted for identifying 

RNA barcodes, particularly useful for CRISPR-based perturbation screens (Dixit et al., 2016). SHARE-seq 

may be further extended by replacing ATAC-seq with whole-genome transposition (Vitak et al., 2017) 

enabling methods for DNA methylation and chromatin conformation. In these efforts, scRNA-seq data may 

be used as a common scaffold for integration, providing a unique opportunity to comprehensively map 

between multiple layers of gene regulation, as well as to train algorithms that learn to map between different 
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data modalities in a cell. As such, as we move toward a cell atlas, we anticipate SHARE-seq will likely play 

a key role in determining the full diversity of cell types and cell states, and the regulators that define them. 
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STAR Methods 

Experimental methods 

Mice 

Mice were maintained in an Association for Assessment and Accreditation of Laboratory Animal Care 

(AAALAC) approved animal facility at Harvard University and MIT. Procedures were approved by the 

Institutional Animal Care and Use Committee of all institutions (institutional animal welfare assurance no. 

A-3125-01, 14-03-194 and 14-07-209). 

 

Cell culture and tissue processing 

(1) Cell culture 

GM12878 cells were cultured in RPMI 1640 medium (11875-093, ThermoFisher) supplemented with 15% 

FBS (16000044, ThermoFisher) and 1% penicillin-streptomycin (15140122, ThermoFisher). NIH/3T3 and 

RAW 264.7 cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM, 11965092, ThermoFisher) 

with the addition of 10% FBS and 1% of penicillin-streptomycin. Cells were incubated at 37°C in 5% CO2 

and maintained at the exponential phase. NIH/3T3 and RAW 264.7 cells were digested with accutase for 

preparing single-cell suspension. 

 

(2) Mouse skin  

Female C57BL/6J mouse dorsal skins were collected at late anagen (P32). The hair cycle stages were 

confirmed using cryosectioning. To generate whole skin a single cell suspension, skin samples were incubated 

in 0.25% collagenase in HBSS at 37°C for 35-45 minutes on an orbital shaker. Samples were gently scraped 

from the dermal side and the single-cell suspension was collected by filtering through a 70µm filter followed 

by a 40µm filter. The epidermal portion of the skin samples were incubated in 0.25% trypsin-EDTA at 37°C 

for 35-45 minutes on the shaker and cells were gently scraped from the epidermal side. Single-cell suspensions 

were combined and centrifuged for 5 minutes at 4°C, resuspended in 0.25% FBS in PBS, and stained with 

DAPI (0.05µg/mL). Live cells were enriched by FACS. To enrich epidermal populations, CD140a negative 

population were purified by FACS and combined with whole skin cells in a ratio of 1:1. 

 

(3) Mouse brain 

An adult mouse brain was dissected, snap-frozen on dry ice, and stored at -80°C. A single nucleus suspension 

was prepared following the OMNI-ATAC protocol (Corces et al., 2017). Nuclei were resuspended in PBSI 

(0.1U/µl Enzymatics RNase Inhibitor, Y9240L, Qiagen; 0.05U/µl SUPERase inhibitor, AM2696, 

ThermoFisher; 0.04% Bovine Serum Albumin, BSA, 15260037, ThermoFisher in PBS).  
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(4) Mouse lung 

Mouse lung was dissociated with fine scissors followed by proteolytic digestion using the Lung Dissociation 

kit (Miltenyi Biotech) following the manufacturer’s instructions. Dissociated cells were then incubated at 

37°C for 20 minutes with rotation, then filtered using a 100µm strainer. Red blood cells were lysed using 

ACK buffer (A1049201, ThermoFisher). 

 

Skin histology and immunofluorescence 

Mouse skin samples were fixed in 4% paraformaldehyde (PFA) for 15 minutes at room temperature and then 

washed 6 times using PBS. The samples were immersed in 30% sucrose in PBS overnight at 4°C. Samples 

were cut and embedded in OCT (Sakura Finetek) and 35µM sections were harvested on positively charged 

slides. For immunohistochemistry, sections were fixed in 4% PFA for 2 minutes, washed with PBS and PBST. 

Sections were blocked with a blocking buffer (5% donkey serum, 1% BSA, 2% cold water fish gelatin, 0.3% 

Triton X-100 in PBS) for 1 hour at room temperature. Primary antibodies (anti-PolII S5, Abcam, ab5131; 

anti-PolII S2, Abcam, ab5095; anti-PolII, Abcam, ab817) were added and incubated overnight at 4°C. 

Secondary antibodies (anti-Rabbit IgG Alexa 488, Jackson ImmunoResearch, 711-545-152; anti-Mouse IgG 

Alexa 488, Jackson ImmunoResearch, 715-545-150) were added and incubated for 4 hours at room 

temperature. 

 

SHARE-seq 

(1) Preparing oligonucleotides for ligations 

There are three barcoding rounds of hybridization reactions in SHARE-seq, with a different 96-well barcoding 

plate for each round (Table S1). Hybridization oligos have a universal linker sequence that is partially 

complementary to well-specific barcode sequences. These strands were annealed prior to cellular barcoding 

to create a DNA molecule with three distinct functional domains: a 5’ overhang that is complementary to the 

3’ overhang present on the cDNA molecule or transposed DNA molecules (may originate from RT primer, 

transposition adapter or previous round of barcoding), a unique well-specific barcode sequence, and a 3’ 

overhang complementary to the 5’ overhang present on the DNA molecule to be subsequently ligated. Linker 

strands and barcode strands for the hybridization rounds were added to RNase-free 96-well plates to a total 

volume of 10µl/well with the following concentrations: round 1 plates contain 9µM round 2 linker strand and 

10µM barcodes, round 2 plates contain 11µM round 2 linker strand and 12µM barcodes, and round 3 plates 

contain 13µM round 3 linker strand and 14µM barcodes. The oligos are dissolved in STE buffer (10 mM Tris 
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pH 8.0, 50 mM NaCl, and 1 mM EDTA). Oligos are annealed by heating plates to 95°C for 2 minutes and 

cooling down to 20°C at a rate of -1°C per minute. 

 

Blocking strands are complementary to the 3’ overhang present on the DNA barcodes used during 

hybridization barcoding rounds. Blocking occurs after well-specific barcodes have hybridized to cDNA 

molecules, but before all cells are pooled back together. The blocking step minimizes the possibility that 

unbound DNA barcodes mislabel cells in future barcoding rounds. 10µl of each blocking strand solution was 

added to each of the 96 wells after the first, second, and third round of hybridization of DNA barcodes, 

respectively. Blocking strand solutions were prepared at a concentration of 22µM for round 1, 26.4µM for 

round 2, and 23µM for round 3. Blocking strands for the first two rounds were in a 2× T4 DNA Ligase buffer 

(NEB) while the third round was in 0.1% Triton X-100. Both ligation reaction and blocking reaction were 

incubated with cells for 30 minutes at room temperature with gentle shaking (300 rpm). All the oligos are 

thawed to room temperature before using. 

 

(2) Fixation 

For simplicity, cells and nuclei, which were processed identically for the following steps, are both referred to 

as cells. Cells were centrifuged at 300g for 5 minutes and resuspended to 1 million cells/ml in PBSI. Cells 

were fixed by adding formaldehyde (28906, ThermoFisher, final concentration of 0.1% for cell lines or 0.2% 

for primary tissues) and incubated at room temperature for 5 minutes. The fixation was stopped by adding 

56.1µl of 2.5M glycine, 50µl of 1M Tris-HCl pH 8.0, and 13.3 µl of 7.5% BSA on ice. The sample was 

incubated at room temperature for 5 minutes and then centrifuged at 500g for 5 minutes to remove supernatant. 

All centrifugations were performed on a swing bucket centrifuge. The cell pellet was washed twice with 1ml 

of PBSI, and centrifuged at 500g for 5 minutes between washings. The cells were resuspended in PBS with 

0.1U/µl Enzymatics RNase Inhibitor and aliquoted for transposition. 

 

(3) Transposition 

The transposition reaction is performed similarly to previous published work (Corces et al., 2017) with minor 

modifications. All the oligos used in this protocol can be found in Table S1. The 100µM Read1 and 

phosphorylated Read2 oligos were annealed with an equal amount of 100µM blocked ME-complement oligo 

by heating at 85°C for 2 minutes and slowly cooling down to 20°C at a ramp rate of -1°C/minute. The annealed 

oligos were mixed with an equal volume of cold glycerol and stored at -80°C until use. In-house produced 

Tn510 was mixed with an equal volume of dilution buffer (50 mM Tris, 100 mM NaCl, 0.1 mM EDTA, 1 mM 
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DTT, 0.1% NP-40, and 50% glycerol). Diluted Tn5 was then mixed with an equal volume of annealed oligos 

and incubated at room temperature for 30 minutes before transposition. 

 

For each transposition reaction, cells (10,000-20,000 cells in 5µl PBSI) and 42.5µl of transposition buffer 

(38.8 mM Tris-acetate, 77.6 mM K-acetate, 11.8 mM Mg-acetate, 18.8% DMF, 0.12% NP-40, 0.47% Protease 

Inhibitor Cocktail, and 0.8 U/µl Enzymatics RNase Inhibitor) were mixed and incubated at room temperature 

for 10 minutes. 2.5µl of assembled Tn5 was added to the transposition reaction. Depending on the target 

number of cells to be recovered, the number of transposition reactions can be scaled up. In general, we prepare 

10-40 reactions, which is equivalent to 100,000-800,000 cells. The transposition was carried out at 37°C for 

30 minutes with shaking at 500rpm. The sample was centrifuged at 1,000g for 3 minutes and then washed 

with 1ml Nuclei Isolation Buffer (NIB) (10mM Tris buffer pH 7.5, 10mM NaCl, 3mM MgCl2, 0.1% NP-40, 

0.1U/µl Enzymatics RNase Inhibitor, and 0.05U/µl SUPERase RI). The sample was then resuspended to 60µl 

of NIB and before proceeding to reverse transcription.  

 

(4) Reverse transcription 

Transposed cells (60µl) were mixed with 240µl of RT mix (1.25× RT buffer, 0.5 U/µl Enzymatics RNase 

Inhibitor, 625µM dNTP, 12.5µM RT primer with an affinity tag, 18.75% PEG 6000, and 25 U/µl Maxima H 

Minus Reverse Transcriptase). The RT primer contains a poly-T tail, a Unique Molecular Identifier (UMI), a 

universal ligation overhang, and a biotin molecule. The sample was heated at 50°C for 10 minutes, then went 

through 3 thermal cycles (8°C for 12s, 15°C for 45s, 20°C for 45s, 30°C for 30s, 42°C for 120s and 50°C for 

180s), and finally incubated at 50°C for 5 minutes. After reverse transcription, 300µl of NIB was added and 

the sample was centrifuged at 1,000g for 3 minutes to remove supernatant. Cell pellet was washed with 0.5ml 

of NIB and centrifuged at 1,000g for 3 minutes. Cells were resuspended in 4,608µl of hybridization mix (1× 

T4 ligation buffer, 0.32 U/µl Enzymatics RNase Inhibitor, 0.05 U/µl SUPERase RI, 0.1% Triton X-100, and 

0.25× NIB). 

 

(5) Hybridization and ligation 

Cells in ligation mix (40µl) were added to each of the 96 wells in the first-round barcoding plate. Each well 

already contained 10µl of the appropriate DNA barcodes. The round 1 barcoding plate was incubated for 30 

minutes at room temperature with gentle shaking (300 rpm) to allow hybridization to occur before adding 

blocking strands. 10µl of round 1 blocking oligo was added and the plate was incubated for 30 minutes at 

room temperature with gentle shaking (300 rpm). Cells from all 96 wells were combined into a single 

multichannel basin. Subsequent steps in round 2 and round 3 were identical to round 1, except that 50µl and 
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60µl of pooled cells were split and added to barcodes in round 2 (total volume of 60µl/well) and round 3 (total 

volume of 70µl/well), respectively. After adding the round 3 blocking oligo, cells from all wells were 

combined and centrifuged at 1,000g for 3 minutes to remove supernatant. The cell pellet was washed twice 

with 1ml of NIB, and centrifuged at 1,000g for 3 minutes between washings. Cells were re-suspended in the 

ligation mix (1× T4 ligation buffer, 0.32 U/µl Enzymatics RNase Inhibitor, 20 U/µl T4 DNA ligase (M0202L, 

NEB), 0.1% Triton X-100, 0.2× NIB) and incubated for 30 minutes at room temperature with gentle shaking 

(300 rpm). Cells were washed once with 0.5ml washing buffer and resuspended in 100µl of NIB, counted and 

aliquoted to 0.2ml PCR tubes with 1,000-20,000 cells per tube. 

 

(6) Reverse crosslinking and affinity pull-down 

NIB was added to each sample to bring the volume to 50µl in total. 50µl of 2× reverse crosslinking buffer 

(100mM Tris pH 8.0, 100mM NaCl, and 0.04% SDS), 2µl of 20mg/ml proteinase K, and 1µl of SUPERase 

RI were mixed with each sample and incubated at 55°C for 1 hour. 5µl of 100mM PMSF was added to the 

reverse crosslinked sample to inactivate proteinase K and incubated at room temperature for 10 minutes. For 

each sample, 10µl of MyOne C1 Dynabeads were washed twice with 1× B&W-T buffer (5mM Tris pH 8.0, 

1M NaCl, 0.5mM EDTA, and 0.05% Tween 20) and once with 1× B&W-T buffer supplemented with 2U/µl 

SUPERase RI. After washing, the beads were resuspended in 100µl of 2× B&W buffer (10mM Tris pH 8.0, 

2M NaCl, 1mM EDTA, and 4U/µl SUPERase RI) and mixed with the sample. The mixture was rotated on an 

end-to-end rotator at 10 rpm for 60 minutes at room temperature. The lysate was put on a magnetic stand to 

separate supernatant and beads. 

 

(7) scATAC-seq library preparation 

The supernatant that contained the transposed DNA fragments was purified with DNA clean and concentrator 

kit and eluted to 10µl of Tris buffer (pH 8.0). Fragments were PCR amplified with Ad1 primer with sample 

barcodes and P7 primer. The amplification procedure was similar to standard bulk ATAC-seq library 

preparation (Corces et al., 2017) with minor modifications: the annealing temperature was set to 65°C instead 

of 72°C. 

 

(8) cDNA library preparation 

Beads were washed three times with 1× B&W-T buffer and once with STE (10mM Tris pH 8.0, 50mM NaCl, 

and 1mM EDTA) both supplemented with 1U/µl SUPERase inhibitor. Beads were resuspended in 50µl of 

template switch mix (15% PEG 6000, 1× Maxima RT buffer, 4% Ficoll PM-400, 1mM dNTPs, 1U/µl 

Enzymatics RNase-In, 2.5µM TSO, and 10U/µl Maxima H Minus Reverse Transcriptase). Beads were rotated 
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on an end-to-end rotator at 10rpm for 30 minutes at room temperature, and then shaken at 300rpm for 90 

minutes at 42°C. Beads were resuspended by pipetting every 30 minutes during agitation. After template 

switching, 100µl of STE were added to each tube to dilute the sample. The supernatant was removed by 

placing the sample on a magnetic stand. Beads were washed with 200µl of STE without disturbing the bead 

pellet. Beads were then resuspended in 55µl of PCR mix (1× Kapa HiFi PCR mix, 400nM P7 primer, and 

400nM RNA PCR primer). The PCR reaction was carried out at the following conditions: 95°C for 3 minutes, 

and then thermocycling 14 cycles at 98°C for 30s, 65°C for 45s and 72°C for 3 minutes. Optionally, we run 

5 cycles of PCR, take a 2.5µl sample, added 7.5µl of PCR cocktail with 1× EvaGreen (Biotium), and run 

qPCR. The qPCR reactions were amplified to saturation to determine the number of cycles required for the 

remaining samples on the plate. The qPCR reaction was carried out at the following conditions: 95°C for 3 

minutes, and then 20 thermal cycles at 98°C for 30s, 65°C for 20s and 72°C for 3 minutes. Libraries were 

amplified for 12-14 cycles in total for 1,000 cells. Amplified cDNA was purified by 0.8× (for cell line) or 

0.6× (for primary tissue) AMPure beads and eluted to 10µl of Tris pH 8.0 buffer. The amount of cDNA was 

quantified by Qubit (ThermoFisher). 

 

(9) Tagmentation and scRNA-seq library preparation 

100µM Read1 oligo was annealed with an equal amount of 100µM blocked ME-complement oligo and 

assembled with Tn5 as described above. For each sample, 50ng cDNA was fragmented in a 50µl tagmentation 

mix (1× TD buffer from Illumina Nextera kit, and 5 µl assembled Tn5) at 55°C for 5 minutes. Fragmented 

cDNA was purified with the DNA Clean and Concentrator kit (Zymo) and eluted to 10µl of Tris pH 8.0 buffer. 

Purified cDNA was then mixed with tagmentation PCR mix (25µl of NEBNext High-Fidelity 2× PCR Master 

Mix, 1µl of 25µM P7 primer and 1µl of 25µM Ad1 primer with sample barcodes). PCR was carried out at the 

following conditions: 72°C for 5 minutes, 98°C for 30s, and then 7 cycles at 98°C for 10s, 65°C for 30s and 

72°C for 1 minute. The amplified library was purified by 0.7× AMpure beads and eluted to 10µl of Tris buffer 

(pH 8.0).  

 

(10) Quantification and sequencing 

Both scATAC-seq and scRNA-seq libraries were quantified with KAPA Library Quantification Kit and 

pooled for sequencing. Libraries were sequenced on the Next-seq platform (Illumina) using a 150-cycle High-

Output Kit (Read 1: 30 cycles, Index 1: 99 cycles, Index 2: 8 cycles, Read 2: 30 cycles) or the Nova-seq 

platform (Illumina) using a 200-cycle S1 kit (Read 1: 50 cycles, Index 1: 99 cycles, Index 2: 8 cycles, Read 

2: 50 cycles). 
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Computational methods 

SHARE-ATAC-seq pre-processing 

Raw sequencing reads were trimmed with a custom python script. Reads were aligned to hg19 or mm10 

genome using bowtie2 (Langmead et al. 2012) with (-X2000) option. For each read, there are four sets of 

barcodes (eight bases each) in the indexing reads. The data were demultiplexed tolerating one mismatched 

base in each 8-base barcode. Reads with alignment quality < Q30, improperly paired, mapped to the unmapped 

contigs, chrY, and mitochondria, were discarded. Duplicates were removed using Picard tools 

(http://broadinstitute.github.io/picard/). Open chromatin regions peaks were called on individual samples 

using MACS2 peak caller (Zhang et al., 2008) with the following parameters: --nomodel –nolambda –keep-

dup -call-summits. Peaks from all samples were merged and peaks overlapping with ENCODE blacklisted 

regions (https://sites.google.com/site/anshulkundaje/projects/blacklists) were filtered out. Peak summits were 

extended by 150bp on each side and defined as accessible regions. Peaks were annotated to genes using Homer 

(Heinz et al., 2010). The fragment counts in peaks and TF scores were calculated using chromVAR (Schep et 

al., 2017). 

 

SHARE-RNA-seq pre-processing 

Base calls were converted to the fastq format using bcl2fastq. Reads were trimmed with a custom python 

script. We removed reads that do not have TTTTTT at the beginning of Read 2 allowing one mismatch. Reads 

were aligned to the mouse genome (version mm10) using STAR (Dobin et al. 2013) (STAR --chimOutType 

WithinBAM --outFilterMultimapNmax 20 --outFilterMismatchNoverLmax 0.06 --limitOutSJcollapsed 

2000000). For species mixing experiments, reads were aligned to a combined human (hg19) and mouse 

(mm10) genome and only primary alignments were considered. Data were demultiplexed tolerating one 

mismatched base in each 8-base barcode. Aligned reads were annotated to both exons and introns using 

featurecounts (Liao et al. 2014). To speed up processing, only barcode combinations with >100 reads were 

retained. UMI-Tools (Smith et al. 2017) was used to collapse UMIs of aligned reads that were within 1nt 

mismatch of another UMI. UMIs that were only associated with one read were removed as potential ambient 

RNA contamination. A matrix of gene counts by cell was created with UMI-Tools. For cell line data, cells 

that expressed >7,500 genes, <300 genes, or >1% mitochondrial reads were removed. For tissue data, cells 

that expressed >10,000 genes, <100 genes, or >2% mitochondrial reads were removed. Expression counts 

(number of transcripts) for a given gene in a given cell were determined by counting unique UMIs and 

compiling a Digital Gene Expression (DGE) matrix. Mitochondrial genes are removed. Seurat V3 (Stuart et 

al. 2019) was used to scale the DGE matrix by total UMI counts, multiplied by the mean number of transcripts, 

and values were log transformed. To visualize data, the top 3,000 variable genes were projected into 2D space 
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by UMAP (McInnes et al. 2018). Ambient RNA level was estimated using a previously reported approach 

(Ding et al., 2019). 

 

Peak-gene cis-association and DORC identification 

To calculate peak-gene associations in cis, we considered all ATAC peaks that are located in the ± 50 kb or 

± 500 kb window around each annotated TSS. We used peak counts and gene expression values to calculate 

the observed Spearman correlation (obs) of each peak-gene pair. To estimate the background, we used 

chromVAR to generate 100 background peaks for each peak by matching accessibility and GC content, and 

calculated the Spearman correlation coefficient between those background peaks and the gene, resulting in a 

null peak-gene Spearman correlation distribution that is independent of peak-gene proximity. We calculated 

the expected population mean (pop.mean) and expected population standard deviation (pop.sd) from expected 

Spearman correlations. The Z score is calculated by z=(obs-pop.mean)/pop.sd, and converted to a p-value 

based on the normal distribution. For peaks associated with multiple genes, we only kept peak-gene 

associations with the smallest p-value.  

 

To define DORCs (a set of nearby peaks per gene), we rank genes by the number of significantly associated 

peaks (± 50 kb around TSSs, p < 0.05). We used 10 and 5 peaks per gene as cutoffs for skin data and GM12878 

data, respectively. We then re-calculate peak-gene association by expanding the window to ±500 kb around 

TSSs. The DORC score was calculated by summing up all the significantly correlated peak counts per gene, 

and then normalized by dividing the total unique fragments in peaks.  

 

TF-gene correlation in trans 

We used TF scores derived from chromVAR and gene expression values to calculate the observed Spearman 

correlation (obs) of each TF-gene pair. TF scores were root-mean-square normalized and gene expression 

values were normalized using the SCtransform function in Seurat. Z scores and p-values were calculated in 

the same way in the cis-analysis.  

 

Comparison to other technologies 

We compared the performance of SHARE-seq to sci-CAR (Cao et al., 2018), SNARE-seq (Chen et al., 2019) 

and Paired-seq (Zhu et al., 2019) using cell line data. We used deeply sequenced GM12878 data for SHARE-

seq, published A549 cell line data for sci-CAR (Cao et al., 2018) and published cell line mixture data for 

SNARE-seq (Chen et al., 2019) and Paired-seq (Zhu et al., 2019). We used the authors’ count matrices, which 

were obtained on libraries that were sequenced to saturation. For each assay, we determine the cutoff by 
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ranking the number of unique molecules per cell barcode. We set cutoff at the steep drop-off which indicates 

separation between the cell-associated barcodes and the barcodes associated with debris (Supplementary 

note Fig. 1).  

 

To compare SHARE-seq with other high-throughput scATAC-seq methods using cell line data, we used the 

approach described in previous paper (Lareau et al., 2019), and compared with published datasets, including 

Cusanovich et al .(Cusanovich et al., 2015) (GSE67446), Pliner et al. (Pliner et al., 2018) (GSE109828), 

Preissl et al. (Preissl et al., 2018) (GSE1000333), Lareau et al. (Lareau et al., 2019) (GSE123581), and 

Buenrostro et al. (Buenrostro et al., 2015) (GSE65360).  

 

To compare scATAC-seq technologies in primary tissue, we generated sci-ATAC, SHARE-seq, and 10x 

Genomics scATAC-seq datasets on adult mouse lung using the same sample processing method (above).  

 

To compare SHARE-seq with other high-throughput scRNA-seq/snRNA-seq methods, we processed four 

adult mouse brain datasets the same way as SHARE-seq. We downloaded count matrix for nuclei 

(https://support.10xgenomics.com/single-cell-gene-expression/datasets/2.1.0/nuclei_2k) and cells (Zeisel et al., 

2018) processed by 10x Genomics (P60 cortex, SRP135960), cells processed by Drop-seq (Saunders et al., 

2018) (P60 Cortex, GSE116470), and nuclei processed by DroNc-seq (Habib et al., 2017) (PFC, GSE71585). 

 

Cell cycle signature 

To calculate the cell cycle signature, we used our previously published cell cycle gene list (Tirosh et al. 2016) 

and summed up the normalized cell cycle gene counts per cell. We did not regress out the cell cycle signature, 

because it is one of the most important signatures in TACs.  

 

Computational pairing 

To confirm if computational pairing methods correctly predict cell type in scATAC-seq based on a scRNA-

seq profile, we used Seurat v3.0 (Stuart et al. 2019) to calculate gene activity scores from scATAC-seq. Next, 

we identified anchors between the scATAC-seq and scRNA-seq datasets using CCA (Stuart et al. 2019) and 

used these anchors to transfer cell-type labels from scRNA-seq to scATAC-seq. We calculated the percent of 

mismatch between the predicted cell type to the actual cell type. 
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Brain data analysis 

For the brain sample, we aggregated scATAC-seq data generated using SureCell (Lareau et al., 2019) as 

pseudo-bulk samples, then extracted a small number of principal components (PCs) from the normalized 

pseudo-bulk count matrix. We next projected the scATAC-seq data to the space spanned by the PCs. The 

projected data was then visualized using tSNE and UMAP. To jointly cluster on ATAC and RNA signal, we 

used Similarity NEtwork FUSION (Wang et al. 2014) to combine the distance matrix in chromatin space and 

RNA space. After generating the fused distance matrix, we then calculated k-nearest neighbor graph and found 

clusters using the Louvain community detection algorithm. The clusters were assigned based on both marker 

gene and scATAC-seq signal. 

 

Skin scATAC-seq peak count matrix 

To ensure our peak set in skin includes ATAC peaks from rare populations, we performed two rounds of peak 

calling. We first called peaks on filtered reads from all cells and generated 1st-round cell-peak count matrix. 

We then filtered cells based on both ATAC and RNA profiles and identified clusters based on RNA profiles. 

We next called peaks again on aggregated pseudo bulk samples from each cluster and merged all peak 

summits, to generate a 2nd-round cell-peak count matrix.  

 

Skin scATAC-seq dimension reduction 

To reduce the dimension of ATAC-seq data, we tested cisTopic (González-Blas et al. 2019), chromVAR motif 

score and Kmer (Schep et al. 2017), and snapATAC (Fang et al. 2019) approaches.  

 

Pseudotime inference 

To calculate pseudotime based on scATAC-seq data of TACs, IRS and Hair Shaft populations, we provided 

55 normalized topics from cisTopic as input to Palantir (Setty et al. 2019). We then defined lineages based on 

the probability of lineage assignment.  

 

Residual analysis 

Both DORC scores and gene expression were smoothed over pseudotime with local polynomial regression 

fitting (loess) separately, then min-max normalized. The residual for each gene was calculated by subtracting 

normalized gene expression from normalized DORC scores. 
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Chromatin potential 

To calculate chromatin potential, we first smoothed DORC scores (chromatin space) and corresponding gene 

expression (RNA space) over a k-nearest neighbor graph (k-NN, k = 50), calculated using normalized ATAC 

topics from cisTopic. Next, we calculated another k-NN (k = 10), between the smoothed chromatin profile of 

a given cell (Catac, i), and the smoothed gene expression profile of each cell (Crna, i, j). We then calculated the 

distance (Di, j) between the Catac, i and the average of Crna, j in chromatin space. The arrow length is defined by 

normalizing Di, j. For visualization, we smoothed arrows with the 15 k-NNs in low dimensional space. For 

grid view, we divided the UMAP space into 40 × 40 grid, then averaged the arrows for all the cells within 

each grid.  

 

RNA velocity 

RNA velocity was calculated using Velocyto (La Manno et al. 2018) with default settings. For visualization, 

we smoothed arrows with the 15 RNA k-NNs. For grid view, we divided the UMAP space into 40 × 40 grid, 

then averaged the arrows for all the cells within each grid.   
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